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Hyperspectral remote sensing images are affected by different types of noise. In addition to typical ran-
dom noise, nonperiodic partially deterministic disturbance patterns generally appear in the data. These
patterns, which are intrinsic to the image formation process, are characterized by a high degree of spatial
and spectral coherence. We present a new technique that faces the problem of removing the spatially
coherent noise known as vertical striping, usually found in images acquired by push-broom sensors.
The developed methodology is tested on data acquired by the Compact High Resolution Imaging Spectro-
meter (CHRIS) onboard the Project for On-board Autonomy (PROBA) orbital platform, which is a typical
example of a push-broom instrument exhibiting a relatively high noise component. The proposed correc-
tion method is based on the hypothesis that the vertical disturbance presents higher spatial frequencies
than the surface radiance. A technique to exclude the contribution of the spatial high frequencies of the
surface from the destriping process is introduced. First, the performance of the proposed algorithm is
tested on a set of realistic synthetic images with added modeled noise in order to quantify the noise
reduction and the noise estimation accuracy. Then, algorithm robustness is tested on more than 350 real
CHRIS images from different sites, several acquisition modes (different spatial and spectral resolutions),
and covering the full range of possible sensor temperatures. The proposed algorithm is benchmarked
against the CHRIS reference algorithm. Results show excellent rejection of the noise pattern with respect
to the original CHRIS images, especially improving the removal in those scenes with a natural high
contrast. However, some low-frequency components still remain. In addition, the developed correction
model captures and corrects the dependency of the noise patterns on sensor temperature, which confirms
the robustness of the presented approach. © 2008 Optical Society of America
OCIS codes:  030.1670, 030.4280, 100.3020, 110.4234, 280.4788.

dition, hyperspectral images can present nonperiodic

Hyperspectral images acquired by remote sensing in-
struments are generally affected by two kinds of
noise. The first one can be defined as standard ran-
dom noise, which varies with time and determines
the minimum image signal-to-noise ratio [1,2]. In ad-
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partially deterministic disturbance patterns [3],
which come from the image formation process and
are characterized by a high degree of spatial and
spectral coherence [4].

Many of the hyperspectral sensors are push-broom
imaging spectrometers. Push-broom line imagers
consist of an optical system that focuses the light
coming from a portion of the Earth’s surface onto



the focal plane where the sensor is placed. The sys-
tem includes a long and narrow slit that limits the
area being imaged to a stripe aligned with one of
the sensor’s axes, while a diffractive medium (prism,
grid, etc.) forms a spectrum of the line along the
orthogonal axis. Usually the detector is a charge
coupled device (CCD) two-dimensional array whose
rows separate wavelengths and whose columns sepa-
rate resolved points in the Earth image [5]. Figure 1
shows the push-broom operation mode for the acqui-
sition of spectral images. The optical system collects
the light arriving from a long and narrow strip of the
surface below by means of a thin slit. The slit is or-
iented perpendicularly to the direction of motion of
the sensor, and the sequential acquisition of lines
generates the image as the platform moves forward.
The image of the land strip is diffracted, separating
the different wavelengths, and projected onto a prop-
erly aligned CCD array; so the line is parallel to the
horizontal axis (spatial), while the diffraction is pro-
duced along the perpendicular axis (spectral).

Summarizing, the complete optical design is opti-
mized so that monochromatic images of the slit fall
on straight CCD rows, and line spectra of resolved
ground areas fall on CCD columns. In this case, each
pixel in a line of the image at a given wavelength is
acquired by a different element of the CCD, while
every column of the image for that wavelength is
measured by the same element of the CCD. Were
the CCD and the slit ideally built, then all CCD ele-
ments would have the same sensitivity and response,
producing even noise-free images. However, in real
devices deviations from these design conditions pro-
duce undesired effects [3,6]. One of them is the vari-
ation of the intensity of a homogeneous imaged area
in each column of the CCD array, which is due to sen-
sitivity variations between neighboring elements of
the CCD and variations in the width of the slit along
its length [3]. The effect of these imperfections in the
resulting image is a vertical pattern known as verti-
cal striping (VS). Usually the whole system is fully
characterized after assembly, yielding the gain cor-
rection factors that would produce an even image
in operational situations. However, on some occa-
sions, especially after rocket launch, the system is af-
fected in such a way that the characterization does
not completely remove the noise. Also, this type of
sensor degrades with time and thus needs recalibra-
tion, which is not always possible. In those cases,
a noise-reduction algorithm must be applied after
image reception in the preprocessing phase.

This work analyzes the Compact High Resolution
Imaging Spectrometer (CHRIS) [7], which is
mounted onboard the European Space Agency
(ESA) small satellite platform called PROBA (Project
for On-board Autonomy) [8]. The CHRIS sensor [7]
provides multiangular hyperspectral images in the
spectral range from 400 to 1050 nm with a maximum
spatial resolution of 17 or 34 m at nadir, depending
on the acquisition mode. CHRIS has five selectable
acquisition modes, which depend mainly on the band

wavelength configuration and the four possible
swath width and binning options available (http:/
earth.esa.int/missions/thirdpartymission/proba
html). Currently, there are no standard processing
algorithms defined for CHRIS because PROBA was
originally designed as a technology demonstrator
satellite and CHRIS data were a secondary objective
of the mission. In faet, radiometric calibration is
the only preprocessing step applied to CHRIS data
before delivering image products, which are provided
in top of the atmosphere radiance [9]. As a conse-
quence, CHRIS images present a certain number
of problems and errors [10] that are commonly re-
moved from most remote sensing data.

As a push-broom sensor, the radiometric response
of the CHRIS instrument is determined by two over-
lapping components: the optical system response
(a telescope forming an image on the entrance slit
together with the spectrometer) and the CCD re-
sponse (a thinned, backilluminated, frame-transfer
CCD) [8]. With regard to the CCD response, the dif-
ferent pixel-to-pixel responses come from nonunifor-
mities in dark current generation, nonuniformities
in pixel sensitivity, threshold variations, and gain
and offset differences [11]. But, in practice, these
CCD imperfections are relatively stable with tem-
perature and time [12], resulting in a spatially
fixed-pattern noise in the image that should be re-
moved (e.g., the dark signal offsets are removed by
subtracting a generic dark image). However, with re-
gard to the optical system response, changes in tem-
perature, due to the seasonal variation of the in-orbit
CHRIS instrument temperature [12], produce a dila-
tion of the slit that changes its width and moves the
image of the slit across the detector. Therefore, the
effect of the slit adds to the vertical pattern in a com-
plex way, as it is heavily dependent on the sensor’s
temperature (see Fig. 1), and thus it must be modeled
and corrected.

Several VS-reduction approaches have been pro-
posed in the literature. Our approach falls in the
category of scene-based nonuniformity corrections,
since it provides relative calibration factors directly
computed from the acquired image. Methods based
on large uniform areas in the scene or methods as-
suming constant-static noise patterns [13,14] are
not appropriate for CHRIS because of its spatial re-
solution (17 to 34m) and its noise dependence on
the sensor’s temperature, respectively. Other meth-
ods assume that all sensor elements observe similar
subscenes in a given image and adjust the distribu-
tions of values acquired by each sensor to some refer-
ence distribution by means of a histogram or moment
matching [15], but the high spatial resolution of
CHRIS and the moderate number of lines per image
also dissuade us from their use. Finally, most related
methods assume that the noise contribution changes
from one pixel to another (high spatial frequency) in
the across-track direction, while the surface contri-
bution presents smoother profiles (lower spatial fre-
quencies) in the across-track dimension [3,16-18].
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(Color online) Design of a push-broom imaging spectrometer that shows its operation mode and the sources of the coherent spatial

noise patterns: entrance slit width that depends on temperature (T), and CCD sensitivity (figure based on [3]).

This approach is described in more detail in Subsec-
tion 2.C, but the reader is referred to [19] for a full
description of scene-based nonuniformity correction
methods for push-broom sensors. One novelty of
the proposed VS-correction method is that it expli-
citly introduces a technique for excluding the contri-
bution of the surface’s spatial high frequencies from
the destriping process. The proposed approach is
CHRIS oriented, since it takes advantage of the hy-
perspectral and multiangular capabilities of CHRIS,
and also can include the platform temperature infor-
mation to improve the results. However, the general
nature of the procedure allows it to be applied to any
push-broom imaging spectrometer.

In addition to the VS noise produced in the image
formation process, the transmission of CHRIS chan-
nel 2 (odd and even pixels from each CCD row are
read in parallel) randomly fails, producing anoma-
lous values called dropouts at the odd pixels in some
image rows . Dropouts hamper the operational use of
CHRIS images, since latter processing stages are
drastically affected by these anomalous pixels [20].
These errors must be corrected by using both spatial
and spectral information of the anomalous pixel and
its neighbors.

In this work, we focus on modeling and correcting
the coherent spatial and spectral noise patterns pro-
duced by these systematic yet hardly predictable dis-
turbances. We describe in detail the dropout and VS-
correction algorithms, which are currently being im-
plemented in the BEAM Toolbox [21,22] software for
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the preprocessing of CHRIS/PROBA data. The rest of
this paper is outlined as follows. In Section 2, we fo-
cus on presenting, modeling, and correcting the co-
herent spatial and spectral structures produced by
systematic disturbances in the CHRIS instrument.
In Section 3, a short description of the employed
CHRIS images is given. Results of the methods
and the characterization of CHRIS VS are presented
in Section 4. Finally, discussion and concluding re-
marks are given in Section 5.

2. Methodology

A. Definition of Terms

A hyperspectral image consists of two spatial dimen-
sions (along track and across track) and one spectral
dimension (wavelength). This hyperspectral image is
registered by the instrument in a data cube, where
the along-track dimension at the Earth’s surface,
y, corresponds to the image-line dimension / (distrib-
uted in the vertical direction of the image); the sur-
face across-track dimension, x, corresponds to the
line-pixels dimension p (distributed in the horizontal
direction of the image and CCD); and the spectral di-
mension, 4, corresponds to the image band b (distrib-
uted in the vertical direction of the CCD). These
correspondences among the Earth’s surface, the in-
strument CCD, and the hyperspectral data cube
are depicted in Fig. 2. The size of the hyperspectral
data cube can be written in the form N; x N, x N,
where N, is the number of image lines, N, is the
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Fig. 2. (Color online) Formation process of the VS, v(p, b), from the combination of the nonuniform CCD pixel response, S(p,b), and the

slit optical response, H,(p), which are constant in columns.

number of pixels per line, and N}, is the number of
spectral bands. The incoming radiance is integrated
over the spatial and spectral response of the system
for a given detector element (p,b) of the CCD array.
The relation between the incoming at-sensor radi-
ance from the Earth’s surface, L(x,y,4) (Wm™2
sr-lnm™), and the value registered by the CCD,
I(I,p,b) (a digital number), can be defined as

1(,p,b) =S(p,b}fyez fxe,, ﬁ@L(y,x,A)H(x,A)dydxd&
+8o(l,p,b), (1)

where H (x, 4) represents the optical system response,
S(p, b) is the CCD sensitivity, and Sy(Z, p, b) contains
all the analog offset errors and random noise. In
Eq. (1), it is worth noting that the vertical dimension
of the image is related to the time when the image
line, /, was acquired. In addition, the image values,
I, and CCD sensitivity, S, are expressed as a function
of the image pixels and bands, (p,b). Hence, we as-
sume a one-to-one correspondence between the
image pixels and bands and the CCD columns and
rows, respectively. However, usually a certain num-
ber of CCD columns or rows are binned to form
the final image (e.g., reducing the spatial or spectral
resolution to increase the radiometric accuracy). In
this case, some lines and columns of I(/,p,b) would
be summed, but all the presented formulation is
still valid.

If the instrument works correctly [5], the spatial
and the spectral dimensions (orthogonal dimensions
of the CCD) are independent, and they can be pro-
cessed separately. Therefore, the optical system
response can be expressed as H(x,A) = H(x)H(4),
where H(x) corresponds to the slit response and
H(A) corresponds to the instrument chromatic re-
sponse, which in turns defines the wavelength and
bandwidth of each band. Thus, the slit response is
constant for all the lines and bands of a given image,
and independent from pixel to pixel.

Assuming a smooth optical response, the integral
of the incoming radiance over the optical response of
the system in Eq. (1), which represents the radiance

at the focal plane array of the CCD, can be approxi-
mated as

f f L{y,x, #)H(x)H(2)dydxd
Y€l Jx€Ep JAEb

=L(l,p,b)H,(p)H,(b), (2)
where H,(p) and H,(b) represent the contribution
of the spatial and spectral response to the calibra-
tion coefficient of the detector element (p,b). Then,
the relation between the incoming radiance and
the value registered by the CCD, Eq. (1), can be
written as

I(l,p,b) = L(l,p,b)H.(p)H,(b)S(p, b) + So(l, p, b).
(3)

Most existing CCD sensors allow an accurate cor-
rection of dark current offsets, thus making Sy (7, p, b)
negligible, i.e., with only random noise of zero mean
and low amplitude remaining). In addition, the pro-
vided CHRIS images are radiometrically corrected
(so the units of I are radiance units instead of digital
numbers). CHRIS products [23] are processed by
using an improved radiometric calibration; the cali-
bration was poor in previous versions (with under-
estimation by up to a factor of 2 of the sensor
measurements in the near IR). In [12,24], the
authors showed that CHRIS images present an accu-
rate spectral radiometric calibration that allows us
to remove the dependency on the spectral response
H,(b). Hence, assuming that Sy(/,p,b)~0 and
H,(b) =1, Eq. (3) is reduced to

I(l,p,b) = L(l,p,b)H (p)S(p,b) = L(L,p,b)v(p,b),
(4)

where the VS produced by the combination of the two
nonuniform spatial responses is denoted v(p,b). A
spectral band b will be acquired by the same row
of CCD elements, and each image column p will be
affected by a different CCD pixel response S(p,b)
and a different optical slit response H(p) (equal for
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all spectral bands). Therefore, the resulting multipli-
cative noise v(p,b) is constant in image columns and
superimposes a systematic pattern of noise orga-
nized by vertical lines. The formation of the stripe
noise is depicted in Fig. 2.

The physical interpretation of satellite data needs
an accurate sensor characterization that corrects
the provided (radiometrically calibrated) product,
I(l,p,b), to yield values as close as possible to the
desired at-sensor radiance, L(/,p,b). Therefore, the
procedure consists in finding the set of correction
coefficients, which characterize the VS v(p, b), to re-
trieve the true radiance L(l,p,b) =I(l,p,b)/uv(p,b).

B. Dropout Correction

The process of estimating and correcting VS patterns
directly from the image is drastically affected by
dropout errors, since these pixels present anomalous
values (usually negative) in some bands. Therefore,
before VS correction can be carried out, dropout
errors must be corrected in order to use all the lines
of the image. For this reason, CHRIS products [25]
include a quality mask that indicates pixel satura-
tion and occurrence of errors: useful pixel, dropout
pixel, and saturated pixel. The problem is that this
mask sometimes fails to mark dropout pixels and,
in addition, older versions of CHRIS products do
not include the mask at all.

1. Dropout Detection

To perform the dropout detection we have to create a
mask of the same size as the image and find rows
with dropouts. The problem with the nonmasked pix-
els is that they do not present negative values (their
values are of the order of magnitude of the signal)
but they always occur in odd columns. Therefore,
whether the mask with the dropouts is available
or not, we need to improve or create the mask, adding
undetected dropouts.

The anomalous pixels (dropouts) are found as
follows:

1. We assume that the difference between contig-
uous pixels in a row is small. The difference between
a correct pixel and its neighbor should be equal to or
smaller than the difference with the pixel two col-
umns away, except when the neighbor is a dropout.
This assumption should be true for all the odd pixels
of the row.

e TFor odd pixels, which may be dropouts, the

square difference from neighboring even pixels that
are certainly correct,

Dy (1,b) = [I(L,p,b) - I(L,p + 1,b)]?,
p=12,..,N,-1, (5)

should yield high differences in the presence of
dropouts.
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e For even pixels, which are certainly correct, the
square difference from the following even pixel,

Deven(l: b) it [I(l,p,b) —I(l,p g 2ub)]21p
=2,4,...N,~2, (6)

should yield low differences in all cases (depending
on the surface changes in the across-track direction).

2. The surface and VS affect differences between
contiguous columns; thus the median is used to ob-
tain a robust estimator of the average difference
between pixels for the whole line.

3. Finally, all odd pixels of the line are labeled
as dropout noise if the difference between neighbors
is 50% higher than between even pixels, ie.,
median(Dgy (1, b))/median(Dyg,.,(l,5)) > 1.5.

2. Dropout Restoration

Once the dropout errors have been detected, they
must be corrected by the use of both spatial and spec-
tral information of the anomalous pixel and its neigh-
bors. Each invalid pixel value is replaced by a
weighted average of the values of the neighboring
pixels. To avoid the poor performance of spatial
filters (local average) in border or inhomogeneous
areas [16,26], the contribution of each pixel (i,j) of
a given neighborhood (C) of size 3 x 3 is weighted
by its similarity to the corrected pixel, I(Z,p,b). In
particular, this similarity weight is the inverse of
the Euclidean distance between the spectral signa-
ture of the pixels, which is calculated locally by using
the n, upper and bottom spectral bands closer to the
corrected band b:

Y-z
W(i.j) = {Z[I(z,p,b) “IQ+ip+ib+BP
k
k:—nb,...,—l,l,...,nb. (7}

The final weight matrix, W, is modified to have zero
values for the pixels not belonging to the given neigh-
borhood C, and it is normalized to sum to one, i.e.,
We(ig) = CEHW L)/ 22,C0.)W(i,)). Finally, the
new value of the dropout 1s calculated as

Ilp,b) =) I(L+i,p+j,0)Wc(in),ii =-1,0,1. (8)

LJ

The result of this process is similar to a spatial inter-
polation but taking into account the similarity with
neighbors. It is worth noting that the values of bands
with errors (indicated by the CHRIS quality mask)
are not considered during this process.

The correction of the dropout errors can be carried
out independently of the VS correction. However, the
VS noise introduces different multiplicative factors
in image columns that can affect the new pixel value
if the local average is performed by using contiguous
columns. Therefore, if one performs the dropout



correction before the VS correction, only the values of
the vertical neighbors (Cy) must be used to avoid the
effect of VS. After VS removal, it is possible
to perform a second correction based on the four-
connected (Cy) or eight-connected (Cg) neighbors:

010 010
C;=|0o0o0|, c,=|10 1},
010 01 0
11 1
Ca=|1 0 1 (9)
111

C. Vertical Striping Correction

The objective of VS correction methods is to estimate
the correction factor, v(p,b) = H(p)S(p,b), of each
spectral band to correct all the lines of this band.
The main assumption consists in considering that
both slit (i) and CCD (S) contributions change from
one pixel to another (high spatial frequency) in the
across-track direction (p) but are constant in the
along-track direction (1), i.e., during image formation,
while the surface contribution (L) presents smoother
profiles (lower spatial frequencies) in the across-
track dimension.

1. Vertical Striping Correction Methods

In the literature, all the VS reduction approaches ap-
plied to CHRIS take advantage of the constant noise
factors in the image columns [3,16-19]. Basically,
each image’s column is averaged, resulting in an
averaged line (along-track), and then the noise pro-
file is estimated in the across-track direction for each
band. By averaging image lines (using an integrated
line profile) the surface contribution is smoothed, the
additive random noise is cancelled, and the VS pro-

x10°

6.0/
b

5.0/

300 400 500
Column index (p)

(a)

file remains constant. Consequently, the surface con-
tribution presents lower spatial frequencies in the
integrated line profile and can be easily separated
from the VS (high frequencies) by applying a filter
with a suited cutoff frequency.

Figure 3(a) shows the three steps of the method
proposed in [3]:

A. Each band is averaged in lines (along-track di-
rection), y1eld1ng one integrated lme proﬁle per band:
a(p,b) = [N I(1,p,b)dl = v(p,b) [ L(I,p,b)dl = v(p,
b)s(p. b).

B. A low-pass filter (LPF) is applied by using a
moving-window algorithm that flattens the profile
a(p,b) by cenvolving it with a Gaussian weighting
function w: g(p,b) = LPF{a(p,b)} = [w(p - k)a(p,b)
dk. In this kind of filter, the cutoff frequency f, de-
fines the standard deviation of the Gaussian window,
o~ 1/f..

C. Since f(p,b) contains mainly the surface con-
tribution, the shape of the VS factors can be obtained
by the ratio y(p b) = a(p,b)/p(p,b). Thus, the cor-
rected image is calculated as L(l,p,b) =I(l,p,b)/

i(p,b).

Figure 3(b) shows the method implemented in [17]
to correct CHRIS images. The main difference from
the previous method is the use of logarithms to trans-
form the multiplicative noise into additive noise in
order to improve the filtering as follows:

A. Each band is averaged in lines, yielding one
integrated line profile per band, a(p,b).
B. The averaged profile is log transformed: log,
(2, b) =log(a(p,b)) = log(v(p, b)) + log(B(p, b))
C. A LPF is applied to eliminate high- frequency
variations (coming from the noise v) and to estimate
the surface contribution: log (p,b) = LPF{log,(p,b)}.

D. High-frequency vanatmns (considered the
log,(p,b) -

noise) are obtained: log, (p,b) = ]ogﬂ(p b).

x 16°
6.0
50

156

Column index (p)
(b)

Fig. 3. Example of the processing steps of two different VS reduction methods proposed in (a) [3] and (b) [17] (profiles of the last band of
CHRIS_EI_060130_63A1_41 image taken over Heron Island),
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E. The VS factors are obtained by calculating the
inverse of the logarithm: i(p,d) = exp(log,(p,b)).

Theoretically, when the line profile is being filtered
the first approach should give poor results because
it is affected by multiplicative noise, and this is
equivalent to a convolution in the frequency domain.
This is the main reason to propose the second ap-
proach, but, in practice, both approaches give equiva-
lent results. This outcome can be explained, because
features of the multiplicative noise present a mean
close to one (f =0 and A = 1) and high-frequency
components of low amplitude (1f and A ~ 0.1). There-
fore, when performing the convolution of the signal
and noise in the frequency domain, the power spec-
tral density of the signal at low frequencies is not af-
fected. Since both methods provide equivalent
results, we consider them a single method, and here-
after we refer to them as the standard method.

The standard method can fail for several reasons,
such as high-amplitude changes in the VS, which
affect the performance of the LPF (wrong estimation
of the surface contribution), producing an overesti-
mation or underestimation in the correction factors
of the neighboring columns. In [16], an iterative
method that corrects the effect of these high striping
values is presented. However, as proposed in the next
subsection, these effects can be also avoided by using
more advanced filtering techniques that use a
weighting function.

2. Robust Vertical-Striping-Correction Method

One of the main drawbacks of the methods proposed
in the literature is that they do not explicitly take
into account the possible high-frequency components
of the surface. In images presenting structures or
patterns in the vertical direction, the averaged pro-
file a(p, b) may present high-frequency contributions
that are due to the surface. This will be interpreted
as VS when v(p,d) is estimated (see the selected ex-
ample in Fig. 3), and some columns will be corrected
with wrong values, worsening the final image.

The proposed correction method is also based on
the hypothesis that the vertical disturbance presents
higher spatial frequencies than the surface radiance.
However, it models the noise pattern by suppressing
the surface contribution in the across-track direc-
tion in two different ways: first, by avoiding the high-
frequency changes due to surface edges and, second,
by subtracting the low-frequency profile.

The surface can present high spatial frequencies
due to the surface texture, which has low amplitude
changes, or due to changes in the land-cover type,
which can produce great changes in amplitude that
are a problem in the destriping process. In principle,
in one spectral band both the surface and the noise
contributions are mixed, and is not possible to dis-
tinguish which of them causes the changes in the
radiance amplitude between contiguous columns.
However, the spectral signature of pixels from cur-
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rent hyperspectral sensors can provide helpful in-
formation about the land-cover changes. Considering
the spectra of two contiguous pixels, p; and py, justin
the boundary between two land-cover types, three
factors affect the spectral change: (i) differences be-
tween the true spectra of both surfaces (in shape and
magnitude); (ii) the varying CCD sensitivity S(p, b),
which modulates the spectral signature as a multi-
plicative noise of low variance; and (iii) the varying
multiplicative factor that is due to the slit H(p),
which scales the magnitude of the whole spectral sig-
nature. Among these three factors, the first one will
produce the greater change, the second one will be a
second-order factor when the spectral similarity is
compared, and the third one will not affect the final
result if the selected spectral distance is invariant to
scaling by a positive factor. Therefore, we can apply a
filter in the across-track direction of the hyperspec-
tral image to find the surface borders that introduce
high frequencies in the across-track profile. The next
subsections explain how pixels corresponding to bor-
ders are not employed when computing the inte-
grated line profiles.

Spatiospectral Edge Detection. We propose a spa-
tiospectral filter based on two-dimensional convolu-
tion filters, which are commonly used in gray-scale
image processing, such as the derivation filter and
the Roberts operator [27]. In this work, the horizon-
tal edge pixels of the processed hyperspectral image
are found by using the derivative filter in the hori-
0 0
niques to hyperspectral images, taking the spectral
dimension into account, it is not possible to directly
compute the convolution of the kernel matrix and the
three-dimensional hypercube. In our proposal, a
spectral distance is first computed between the spec-
trum of the pixel linked to the position with value
K(i,j) = -1 in the kernel matrix (reference pixel),
and the rest of the neighboring pixels (forming a ma-
trix D of distances with the value D(i,j) = 0 for the
reference pixel). Then, the sum of the product of the
elements of the kernel and the distance matrix is
computed, >_;;K(i,/)D(i,j), and the resulting value
is assigned to the reference pixel (i,7). The main dif-
ference between this method and gray-scale image
processing is that only one position of K can present
the value -1, which indicates at each moment the
pixel that is being used as a reference to compute
the spectral distances. Once this process is applied
to all the pixels, a sensitivity threshold is defined.
All pixels with values higher than the threshold
(i.e., pixels whose spectral signatures differ from that
of their neighbors) are identified as edges.

Concerning the spectral distance D, the spectral
angle distance is used, since it is invariant to multi-
plicative scaling [28] and will not be affected by the
VS of the slit:

zontal direction K = . To apply these tech-

D(x;,%p) = arccos((x1,Xg)/(|Ix1]|[|%2ll)), (10)



where x; and x, are the vectors containing the spec-
tral signature of the pixels whose spectral distance is
being calculated, (-, +) is the dot product operator, and
|| - || is the quadratic norm. Finally, to find an opti-
mum threshold for each image, but also accounting
for a significant number of lines to compute the
smoothed integrated line profiles, an iterative em-
pirical procedure is followed. The procedure starts
with a threshold equal to zero iteratively increased
until 60% of nonedge pixels in the column that
presents more edge pixels is ensured, i.e., >_;;K(i,j)
D(x(l,p),x(l +i,p+j)) > threshold.

Vertical Striping Removal. A critical point of the
proposed approach is how to remove edge pixels
when the integrated line profiles are computed. If
all image lines that present at least one edge pixel
are removed, it is probable that only a few or even
none of the lines can be used in the averaging. On
the other hand, if the edge pixels are removed and
only the remaining pixels of the line are used for
averaging, then the problem is not solved, since
the high frequencies are still there (think of a step
profile where only one point is removed). The only
way to remove the edges is to work in the across-
track spatial derivative domain, where the homoge-
neous areas before and after the edge present values
close to zero and the spikes of edge pixels can be sub-
stituted, interpolating prior to the integration in the
along-track direction. In this simple way, all high-
frequency contribution by the surface is removed
from the integrated line profile before the low-pass
filtering, and then the estimated VS is independent
of the surface patterns.

Figure 4 shows the steps of the proposed method:

A. Apply logarithms to transform the multiplica-
tive noise into additive noise [log(Z(Z,p,b))l.

B. Transform the hyperspectral data cube into
the across-track spatial derivative domain, which
is equivalent to high-pass filtering: 0(l,p,b) =
2 1og(I(l,p,b)) = log(I(l,p,b)) - log(I(Z,p - 1,b)), for
p > 1 (note that the first column derivative is fixed
to zero, O(,1,b) = 0).

00 700

100 200 300 40

Column index (p)
Fig.4. Example of the processing steps of proposed VS correction
method (profiles of the last band of CHRIS_EI_060130_63A1_41

image taken over Heron Island).

C. Average the lines of each band in the along-
track direction but avoiding the edge pixels found
with the spatiospectral edge detection: é(p,b) = [ 6
({,p,b)dl. Working in the derivative domain has al-
lowed our method to avoid edge pixels, and it also ele-
vates the noise level temporarily because the surface
power spectrum is concentrated in the low-frequency
region, whereas the VS is spread over all of the spa-
tial frequency spectrum [29]. Nevertheless, if the
LPF is applied in the derivative domain, the com-
mitted errors by the LPF will accumulate throughout
the integration in the across-track direction. There-
fore, after applying the along-track LPF, data is in-
tegrated across-track to retrieve the signal in the
radiance domain.

D. Integrate in the across-track direction (cumu-
lative sum in p): ¢(p,b) = > ¢, &(i,b), i.e., the inte-
gration bias is corrected at the end of the process.

E. Apply a LPF in the across-track direction to
eliminate the high-frequency variations coming from
the noise v and estimate the surface contribu-
tion: ¢(p,b) = LPF{¢(p,b)}.

F. Obtain the high-frequency variations (consid-
ered to be the noise) by subtracting the low frequen-
cies: w(p,b) = ¢(p,b) — ¢(p,b). The error introduced
during the integration process consists in a constant
value for each band. Nevertheless, as the VS is cor-
rected independently for each band, the VS in the
logarithmic domain should present zero mean (gain
close to 1 in the radiance image). Therefore, the offset
errors are corrected by subtracting the mean
value: y(p,b) = w(p,b) - 1/N, 5", w(p,b).

G. Finally, obtain the VSpfactors by calculating
the inverse of the logarithm #(p,b) = exp(y(p,b)).

Multiangular Vertical Striping Removal. Thanks
to the sequential acquisition of CHRIS of the same
scene from five different angles, we can also improve
the robustness of the proposed algorithm by using all
of the multiangular images of one acquisition to-
gether. As mentioned before, the VS due to the in-
strument slit is temperature dependent. Although
temperatures recorded for different acquisitions
have shown differences higher than 8°C, changes
within a single acquisition (five multiangular
images) are less than 0.5°C. Therefore, images of
one acquisition present the same VS pattern while
they are recording different spatial patterns from
the same Earth area (owing to perspective, platform
motion, and Earth rotation). One can take advantage
of this fact to improve the estimation of the VS by
considering the five images a single longer hyper-
spectral image, which is formed by stacking the mul-
tiangular images in the along-track direction, i.e. a
hypercube with the same number of columns N,
and bands N, but with 5 x N; lines with a different
spatial distribution of similar surface types (similar
spectra). When a higher number of lines are pro-
cessed together, the surface contribution is smoother,
and the estimation of the VS is more accurate.
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3. Data Material

A. CHRIS Database

CHRIS acquisition modes present different spatial
resolution and spectral bands. In addition, they
can be differenced in spatially binned (mode 1, with
372 columns) or unbinned (modes 2, 3, 4, and 5 with
744 columns) modes in the across-track direction. As
a consequence, the performance of the proposed algo-
rithm has to be tested on a large number of sites of
different natures, for several acquisition modes, and
covering the full range of possible sensor tempera-
tures. For this study, a data set consisting of 79 ac-
quisitions over 21 of the core sites of the PROBA
mission was considered. In particular, it contains
274 mode 1 images from 55 acquisitions of 14 test
sites, and 113 mode 2 images from 24 acquisitions
of 7 test sites. In these acquisitions, the instrument’s
temperature ranges from 1°C to 9°C, since the plat-
form temperature changes through the year and
within each orbit (CHRIS does not have thermal reg-
ulation); the nominal temperature of the detector
is 5°C.

B. Synthetic Images

To quantitatively validate the proposed method, not
having available any prelaunch CCD-slit character-
izations, a set of realistic synthetic images were gen-
erated based on three CHRIS acquisitions taken over
the site of Barrax (BR, Iberian Peninsula, Spain),
Heron Island (EI, Great Barrier Reef, Australia),
and Port of Valencia (PC, Mediterranean Coast,

Spain). These images were selected for the study
to take into account different CHRIS acquisition
modes, surface types, and spatial textures and pat-
terns (soil, vegetation, sea, clouds, urban areas, ete).

The synthetic images were generated free of noise
as follows. First, we manually labeled the land-cover
classes in a corrected CHRIS image. In multispectral
image processing, the assumption that the distribu-
tion of image classes can be approximated as a mix-
ture of normally distributed samples is widely
accepted. Therefore, we considered each homoge-
neous land cover as a normal distribution and used
the labeled regions of the CHRIS image to estimate
the parameters of a Gaussian mixture model (mean
and covariance matrix for each class). Once we had
the ground truth with the areas covered by the dif-
ferent spectral classes, the parameters of the Gaus-
sian mixture model and the priors, we generated a
synthetic image as follows: (i) the required number
of samples for each class was randomly generated
from the corresponding N,-dimensional Gaussian
distribution; (ii) a proper texture of gray level values
was assigned to each region (or class) in the image
that simulates the natural variability distribution
within the region; and (iii) the generated spectra
of each class were shortened depending on their
brightness (intensity) and were iteratively assigned
to the image location that presented the next higher
gray level value in the texture image. Following this
procedure, the final image preserved the spatial dis-
tribution of the classes, while introducing a realistic
variability within each class. Figure 5 shows the

Fig. 5. (Color online) Pictures of the CHRIS original (upper row) and synthetic noise-free (lower row) images over the test sites of BR-
2005-07-17 (mode 1), EI-2006-01-30 (mode 2), and PC-2005-05-18 (mode 2).
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original corrected real images and the synthetic
noise-free images over the test sites (BR-2005-07-
17, EI-2006-01-30, and PC-2005-05-18). It is worth
noting that the synthetic images preserve the real
surface contribution and texture.

Finally, synthetic multiplicative noise coming from
the entrance slit and CCD array was incorporated
into the generated synthetic noise-free images. First,
the effect of the uneven slit width on the light arriv-
ing at the CCD was modeled [Fig. 6(a)] by using the
superposition of four sinusoids of different character-
istics modulating the unity gain (one high-frequency
component, two mid-frequency components, and one
low-frequency component with amplitudes between
0.01 and 0.03). Two more sinusoids of large ampli-
tude (0.4 and 0.2) but limited extension (only one cy-
cle length in about 5 pixels width, and a half-cycle,
respectively) were placed at two given positions to si-
mulate the effect of particularly strong stripes (in the
CHRIS case due to dust particles stuck onto the slit).
Second, the simulated CCD consists of two mixed dis-
tributions: a normal distribution of unity mean and
0.005 variance, which would represent a fair re-
sponse of a regular CCD, and a Gamma distribution
of order 3 for a few elements of the CCD, which ac-
counts for anomalous or defective pixels (leakers)
with reductions in gain between 6% and 13%.
Figure 6(b) illustrates the synthetic mzultiplicative
noise with the combined contribution of the slit
and the CCD. The simulated noise ranges from 0.7
to 1.3 (slightly lower values have been reported for
CHRIS in [4,16]). This rather simple approach of
synthetically generating noise for the simulated
scenes allows the limitations of the algorithm to be
easily determined by testing which frequencies are
properly removed by the noise-removal algorithms
and those pass through undetected.

4. Experimental Results

A. Method Performance

One of the main differences between the methods
presented in Section 2.C.1 and the proposed method
comes from the employed LPF. In the case of CHRIS
images, in which some columns are affected by high
noise factors due to slit nonuniformities, it is critical
to employ a filter robust to outliers. To perform a fair
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Fig. 6. (Color online) Synthetic multiplicative noise (first 250 im-

age columns shown for proper visualization). (a) Noise profile com-

ing from the entrance slit (slit VIS). (b) Noise profile applied to each

spectral band that is obtained multiplying the slit VS by the CCD

response for each band in the across-track direction.

comparison between methods, the same LPF is used
in both cases. The smoothing is based on a robust re-
gression algorithm that assigns lower weight values
to outliers. The filter bandwidth is adjusted for each
band to pass low-frequency components at up to 99%
of the cumulative power spectral density of the along-
track integrated profile of each band. The assump-
tion of having noise below about 1% of the total
energy is a reasonable value from the data acquired
prior to launch [17].

1. Results for Synthetic Images

The first battery of experiments is concerned with as-
sessing the estimation of the VS factors, and thus the
accuracy of the noise reduction. For this purpose, the
three synthetic hyperspectral images with a known
simulated noise pattern are used. By knowing the
true noise factors, it is possible to quantify the noise
reduction in the corrected images. Although it is pos-
sible to obtain and compare the signal-to-noise ratio
of the synthetic noisy images and the corrected ones,
the VS is not actually a random noise. Therefore,
Table 1 shows the difference between the actual
and the estimated VS factors (v(p,b) and i(p,bd))
for both methods in terms of the mean error (ME),
mean absolute error (MAE), and root mean-squared
error (RMSE). Results show that the proposed meth-
od produces better estimations of the VS factors for
all the images. The bias in the estimated VS, which
yields negative ME for all the images and methods, is
due to the low frequencies present in the simulated
VS that cannot be removed by any method [see
Fig. 7(a)]. The obtained MAE values (about 0.013) in-
dicate that both algorithms provide good image cor-
rection, since the multiplicative noise applied to the
synthetic images v(p, b) ranges from 0.7 to 1.3. When
the regression and the residuals of Fig. 7(b) are ana-
lyzed, one can also appreciate that both high and low
values of VS are underestimated or overestimated,
respectively, because of the low-pass filtering.

To better quantify the global performance of the
proposed method, Table 1 also shows the relative im-
provement of RMSE when our method is used (~3%).
That is, results from both methods seem to be very
similar. In fact, in a one-way analysis of variance per-
formed to compare the means of the residuals [30], no
significant statistical differences were observed be-
tween both methods. This result can be explained
in that our method intends to be more robust to sur-
face changes; it will solve critical problems in some
image columns, but in the rest of them both methods
follow a similar procedure.

2. Results for Real Images

The second battery of experiments is concerned with
assessing the noise reduction in real images. In this
case, neither the true values of the VS factors nor the
noise-free images are available to quantify the noise
reduction in a single image. However, robustness
of the algorithms to changes in the surface can be
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Table 1. Mean error (ME), mean absolute error (MAE), and root mean-squared error (RMSE) for actual and estimated VS correction factors
for synthetic images

BR-2005-07-17 EI-2006-01-30 PC-2005-05-18
Image Method Standard Proposed Standard Proposed Standard Proposed
ME x 10-2 -0.471 -0.429 -0.452 -0.398 -0.486 -0.413
MAE x 10-1 0.131 0.127 0.126 0.120 0.149 0.145
RMSE x 10-3 0.104 0.101 0.132 0.126 0.198 0.192
A RMSE [%]* 2.48 4.00 3.09

“Computed relative improvement of RMSE obtained when using the proposed method.

compared by using the full database of real images.
For this purpose, we take into consideration two
CHRIS acquisition circumstances: (i) the VS esti-
mated for the five angular images of one acquisition
should be equal, but (ii) surface spatial patterns ob-
served from the five viewing angles are different. As
a consequence, small variations between the esti-
mated noise profiles for each angle within a multian-
gular acquisition indicate that the surface is not
affecting the algorithm’s performance.

Figure 8 shows the scatter plot, for the standard
and the proposed methods, of estimated noise var-
iance within each acquisition set. These values are
computed as the standard deviation of i/ among
the estimations for the five angular images and
are averaged for all of the spectral bands and col-
umns. Each point corresponds to a single multiangu-
lar acquisition, which consists of up to five images
when they are available. Figure 8 shows results
for 55 mode 1 acquisitions and 24 mode 2 acquisi-
tions comprising 274 and 113 images, respectively.
The scatter plot shows that, in almost all cases,
the variation of the estimated noise pattern within
one acquisition set is lower for the proposed approach
(especially in mode 2 acquisitions), which demon-
strates the robustness to surface contribution.
Figure 9 shows three illustrative examples of real
images of both CHRIS mode 1 (land mode) and mode
2 (water mode). The same area is displayed for
the original CHRIS product (left-hand column), the
image corrected with the algorithm implemented
in [17] (center column), and the image processed with
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Fig. 7. (Color online) Performance of the proposed method in the
estimation of the VS of image BR-2005-07-17 (mode 1): (a) actual
and estimated VS; (b) actual versus estimated correction factors.
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the noise reduction proposed in this work (right-hand
column). Images have been equalized for proper
visualization. The first image acquired over Lanier
(first row) has been selected to illustrate the standard
situation where a noisy image with similar land cover
types (bare soils and crops) is properly corrected by
both methods. Note that, when the center of the cor-
rected images is enlarged, a residual low-amplitude
VS can be observed in the image corrected by the stan-
dard approach (Fig. 9, center). The other two images,
acquired over Reynold’s Creek (second row) and Rame
Head (third row), have been selected to better analyze
the results shown in Fig. 8, where the proposed meth-
od consistently outperforms the standard one. For
this purpose, we selected two images for which the
proposed algorithm performs especially better than
the standard algorithm. Analyzing the characteris-
tics of these two images, one can conclude that both
images present a typical situation with high contrast
between dark and bright surfaces, such as sea—land
and ice—clouds, respectively. In this situation, stan-
dard destriping algorithms are affected by the surface
contribution, which produces misleading correction
factors, producing undesired vertical patterns (even
worse than the original noise) at the affected image
columns (Fig. 9, center). However, when using the pro-
posed algorithm (Fig. 9, right), noise is clearly reduced
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Fig. 8. (Color online) Scatterplot of the standard deviation of the
estimated VS factors (computed for each acquisition within the

five angles) for both methods.
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[17]

Proposed

Fig. 9. (Color online) Example of the noise reduction results on real CHRIS images over the test sites of Lanier (Canada, LR-2005-02-22,
mode 1), Reynold’s Creek (USA, RC-2004-04-23, mode 1), and Rame Head (UK, RH-2003-03-06, mode 2): original CHRIS product (left
column), the image corrected with the algorithm implemented in [17] (center column), and the image processed with the proposed algo-

rithm (right column),

even under the presence of anomalous surface transi-
tions, and only some residual low-frequency, low-
amplitude pattern can be seen in the dark sea areas.
This also explains why, in Fig. 8, the proposed
algorithm outperforms the standard algorithm
particularly in mode 2 acquisition sets, since mode
2 is the water mode (with higher sensitivity setting),
and thus it is probable to find dark water bodies ad-
jacent to bright surfaces.

B. Vertical Striping Characterization and Correction of the
Slit Effect

Finally, a result of great value is the characterization
of the VS and its dependence on temperature. For
this purpose, we corrected a significant number of
CHRIS images of the database, obtaining an esti-

mation of the VS pattern, &(p,b) = H(p)S(p,b), per
image. The sensitivity of the CCD array, S(p,d), is
assumed to be characterized by a Gaussian distri-
bution with unit mean. However, applying the loga-
rithmic transformation to the estimated VS changes
the multiplicative nature of both terms to additive,
log((p, b)) = log(H(p)) + log(S(p,b)), where the
term log(S(p,b)) can be safely considered additive
noise with zero mean distribution. As a consequence,
the VS profile due to the slit, which is constant in col-
umns, can be obtained by averaging in the spectral
direction of the CCD and then reverting the loga-
rithm: H(p) = exp([i** log((p, b))db). Moreover, the
slit VS profiles of the five angular images can be
averaged to obtain only one H(p) per acquisition,
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which will be associated with the platform tempera-
ture for this given acquisition: H(p,T'). Changes in
temperature produce a dilation of the slit, changing
its width and moving the image of the slit across the
detector. These two effects produce a scaling of
the slit VS factors and a shift of its shape in the
across-track direction, respectively, thus produc-
ing a temperature-dependent VS. Figure 10, on the
left-hand side, shows a peak of the obtained H (p) pro-
files for all the analyzed mode 2 acquisitions (mode 2
is shown because it is not binned and presents higher
across-track resolution than mode 1). The asterisks
represent the actual H(p) values for each pixel col-
umn p, and the solid curves are the corresponding
spline interpolations in the across-track direction
x, which provide a continuous subpixel resolution
model of the striping H(x) for each measured tem-
perature T: H(x, T'). The curves clearly show the shift
and scaling of the VS amplitude with temperature.
Taking as reference the VS at T\, = 5.5°C, we com-
pute the shift in the across-track looking for the
lag, A, (T), of the maximum of the cross-correlation
sequence between the analyzed VS, H(x,T), and
the reference one, H(x,Ty). Once the shift is cor-
rected, the scaling factor Gg(T') is computed as the
slope of the linear regression that better fits
H(x,T) to H(x,Ty) in a least-squares sense. In the
central and right-hand plots of Fig. 10 we represent
the shift A,(7T") and scale Gy (T") of the slit VS as a
function of temperature, respectively. It is worth
noting that the excellent agreement among the
noise profiles estimated from all the real images
[Fig. 10(a)] allows us to obtain an empirical model
of the slit VS and indirectly confirms the robustness
of the algorithm and the consistency of the results.

The estimated A, (T') and Gy (T') values are used to
compensate for the shift and scale of the slit VS
H(x,T) and obtain the corresponding slit VS for each
acquisition of the database, but expressed at the re-
ference temperature T,. The average of all these
curves provides us a model of the real slit VS at
the reference temperature, denoted H(x), minimiz-
ing the estimation errors. The modeled slit VS for
a given temperature T' can be recovered from H(x) as

H(x,T) = Gu(T)H(x - A(T)), (11)
where A,(Ty) =0 and Gy (Ty) = 1. The value for a
given pixel column p is obtained by integrating the
width of the pixel photosensible area:

p+1/2
H

Hp,T) = / (x, T)dx. (12)

p-1/2

It is worth noting that mode 1 performs a binning of
columns in pairs. Therefore, for mode 1 images, we
have to simulate the binning in order to obtain the
slit VS factors for each image column:

Hi (Phionea) = 3 Halp = 1) + Ha(p)],  (13)

where p = {2,4,6,...,744} and pyinnea i the pixel
number in mode 1 images (372 columns).

Figure 11 shows a segment of the slit VS curves
modeled independently from mode 1 and mode 2 ac-
quisitions H;(x) and Hy(x) [Fig. 11(a)] and the scat-
ter plot of mode 1 versus mode 2 [Fig. 11(b)].
Agreement between both results is excellent, except
in the highest and lowest anomalous values (VS
peaks), where probably the interpolation used to ob-
tain H(x) produces underestimated VS peaks, with
this effect being more noticeable in the binned
mode 1.

C. Summary of the Complete Processing Chain

In the previous sections, several processing steps
have been presented to detect and correct specific
noise patterns affecting push-broom hyperspectral
sensors. The optimal sequence of algorithms to be ap-
plied in order to correct a given image is listed.

1. Dropouts are detected and corrected with the
methodology proposed in Subsection 2.B.

2. A rough correction of the VS due to the en-
trance slit is performed. For a given CHRIS image,
the estimation of the slit VS H(p, T') is obtained from
the characterization of the VS pattern H(x) stored
in a lookup table. This is done by using Eq. (11) to
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(Color online) Dependence of CHRIS slit VS on temperature. From left to right: (a) detail of the slit-VS profiles for all the mode 2

acquisitions of the database (H(p, T') and H (x, T)); (b) across-track shift of the slit-VS shape as a function of temperature (A, (7')); (c) scaling

of the slit VIS factors as a function of temperature (Gg(T)).
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Fig. 11. (Color online) (a) Detail of the real slit VS 4 modeled
from mode 1 and mode 2 CHRIS images, and the binning of mode
2 closely matching the mode 1 curve. (b) Scatterplot of the modeled
mode 1 and mode 2 real slit VS.

include the dependence on the platform temperature
T at the given CHRIS acquisition, and then Eq. (12)
when the acquisition mode is binned. In Eq. (11), we
assume for both the columns’ shift and the
gain factor a linear dependence on the instrument’s
temperature: A,(T)=-0.12T+0.65 and Gy (T) =
0.13T + 0.28, respectively, where the coefficients
of the linear regression are obtained directly from
unbinned data (mode 2) presented in Fig. 10.

3. After the preliminary correction of the VS due
to the entrance slit, the robust VS correction method
proposed in Subsection 2.C.2 is used to estimate di-
rectly from the image (or multiangular image set) the
remaining VS for each band o(p,b).

4. Finally, obtained factors are used to correct the
image column values.

5. Summary and Conclusions

In this paper, we have presented a new technique
that faces the problem of removing the coherent
noise, known as dropout and VS, usually found in hy-
perspectral images acquired by push-broom sensors
such as CHRIS. First, pixels presenting dropouts are
detected and corrected by use of both spatial and
spectral information of the dropout pixel and its
neighbors. Although it is a cosmetic correction, it
is needed, since later processing stages are drasti-
cally affected by these anomalous pixel values. Then,
the VS pattern is reduced by using an algorithm ro-
bust to surface changes. Several algorithms already
exist to reduce VS, but most of them assume that the
imaged surface does not contain structures with spa-
tial frequencies of the same order as noise, which is
not always the case. The proposed method introduces
a way to exclude the contribution of the spatial high
frequencies of the surface from the process of noise
removal that is based on the information contained
in the spectral domain. In addition, an element com-
mon to most destriping techniques is the application
of a LPF, which requires setting a cutoff frequency.
Generally this frequency is set to a fixed value, which
might not always be the optimal. In our approach,
the most adequate cutoff frequency is estimated
for each image, and a filter robust to outliers is used.

Synthetic realistic scenes have been created, add-
ing modeled noise, for validation of the method. From

the experiments, we can conclude that the proposed
method offers better performance than the standard
method, showing a 3% RMSE improvement. Attend-
ing to visual inspection on real data, noise is clearly
reduced, even under the presence of outliers. Hence,
the proposed algorithm, although computationally
more expensive, provides more robust performance
in different types of scenes, and it is especially recom-
mended for those scenes with sharp transitions be-
tween contrasted surfaces. This produces a higher
stability of the estimated noise from images within
an acquisition set, which has been quantitatively
shown for 55 and 24 acquisitions of modes 1 and 2,
respectively. These characteristics have permitted
us to successfully model the shape of the slit with
subpixel resolution and to find a relationship be-
tween the sensor temperature and the magnitude
and distribution of the VS.

The proposed approach has proved to be robust,
stable in VS removal, and a tool for noise modeling.
Finally, the general nature of the procedure allows it
to be applied for destriping images from other spec-
tral sensors. Currently, the presented method is
being implemented in ESA BEAM software as a
part of a toolbox for the preprocessing of CHRIS/
PROBA data.
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