
For Peer Review

 
 
 

 
 

 
 

Mean Map Kernel Methods for Semisupervised Cloud 

Classification 
 
 

Journal: Transactions on Geoscience and Remote Sensing 

Manuscript ID: draft 

Manuscript Type: Regular paper 

Date Submitted by the 
Author: 

 

Complete List of Authors: GOMEZ-CHOVA, Luis; University of Valencia, Electronic Engineering 
Camps-Valls, Gustavo; Universitat de Valencia, Enginyeria 
Electronica 
Bruzzone, Lorenzo; University of Trento, Dept. of Information and 
Communication Technologies 

CALPE, Javier; University of Valencia, Electronic Engineering 

Keywords: Image classification 

  
 
 

 

Transactions on Geoscience and Remote Sensing



For Peer Review

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. Y, 2009 1

Mean Map Kernel Methods for

Semisupervised Cloud Classification

Luis Gómez-Chova,Student Member, IEEE, Gustavo Camps-Valls,

Senior Member, IEEE, Lorenzo Bruzzone,Senior Member, IEEE, and Javier

Calpe-Maravilla,Member, IEEE

Abstract

Remote sensing image classification constitutes a challenging problem since very few labeled pixels

are typically available from the analyzed scene. In such situations, labeled data extracted from other

images modeling similar problems might be used to improve the classification accuracy. However, when

training and test samples follow even slightly different distributions classification is very difficult. This

problem is known assample selection bias. In this paper, we propose a new method to combine labeled

and unlabeled pixels to increase classification reliability and accuracy. A semisupervised support vector

machine classifier based on the combination of clustering and themean mapkernel is proposed. The

method reinforces samples in the same cluster belonging to the same class by combining sample and

cluster similarities implicitly in the kernel space. Asoft version of the method is also proposed where

only the most reliable training samples, in terms of likelihood of the image data distribution, are used.

Capabilities of the proposed method are illustrated in a cloud screening application using data from

the MEdium Resolution Imaging Spectrometer (MERIS) instrument on board the ESA ENVIronmental

SATellite (ENVISAT). Cloud screening constitutes a clear example of sample selection bias since cloud

features change to a great extent depending on the cloud type, thickness, transparency, height, and

background. Good results are obtained and show that the method is especially well-suited for situations

where the available labeled information does not adequately describe the classes in the test data.

Index Terms

Support vector machine (SVM), kernel methods, mean map kernel, clustering, semisupervised

learning, sample selection bias, cloud screening, MEdium Resolution Imaging Spectrometer (MERIS).
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I. INTRODUCTION

Accurate identification of clouds in remote sensing (RS) images is a key issue for a wide range

of RS applications, especially in the case of sensors working in the visible and near-infrared

range of the electromagnetic spectrum. The amount of images acquired over the globe every

day by the instruments on board Earth observation satellites makes inevitable that many of these

images present cloud covers, whose extent depends on the season and the geographic position of

the study region. The presence of clouds drastically affects the measured electromagnetic signal

and thus the retrieved properties. As a result, any set of RS images needs a preliminary cloud

screening task to ensure accurate and meaningful results.

The simplest approach to mask clouds in a particular scene is the use of a set of static thresholds

(e.g. over features such as albedo or temperature) applied to every pixel in the image. This

approach can fail for several reasons, such as the presence of subpixel clouds, high reflectance

surfaces, illumination and observation geometry, sensor calibration, variation of the spectral

response of clouds with cloud type and height, etc. [1]. Spatial coherence methods have an

advantage over static threshold methods because they use the local spatial structure to determine

cloud free and cloud covered pixels [2], [3]. However, they can fail when the cloud system is

multi-layered (which is often the case), the clouds over the scene are smaller than the instrument

spatial resolution, or the scene presents cirrus clouds (which are not opaque). As a consequence,

researchers have turned to developing adaptive threshold cloud-masking algorithms [4] and more

sophisticated machine learning tools based on fuzzy logic [5], Bayesian methods [6], or artificial

neural networks [7]–[9]. In [10] we proposed a partly supervised method for cloud masking of the

MEdium Resolution Imaging Spectrometer (MERIS) instrument on board the ENVIronmental

SATellite (ENVISAT) [11]. The method combined unsupervised clustering and spectral unmixing

to provide a probabilistic cloud mask. Despite its good performance in many different scenarios,

the cloud classification ultimately relied on a critical step in which the user was requested to

manually label the found cloud-like clusters.

In this context, most of the methods present the following shortcomings. First, in many RS

classification problems, it is difficult to collect a sufficient number of statistically significant

and representative ground-truth samples to define a complete training set for developing robust

supervised classifiers. Second, methods assume that training and test samples come from the same
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Fig. 1. Illustrative example of thesample selection biasproduced when the distributions of training and test sets do not match,

i.e. a good classifier in training fails when testing because of the distribution mismatch. This can be due to different reasons:

the problem space is not adequately sampled, the extracted features for the training data do not closely represent test samples,

or when labeled data are extracted from other images modeling similar problems. These are typical situations in remote sensing

classification problems.

underlying distribution, which is an unfortunate assumption when a general model applicable

to different images is needed. This is particularly true when testing on different, yet similar,

scenes or on different portions of the same scene. To a certain extent, all these problems are

known in the pattern recognition and statistic literature as thesample selection biasproblem. In

[12], this problem was defined as a type of bias due to a flaw in the sample selection process,

where a subset of the data are systematically excluded due to a particular attribute. Obviously,

if the training and the test data have nothing in common there is no chance to learn anything.

Nevertheless, one can assume that both follow a similar conditional distributionp(y|x), while

the input distributionsp(x) differ, yet not completely (see Fig. 1). Certainly, having a limited

number of representative training data covering all the problem space, or extracting features

from a set of training images not covering the test image situations are common problems in

RS image classification (for greater details on the sample selection bias and related problems

we refer the reader to [13], [14]).

In the aforementioned situations, labeled data extracted from other images modeling similar

problems could be used to make the supervised classifier more robust. Kernel methods and

specifically support vector machines (SVMs) are a good choice for supervised classification.

SVMs are accurate, non-linear, robust classifiers [15], [16], which have been successfully used

in RS data classification [17], [18]. However, using labeled data from other images could give rise
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to the sample selection bias problem if the data marginal distribution is not properly modeled. In

this situation, unlabeled samples extracted from the test image can be synergistically used with

the available labeled training samples to increase the reliability and accuracy of the classifier, and

to alleviate the problem [19]. This is the field ofsemisupervised learning(SSL), in which the

algorithm is provided with some available supervised information in addition to the unlabeled

data. The framework of SSL has recently attracted a considerable amount of interest and research

[20], [21]. Several approaches have been carried out in the context of remotely sensed image

classification either based on transductive approaches, graphs, or Laplacian SVMs [22]–[25].

The key issue in SSL is the general assumption ofconsistency, which means that: 1) nearby

points are likely to have the same label; and 2) points on the same data structure (cluster or

manifold) are likely to have the same label. This argument is akin to that in [26]–[30] and

often is called thecluster assumption[28], [29]. Note that the first assumption is local, whereas

the second one is global. Classical supervised learning algorithms, such ask-NN, in general

depend only on the first assumption of local consistency. However, since either the local or

global consistency may not necessarily hold in the problem at hand, one should design a SSL

method such that the imposed model assumptions fit the problem data structure, as recently

suggested in [31].

In this paper, we propose a family of semisupervised kernel-based classification methods that

rely on the cluster assumption for model definition, since it properly meets the smooth local

variation of cloud pixels. The methods are based on computing distances between clusters of the

image in the kernel feature space. The concept of computing similarities between sets of vectors

(samples or pixels) in the feature space has been previously explored. For example, in [32], a

kernel on sets is proposed to solve multi-instance problems, where individuals are represented by

structured sets; in [33], the Bhattacharyya’s measure is computed in the Hilbert space between

the Gaussians obtained after mapping the set of vectors intoH; in [34], kernel machines are

combined with generative modeling using a kernel between distributions; and in [35], expressions

for the most common probabilistic distance measures in the reproducing kernel Hilbert space

are presented. However, all these works consider the sets of samples or distributions as a single

entity and no information is provided for each individual sample. In our approach, classifying

clusters is not the final goal since we seek a detailed classification at a pixel level. Hence, the

proposed algorithms compute and combine both similarity among samples and similarity among
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clusters in the kernel space through the use of composite kernels.

The paper is organized as follows. Section II fixes notation and briefly revises the main

concepts and properties of SVM and kernels. Noting that the key to obtain a good performance

with SVM is a proper design of the kernel structural form, Section III pays attention to the

problem of learning the kernel directly from the image, and introduces the concepts of cluster

kernels for semisupervised SVM image classification. This section is also devoted to analyze

the important concepts of cluster similarity and the mean map kernel, and presents a family of

kernel methods that combine both similarity among samples and similarity among clusters in

the kernel space, while performing the classification at a sample level. Section IV presents the

data, the experimental setup, and the obtained results in real cloud screening scenarios. Finally,

Section V concludes with some remarks and further research directions.

II. K ERNEL METHODS AND SVM

This section briefly reviews the main characteristics of kernel methods, summarizes the for-

mulation of the SVM, and the main properties of Mercer’s kernels used in this paper.

A. Fundamentals on Kernel methods

Kernel methods embed the datasetS defined over the input or attribute spaceX (S ⊆ X ) into

a higher dimensional Hilbert spaceH, or feature space, and then they build a linear algorithm

therein, resulting in a classifier which is nonlinear with respect to the input data space. The

mapping function is denoted asφ : X → H. If a given algorithm can be expressed in the form

of dot products in the input space, its (non-linear) kernel version only needs the dot products

between mapped samples.

Kernel methods compute the similarity between training samplesS = {xi}
n
i=1 using pair-wise

inner products between mapped samples, and thus thekernel matrixdefined by

Kij = K(xi,xj) = 〈φ(xi), φ(xj)〉 (1)

contains all the necessary information to perform many classical linear algorithms in the feature

space.
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B. The support vector machine (SVM)

The SVM is one of the most successful kernel methods. Given a labeled training data set

{(xi, yi)}
n
i=1, wherexi ∈ R

d andyi ∈ {−1, +1}, and given a nonlinear mappingφ(·), the SVM

classifier solves:

min
w,ξi,b

{

1

2
‖w‖2 + C

n
∑

i=1

ξi

}

(2)

constrained to:

yi(〈φ(xi),w〉 + b) ≥ 1 − ξi ∀i = 1, . . . , n (3)

ξi ≥ 0 ∀i = 1, . . . , n (4)

wherew andb define a maximum margin linear classifier in the feature space, andξi are positive

slack variables enabling to deal with permitted errors. Appropriate choice of non-linear mapping

φ guarantees that the transformed samples are more likely to be linearly separable in the feature

space [36]. ParameterC controls the generalization capabilities of the classifier, and it must be

selected by the user. Primal problem (2) is solved using its dual problem counterpart [15], and

the decision function for any test vectorx∗ is given by

f(x∗) = sgn

(

n
∑

i=1

yiαiK(xi,x∗) + b

)

, (5)

where αi are Lagrange multipliers corresponding to constraints in (3), andb can be easily

computed from a few support vectors (SVs), which are those training samplesxi with non-zero

Lagrange multipliersαi [15]. It is important to note that, both for solving or using the SVM for

test samples, there is no need to work with samples but only with a valid kernelK.

C. Kernel Functions and Basic Properties

The bottleneck for any kernel method is the proper definition of a kernel function that

accurately reflects the similarity among samples. However, not all metric distances are permitted.

In fact, valid kernels are only those fulfilling the Mercer’s Theorem [37] and the most common

ones are the linearK(x, z) = 〈x, z〉, the polynomialK(x, z) = (〈x, z〉 + 1)d, d ∈ Z
+, and the

Radial Basis Function (RBF),K(x, z) = exp (−‖x − z‖2/2σ2), σ ∈ R
+.

Mercer’s kernels have some relevant properties for this work. BeK1 and K2 two Mercer’s

kernels onS × S, andν a real positive constant. Then, the direct sum,K(x, z) = K1(x, z) +
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K2(x, z), tensor productK(x, z) = K1(x, z) ·K2(x, z) or scalingK(x, z) = νK1(x, z) are valid

Mercer’s kernels [15].

III. SEMISUPERVISEDCLASSIFICATION WITH MEAN KERNELS

This section presents the proposed methods for semisupervised image classification. First we

pay attention to the relevance of learning the kernel exploiting unlabeled samples, and revise the

framework of cluster kernels, their properties and limitations. The proposed methods consider

measuring distances between clusters in the feature space through the use of mean map kernels.

For doing this, we fix some useful notation on clustering and present the hard and soft mean

map kernels. Since these two kernel methods only provide classification at a cluster level, we

reformulate the algorithms to accommodate classification at pixel level based on composite

kernels. Finally, some remarks on the theoretical assumptions made are given.

A. Learning the Kernel with Unlabeled Samples

The performance of any kernel method strongly depends on the adequate definition of the

kernel structural form. Despite the good performance obtained with the typical RBF kernel, by

imposing such ‘ad hoc’ signal relations, the underlying data structure is obviated. To properly

define a suitable kernel, unlabeled information and geometrical relationships between labeled

and unlabeled samples may be useful.

A simple, yet effective, way to estimate the marginal data distribution, and then include this

information into the kernel, consists of ‘deforming’ the structure of the core kernel (e.g. linear,

polynomial, RBF) using the unlabeled samples. The idea basically aims at estimating alikelihood

kernel according to the unlabeled data structure which modifies the assumedprior kernel that

encodes signal relations. Two different methodological approaches can be found: either graph-

based or cluster-based methods. In [38], [39], labeled and unlabeled samples were related through

the use of thegraph Laplacian. The method has been recently used in multispectral image

classification [25] and to reformulate remote sensing anomaly and target detection methods [40],

[41]. These methods, nevertheless, introduce critical free parameters, and a high computational

load associated to building the graph. In [28],cluster kernelswere introduced. The essential

idea is to modify the eigenspectrum of the kernel matrix. The main methods presented are the

random walk kernel, and the spectral clustering kernel [42], [43]. A serious problem with these
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methods is that one must diagonalize a matrix of sizem, wherem is the number of labeled and

unlabeled data, giving a complexityO(m3). This problem precludes its operational use in remote

sensing image classification. Alternative solutions are based on exploiting clustering algorithms

to define proper kernels [44], [45] but, even in these cases, the sample selection bias problem

still persists.

B. Mean Map Kernels for Semisupervised Classification

The proposed method brings together the ideas of unsupervised clustering, mean map kernel,

composite kernel, and SVM in a simple and natural way. Essentially, the method tries: 1)

to reinforce both the local and global consistencies, and 2) to mitigate the sample selection

bias problem. Instead of working with individual pixels, it characterizes data by first running

a clustering on the whole image and then computing distances among clusters in the feature

space. The final classification model is obtained by solving a standard SVM but the kernel of

the labeled training samples (local consistency) is previously deformed to take into account the

similarity between image clusters (global consistency). Distances between clusters are computed

from the unlabeled samples of the analyzed image with the mean map kernel. In the following

we present the basic processing steps of the method.

1) Image Clustering:The proposed algorithm starts by applying a clustering algorithm, which

provides for each samplexi a crisp or soft association,hik, to each clusterωk, k = 1, . . . , c.

In this paper, the image is considered as a mixture of normal distributions so the expectation-

maximization (EM) algorithm can be used to obtain the maximum likelihood estimation of

the probability density function (pdf) of the Gaussian mixture. The EM algorithm estimates

the mixture coefficientπk, the meanµk, and the covariance matrixΣk for each componentk

of the mixture. Then, the algorithm assigns each sample to the cluster with the maximuma

posteriori probability (MAP); and the cluster membershiphik represents the estimates of the

posterior probabilities; that is, membership or probability value between [0, 1], and sum-to-one

cluster memberships,
∑

k hik = 1. Hence, the optimal cluster label for each sample is found as

hi = argmaxk {hik}, i.e. hi = k if the samplexi is assigned to the clusterωk.

Applying unsupervised clustering methods to the whole image allows us to take advantage of

the wealth of information and the high amount of spatial and spectral correlation in the image

pixels. Also note that clustering with the EM algorithm with finite Gaussian mixture models
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(GMM) is cheap and fast1, even though other clustering algorithms, such as thek-means, could

be equally applied. The suitability of the EM algorithm for remotely sensed image classification

has been extensively demonstrated [46], [47].

2) The Mean Map Kernel:Cluster similarity can be computed either in the original input or

in kernel feature spaces. Any arbitrary distance metric could be used in the first case. Here we

use the mean map kernel to measure distances between sets of pixels in the feature space, which

provides a richer distance information.

Given a finite subset of training samplesS = {x1, . . . ,xn} laying in an input spaceX and

a kernelK(xi,xj) = 〈φ(xi), φ(xj)〉, let Φ(S) = {φ(x1), . . . , φ(xn)} be the image ofS under

the mapφ. HenceΦ(S) is a subset of the inner product spaceH. Significant information

about the embedded data setΦ(S) can be obtained by using only the inner product information

contained in the kernel matrixK of kernel evaluations between all pairs of elements ofS:

Kij = K(xi,xj), i, j = 1, . . . , n. In particular, the centre of mass of the setS in the kernel

space is the vector:

φµ(S) =
1

n

n
∑

i=1

φ(xi) (6)

whereφµ(·) denotes themean map. We should stress that, in principle, there is not an explicit

vector representation of the centre of mass, since, in this case, there may also not exist a point in

the input spaceX whose image underφ is φµ(S). In other words, we are now considering points

that potentially lie outsideφ(X ), that is, the image of the input spaceX under the mappingφ.

However, computing the mean in a richer high dimensional feature space can report additional

advantages.

Let us now consider two subsets of samplesS1 = {a1, . . . , am} and S2 = {b1, . . . ,bn}

belonging to two different clustersω1 and ω2, respectively. We are interested in defining a

cluster similarityfunction that estimates the proximity between them in a sufficiently rich feature

space. A straightforward kernel function reflecting the similarity between clusters is obtained by

evaluating the kernel function between the means of the clusters in the input spaceX :

KX

µ (S1, S2) ≡ 〈φ(µ1), φ(µ2)〉 = K(µ1, µ2), (7)

1Note that although EM can be applied to the entire image, the number of unlabeled samples used to describe the clusters

can be selected by the user to reduce the computational effort.
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but then we loose the advantage of directly working in the kernel spaceH.

The centre of mass of the setsS1 and S2 in the kernel space are the vectorsφµ(S1) =

1
m

∑m

i=1 φ(ai) and φµ(S2) = 1
n

∑n

i=1 φ(bi). Despite the apparent inaccessibility of the points

φµ(S1) and φµ(S2) in the kernel spaceH, we can compute thecluster similarity in H using

only evaluations of thesample similaritycontained in the kernel matrix:

KH

µ (S1, S2) =
〈

φµ(S1), φµ(S2)
〉

=

〈

1

m

m
∑

i=1

φ(ai),
1

n

n
∑

j=1

φ(bj)

〉

=
1

mn

m
∑

i=1

n
∑

j=1

K(ai,bj) (8)

Note how significant information about the cluster similarities can be obtained by using only the

inner product information contained in the kernel matrix,Kij = K(xi,xj), of kernel evaluations

between all pairs of elements inS1 andS2:

K =



















K(a1,a1) · · · K(a1,am) K(a1,b1) · · · K(a1,bn)

...
. . .

...
...

. . .
...

K(am,a1) · · · K(am,am) K(am,b1) · · · K(am,bn)

K(b1,a1) · · · K(b1,am) K(b1, b1) · · · K(b1, bn)

...
. . .

...
...

. . .
...

K(bn, a1) · · · K(bn,am) K(bn, b1) · · · K(bn, bn)



















(9)

which is reduced toKµ by applying (8):

K
H

µ =





KH
µ (S1, S1) KH

µ (S1, S2)

KH
µ (S2, S1) KH

µ (S2, S2)



 (10)

The concept of the mean map has been recently extended and led to a full family of kernel

methods known asmean kernels, which has mainly been used for the comparison of distributions

in the kernel space [48], [49].

3) Sample-Cluster Composite Kernels:SSL methods assume having access to a set of un-

labeled (test) samples and learn from both labeled and unlabeled samples. To fix notation, we

are given a set ofℓ labeled samples,{xi, yi}
ℓ
i=1, wherexi ∈ R

d and yi ∈ {−1, +1}, and a

set ofu unlabeled samples{xi}
ℓ+u
i=ℓ+1. In the proposed semisupervised method, theu unlabeled

training samples coming from the test image are used to describe the clusters and to compute the

similarity between clusters, which is used to weight the similarity between theℓ labeled training

samples that define the classes. In [50], we explicitly formulated a full family of kernel-based

classifiers that combine different kernels. Following this approach, one can design kernels by

summing up (weighted) or multiplying (product) dedicated kernels (see properties in Section
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Fig. 2. Illustrative example of the three involved kernel matrices (ℓ × ℓ): sample similarityaccounted by the kernel of the

training samplesK (ν = 1); cluster similarityaccounted by the mean map kernel of the clustersKµ (ν = 0); and thecomposite

kernelKω obtained by combining the sample and the cluster similarities for each sample (0 < ν < 1). Note that samples are

sorted by classyi and by clusterωi for a proper interpretation.

II-C). Here, the similarity between clusters is included through the use of a composite kernel

that balances both similarity distances:

Kω(xi,xj) = ν K(xi,xj) + (1 − ν) Kµ(Shi
, Shj

) ∀i, j = 1, . . . , ℓ (11)

whereν is a positive real-valued free parameter (0 6 ν 6 1), which is tuned in the training

process and constitutes a trade-off between the sample and corresponding cluster information.

This composite kernel allows one introducinga priori knowledge in the classifier or allows one

extracting some information from the best tunedν parameter. It is worth noting that: (1) the

number of training samples is(ℓ+u), because unlabeled samples are used to compute the cluster

similarities by summing elements of the kernel matrix; and (2) the number of clusters isc thus

one will obtain onlyc× c cluster similarities usingKµ. However, the size of final kernel matrix

Kω used to train the standard SVM isℓ× ℓ (the firstℓ samples are labeled). Summarizing, each

position (i, j) of matrix Kω contains the similarity between all possible pairs of theℓ labeled

training samples (xi andxj) and their corresponding clusters (defined byhi andhj), which are

measured with suitable kernel functionsK andKµ fulfilling Mercer’s conditions.

Figure 2 shows an illustrative example of the three kernel matrices (ℓ × ℓ) involved in the

proposed method:sample similarityaccounted by the kernel of the training samplesK; cluster

similarity accounted by the mean map kernel of the clustersKµ; and thecomposite kernelKω

obtained by combining the sample and the cluster similarities for each sample. It is worth noting

February 24, 2009 DRAFT

Page 11 of 29 Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. Y, 2009 12

that the proposed composite kernelKω maintains the sample similarity at pixel level while

making pixels in the same cluster more similar, thus reinforcing them to belong to the same

class2. Intuitively, this corresponds to smoothingK attending to the cluster structure inKµ, a

similar approach to that followed in [44], [45].

4) The Soft Mean Map Kernel:When the sample selection bias arises, not all training

samples are equally reliable. In such cases, training samples are weighted to reflect their relative

importance, and several approaches have been presented. In [52], the conditional density to

maximize the log-likelihood function was derived. In [19], the criterion to be maximized in

training was changed so the SVM algorithm tries to match the first momentum of training and

test sets in the kernel space. In [53], the model selection was tuned to obtain unbiased results.

In the proposed method, the most reliable samples in terms of maximum likelihood in the

input space are used to compute a kernel function that accurately reflects the similarity between

clusters in the kernel space. The relative reliability of training samples is trimmed by weighting

the contribution of each samplexi to the definition of the centre of mass of each cluster in the

kernel spaceH with the EM estimated posterior probabilitieshik (soft cluster membership), that

is:

φµs
(Sk) =

∑

i hikφ(xi)
∑

i hik

, (12)

which we call thesoft mean map. The corresponding kernel can be easily computed as:

KH

µs
(Sk, Sl) =

〈

φµs
(Sk), φµs

(Sl)
〉

=

〈

∑

i hikφ(xi)
∑

i hik

,

∑

j hjlφ(xj)
∑

j hjl

〉

=

∑

i

∑

j hikhjlK(xi,xj)
∑

i hik

∑

j hjl

,(13)

and now, when computing cluster similarities, all samples contribute to all clusters but with

different relative weights according to their posterior probability. The main advantage of the

proposed method is that weights for the training samples are directly computed by taking

advantage of the full statistical information of the test data distribution while solving a quadratic

programming (QP) problem of the same computational burden as the traditional SVM. As with

the pure mean map kernel, the computational cost can be tuned by controlling the number of

unlabeled samples used to compute the mean kernels.

2Cluster information could be also included by stacking the input features of each pixelxi with the mean of its corresponding

clusterµk=hi
. This is however suboptimal as illustrated elsewhere [18], [50], [51] and intuition is lost.
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Note that the mean map kernel in (8) is a particular case of the proposed soft mean map

kernel in (13) when the training samples are associated only with one cluster (crisp association),

i.e. whenhik = 1 if xi belongs to clusterωk andhik = 0 otherwise. In addition, the expression

of the soft mean map kernel in (13) can be rewritten in a matrix notation as follows:

K
H

µ = DH
⊤
KHD (14)

whereK is the (ℓ + u)× (ℓ + u) kernel matrix of both labeled and unlabeled training samples;

H is a (ℓ + u) × c matrix with the membershipshik of each training sample to each cluster

(or set of samples) of the analyzed image; andD is a c× c diagonal matrix with normalization

factors for each clusterDkk = 1/
∑

i hik.

The size of the matrix containing the similarity between clustersKµ is c× c. Thus, it has to

be expanded to match the number of labeled samples, in order to obtain the finalℓ × ℓ kernel

matrix Kω in (11) used to train the classifier:

Kω = ν JKJ
⊤ + (1 − ν)WKµW

⊤ (15)

whereJ = [I 0] is anℓ × (ℓ + u) matrix with I as theℓ × ℓ identity matrix (the firstℓ samples

are labeled); andW is a ℓ × c sparse matrix that stores the cluster of each labeled samplehi,

i.e. Wik = 1 if samplexi belongs to clusterωk andWik = 0 otherwise.

C. Summary of the Mean Map Kernel Method

Table I shows several particular cases of the proposed method (denoted byµ-SVM) depending

on: 1) the balance between the sample similarity and the cluster similarity (free parameterν);

2) in which space the cluster similarities are computed (input or kernel space); and 3) how the

unlabeled training samples contribute to each cluster (crisp or soft association). In this table,

we indicate the kernel used in the SVM, the mapping function whose dot product generates

the corresponding composite kernel, and the value ofν that constitutes a trade-off between the

sample (ν = 1) and the cluster information (ν = 0).

IV. EXPERIMENTAL RESULTS

This section presents the obtained results. First we review the methods, data used, and the

experimental setup. Results are analyzed in terms of accuracy, model complexity and compu-

tational cost. Besides, we analyze two training scenarios inducing different sample selection
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TABLE I

PARTICULAR CASES OF THE PROPOSED METHOD DEPENDING ON: 1) THE SAMPLE-CLUSTER SIMILARITY BALANCE (FREE

PARAMETERν), 2) IN WHICH SPACE THE CLUSTER SIMILARITIES ARE COMPUTED(INPUT OR KERNEL SPACE), AND 3) HOW

THE UNLABELED TRAINING SAMPLES CONTRIBUTE TO EACH CLUSTER(CRISP OR SOFT ASSOCIATION).

Method Kernel Mapping Similarity Eq.

SVM K φ(x) ν = 1 (1)

µ-SVM in X
KX

ω = νK + (1 − ν)KX
µ {√νφ⊤(x),

√
1 − νφ⊤(µ)}⊤ 0 < ν < 1 (11)

KX
µ φ(µ) ν = 0 (7)

µ-SVM in H
KH

ω = νK + (1 − ν)KH
µ {√νφ⊤(x),

√
1 − νφ⊤

µ (S)}⊤ 0 < ν < 1 (11)

KH
µ φµ(S) ν = 0 (8)

µs-SVM in H
KH

ωs
= νK + (1 − ν)KH

µs
{√νφ⊤(x),

√
1 − νφ⊤

µs
(S)}⊤ 0 < ν < 1 (11)

KH
µs

φµs
(S) ν = 0 (13)

bias levels. Methods are compared with the MERIS standard products for cloud screening on5

images.

A. Methods and Model Development

The proposed kernel method implemented in different cases (summarized in Table I) is

benchmarked against the standard SVM, which is used as a reference for supervised methods,

and the Laplacian SVM, which is used as a reference for semisupervised methods. Note that the

Laplacian SVM is a general regularization framework that contains as particular cases several

unsupervised and semisupervised methods [25]. We also add to the comparison a standard SVM

trained to classify cluster centers: the same class label is assigned to all the samples belonging

to the same clusterωk. Note that this is the standard approach in unsupervised classification

problems, where first a clustering algorithm is applied to the data and later clusters are classified

as a single entity.

For all the experiments, we used the RBF kernel. Its associatedσ parameter is the kernel width,

and is individually tuned for each kernel. Free parameters of the SVM (C, σ), µ-SVM (C, σ,

ν), and LapSVM (γL, γM , σ), were tuned following a10-fold cross-validation strategy on the

training set. Theσ parameter was tuned in the range{10−3, . . . , 10}. Regularization parameterC

was varied in the range{10−1, . . . , 102}, while the LapSVM regularization constantsγL andγM
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Fig. 3. MERIS images over Spain (BR-2003-07-14 and BR-2004-07-14), Tunisia (TU-2004-07-15), Finland (FI-2005-02-26),

and France (FR-2005-03-19).

were varied in steps of one decade in the range{10−4, . . . , 104}. The composite trimmerν was

tuned in the range{0.01, . . . , 0.99}. Finally, for the LapSVM, the graph LaplacianL consisted

of ℓ + u nodes connected using6 nearest neighbors, and the edge weightsWij are computed

using the Euclidean distance among samples. Once classifiers are trained, they are compared

using the overall accuracy, OA[%], and the kappa statisticκ as a measure of robustness in the

classification over the validation set and the test image.

B. Semisupervised Cloud Screening Results

In this section, we show the validation results for a set of five MERIS Level 1b images

taken over Spain, Finland, Tunisia and France (Fig. 3). For our experiments, we used as the

input 13 spectral bands (MERIS bands 11 and 15 were removed since they are affected by

atmospheric absorptions), and the 6 physically-inspired features extracted from MERIS bands in

a previous work [10]. The features model general properties of clouds: brightness and whiteness

in the visible and near-infrared spectral ranges, along with atmospheric oxygen and water vapor

absorption. Data were normalized between zero and one.

We generated training sets consisting ofℓ = 400 labeled samples (200 samplesper class),

and randomly selectedu = 800 unlabeled samples from the analyzed test data for the SSL

methods. We vary the rate of labeled samples in{2, 4, 7, 14, 27, 52, 100}% and show results on

the classification of5000 independent validation samples. In order to avoid skewed conclusions,

for each value ofℓ, the experiments are run for10 realizations.

Two different training methodologies are used:

• Single-image case: Each analyzed image is classified with a model built with labeled and
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unlabeled samples coming from the same image. This procedure is aimed at comparing the

different algorithms in an ideal situation where both training and test data come from the

same distribution (or from very similar distributions).

• Image-fold case: Each analyzed image is classified according to a model built with labeled

samples from the other images and unlabeled samples coming from the same analyzed

image. This procedure is aimed at testing the robustness of the algorithm to differences

between the training and test distributions. Note that this method resembles the one proposed

in [53], where a weighted cross-validation estimate was introduced to alleviate the training

bias.

For both methodologies, we show results of all methods in terms of accuracy, computational

cost, classification maps, and adequacy to problem setting.

1) Single-Image Cloud Screening:Figure 4(a) showsκ statistic versus the number of labeled

samples for the five images obtained with the standard SVM, and provides us with a reference

on how difficult cloud screening problem is in each MERIS image. Classification complexity

increases in the following order: Barrax image (BR-2003-07-14) that presents a bright and thick

cloud in the center of the image; Barrax image (BR-2004-07-14) that presents small clouds over

land and sea in the right part of the image; Tunisia image (TU-2004-07-15) that presents clouds

and bright desertic areas; France image (FR-2005-03-19) that presents opaque clouds at south

and north France, but also snowy mountains at various altitudes; and, finally, Finland (FI-2005-

02-26), which presents cirrus clouds over the sea and the icy coast of Finland. Therefore, we are

including in the experiments both easy cloud screening problems, where few labeled samples

are enough to obtain accurate classifications, and extremely complex cloud screening scenarios,

where a relatively high number of labeled samples is required to correctly detect clouds when

using a standard supervised classifier.

Figures 4(b) and 4(c) show the averageκ and OA for all the methods. The proposedµ-SVM

method clearly improves the results. The mean kernels classifiers yield better results than the

reference provided by the supervised SVM in all cases (note that SVM is a particular case of

the µ-SVM for ν = 1). These results are a consequence of taking into account the distribution

of image data to define the clusters in the SSL methods. In addition,µ-SVM classifiers working

in the feature space provide slightly better results, supporting the idea that we can find a richer

spaceH for separating classes. In ill-posed situations, with a small number of labeled samples,
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Image-Fold Case
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Fig. 4. Single-image case(a-f): Classification results training the models with labeled and unlabeled (800) samples from the

image to be classified.Image-fold case(g-l): Classification results training the models with labeled samples from the other 4

images and800 unlabeled samples from the image to be classified. Plots (a & g) show the standard SVM classification results

(κ) for the 5 MERIS images and the other plots show average classification results over the 5 images: (b & h)κ, (c & i) OA

[%], (d & j) weight ν of the sample-similarity kernel of labeled samplesK, (e & k) SVs [%], and (f & l) CPU time [s].February 24, 2009 DRAFT
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the performance ofµ-SVM in H is reversed andµ-SVM in X provides better results. This

fact can be explained since, when working with a small number of labeled samples,v-fold

cross-correlation procedures are less efficient at tuning the kernel widthσ. Therefore, the cluster

similarity KH
µ , computed only from the unlabeled samples inH, has less meaning thanKX

µ ,

computed by using the cluster centersµk. Besides, the proposed method is not equivalent to a

simple segmentation of the image by classifying clusters centroids (red dash-doted line), that is,

classifyingµk is not a good option but still better than purely supervised SVM (red dotted line).

This indicates that the EM clustering of the image provides a good image segmentation, which

is mainly due to the excellent physically-inspired extracted features described in [10]. Finally,

LapSVM classifiers produce worse classification results than SVM in some cases. In principle

that is not possible since SVM is a particular case of the LapSVM forγM = 0. However,

we intentionally avoided this combination by varyingγL andγM in the range{10−4, . . . , 104}.

LapSVM performs better than the standard SVM when a small number of labeled samples is

available and unlabeled samples help estimating the geometry of data.

Figure 4(d) shows the relative weightν of the sample-similarity kernel of labeled samplesK

with respect to the cluster-similarity kernel of the unlabeled samples in the selectedKX
ω , KH

ω , and

KH
ωs

models. The value ofν can be tuned by the user in the training process, but we selected it

through10-fold cross-validation in the training set. In our experiments, the sum of Hilbert spaces

leads approximately to an average weighting as optimal solution (ν ∼ 0.5). Intuitively, this means

that both the labeled information and the cluster information (from unlabeled samples) hold

similar importance for the classification, and they both properly describe the class distribution

in the test image. This situation is coherent in the context of thesingle-image case.

Figure 4(e) shows the average percentage of support vectors (SVs) for each method, i.e. the

number of labeled training samples used as SVs in the selected models. In these experiments,

all SVM methods produce sparse models with a small number of SVs. Note that the LapSVM

is not included in the analysis since it does not produce sparse models and all the training

samples (both labeled and unlabeled) contribute to the final model. This fact makes LapSVM

computationally expensive in both the training and test phases. The trend for all methods is

consistent, since as the number of labeled samples in the training set increases, the rate of

samples (SVs) required to correctly classify decreases. The only significant difference between

methods is that, in ill-posed situations with a small number of labeled samples, the classifiers
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based on cluster similarity require less SVs since the class distribution is approximated by the

cluster distribution. However, when increasing the number of labeled samples, simple spaces

(such as that of SVM) increase sparsity, but also worsen models in terms of kappa.

Finally, Fig. 4(f) shows the average CPU time consumed by each method during the training

phase3. Three groups of methods can be distinguished. Firstly, the best efficiency is obtained by

the standard SVM and theµ-SVM in X , which only require to compute the kernel matrix for the

labeled samplesKℓ×ℓ. In fact,KX
µ method is slightly faster than the SVM since it only computes

the kernel matrix over the cluster centersµk in the input space (KX
µ = 〈φ(µ1), φ(µ2)〉) and

the number of clustersc in the image is usually lower than the number of labeled samplesℓ.

Composite methodsKX
ω = νK + (1 − ν)KX

µ are slightly slower since the weighting parameter

ν is also tuned during the training. Secondly, the proposedµs-SVM classifiers inH provide an

acceptable accuracy, but are slower than the previous methods since, in order to compute the

similarity between clusters in the kernel spaceKX
µ , they have to compute the kernel matrix for

the labeled and unlabeled samplesK(ℓ+u)×(ℓ+u). However, this difference is reduced when the

number of labeled samplesℓ approaches the number of unlabeled samplesu = 5000. Again, the

weighted versions of theµ-SVM (‘+’ markers) are slower than the versions based on clusters

exclusively (‘◦’ markers) because of the tuning ofν. Finally, LapSVM is around three orders

of magnitude more demanding than SVM andµ-SVM, since training LapSVM models not only

requires tuning more free parameters but also an(ℓ + u) × (ℓ + u) matrix must be inverted. In

consequence,µ-SVM classifiers can be considered as a good trade-off between computational

cost and classification accuracy.

2) Image-Fold Cloud Screening:Figure 4(g) shows that, under this setting, classification

complexity is very similar for all images, and also poorer accuracy is obtained. Also noticeable

is that results remain almost independent of the number of labeled samples, which suggests that

labeled samples from other images roughly describe the type of clouds in the test image. This

fact persists when adding more labeled samples. The image-fold case is essentially inducing a

clear sample selection bias problem.

In this case, accuracy measures in Figures 4(h) and 4(i) show a completely different situation.

3All experiments were carried out in a 64-bit dual-core IntelR© XeonTM CPU 2.80GHz processor under Linux, and all methods

are based on MATLAB implementations with a SMO algorithm programmed in C++ [54]
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Almost all the methods provide moderate classification results, and all of them provide poor

results in ill-posed situations. However, a great difference can be observed between theµ-SVM

classifiers based on clusters exclusively (‘◦’ markers) and the rest. The standard SVM is affected

by the sample selection bias, which cannot be solved since it relies on the training labeled samples

exclusively. When using the standard SVM to directly classify clusters centroids, results improve

since cluster prototypes have a higher probability to be correctly classified by SVM than test

samples. The LapSVM provides moderate results, but yields higher accuracies than the SVM in

all cases, since it incorporates in the solution the geometry of the unlabeled test samples.

The µ-SVM classifiers based exclusively on cluster-based approachesKX
µ , KH

µ , and KH
µs

give excellent results when there are enough labeled samples to describe the class conditional

distribution of the clusters (with few labeled samples a whole cluster can be misclassified).

Among these three classifiers,KH
µ produces worse results, probably because an inappropriate

training biases free parameter selection. As a consequence,KH
µ is more affected by the sample

selection bias since all the unlabeled samples in the training set are used to compute the cluster

similarity in an inappropriate kernel space. On the other hand,KX
µ is more robust to the sample

selection bias because it approximates the cluster similarity to the similarities of the cluster

centersµk already defined in the input space, and thus it is less dependent on how the unlabeled

samples representing the clusters are mapped intoH. In this sense,KH
µs

provides the best overall

results, and is also more robust to the sample selection bias because it uses the soft mean map to

compute the cluster similarity in the kernel space. Intuitively, this method eliminates the training

samples not properly representing the image clusters in the input space, and thus the estimation

of the cluster center inH is less affected by the selection of an inappropriate mapping.

Finally, theµ-SVM classifiers based on composite mean kernelsKX
ω , KH

ω , andKH
ωs

(black ‘+’

lines) produce significantly worse results than the cluster-based approachesKµ. The divergence in

the results could be explained because the surface ofν is full of local minima. Fig. 4(j) shows the

relative weightν of the sample-similarity kernel of labeled samplesK with respect to the cluster-

similarity kernelKµ. For a small number of labeled samples (ℓ 6 30) the sample-similarity and

cluster-similarity have the same weight (ν = 0.5), and thenν increases exponentially with the

number of labeled samples. As the number of labeled samples increases,K becomes more

important than the cluster informationKµ. See [55] for a theoretical analysis on the exponential

value of labeled samples.
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Figure 4(k) shows the average percentage of SVs for each method. Again, most of the methods

produce sparse models with a small number of SVs. The only exception are the three cluster-

based methods that require more SVs to correctly weight the cluster similarities. Here, we can

clearly observe the trade-off between sparsity and accuracy: over-sparsified solutions provide low

accuracy levels, and moderately sparse models provide better results. The higher number of SVs

in cluster-based methods can be explained since the information (similarities) contained inK

andKµ are somehow contradictory; the class distribution in training and the cluster distribution

in test do not match, and thus a higher number of representative samples is needed.

Finally, the average CPU time consumed by each method (Fig. 4(l)) is almost identical to the

single-image case (Fig. 4(f)), since the computational burden mainly depends on the amount and

type of data.

3) Cloud Screening Classification Maps:In this subsection, a quantitative and a visual analysis

of the classification maps of the test images are carried out. The obvious cloud reference to

compare our results is the official MERIS L2 Cloud Flag. However, it shows clear deficiencies,

as reported by the users’ community elsewhere [56], [57], and by the MERIS Quality Working

Group [58]. An alternative partially-supervised algorithm was proposed in [10], in which the

labeling of the clouds has been carried out by an operator, and it is used here for comparison

purposes.

Figure 5 compares theµs-SVM methods (both compositeKH
ωs

and cluster-basedKH
µs

classi-

fiers) against the cloud reference. The images selected to illustrate the results are one image over

Barrax and the France image, which present different cloud screening problems, and are affected

by the sample selection bias problem in different ways. The selected images are classified using

the best models (realization with best validation results) trained with400 labeled samples for

both the single-image case and the image-fold case. Classification agreement is depicted inwhite

for cloudy pixels, and inblue for cloud-free pixels; discrepancies are shown inyellow and red.

Classification accuracies higher than 90% are obtained for most cases, but the lower values ofκ

for some cases point out that results are unbalanced due to the misclassification of a significant

number pixels of one class4. The best kappa result (>0.9) for each experiment is highlighted in

4Note that the overall accuracy is directly interpretable as the ratio between the number of pixels being classified correctly and

the total number of pixels, while the kappa coefficient allows for a statistical test of the significance of the divergence between

two algorithms [59].

February 24, 2009 DRAFT

Page 21 of 29 Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. Y, 2009 22

Single-Image Case Image-Fold Case

K
H
µs

K
H
ωs

K
H
µs

K
H
ωs

B
A

R
R

A
X

(e
a

sy
)

κ=0.96 ; OA=99.5% κ=0.93 ; OA=98.7% κ=0.96 ; OA=99.5% κ=0.75 ; OA=96.9%

F
R

A
N

C
E

(d
iffi

cu
lt)

κ=0.93 ; OA=98.7% κ=0.93 ; OA=98.7% κ=0.69 ; OA=93.5% κ=0.54 ; OA=89.1%

Proposed / Reference: Cloud / Cloud Land / Cloud Cloud / Land Land / Land

Color Legend Bar:

Fig. 5. Comparison of the cloud mask of kernel methods proposed against the reference cloud mask obtained from the user-

driven unsupervised method proposed in [10] for the MERIS images over Barrax and France . Discrepancies between methods

are shown in red when proposed kernel methods detect cloud and in yellow when pixels are classified as cloud-free.

bold.

The Barrax image represents an easy cloud screening problem. Looking at results, the kernel

methods show good agreement. When comparing the two kernel methods with the cloud ref-

erence, the cluster-based classifierKH
µs

provides good results even in the image-fold case. This

means that training samples from the other images are useful to correctly classify the clusters

found in the test image. However, the composite kernel classifierKH
ωs

works properly in the

single-image case, while results are worse for the image-fold case. This, in turn, means that the

model is biased towards the use of samples from other images instead of exploiting the cluster

structure (cf. Sect. IV-B.2).

The France image presents opaque clouds at south and north, and also snow in the Alps, the
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Pyrenees, and the Massif Central. Attending to the image-fold experiments,µs-SVM methods

agree with the cloud mask. In the image-fold case, neither the cluster-based classifierKH
µs

nor the

composite kernel classifierKH
ωs

yield accurate cloud screening. Certainly, training samples from

the other images cannot model the difference between clouds and snowy mountains, and thus the

classifier cannot learn this difference. Therefore, although the proposed semisupervised methods

benefit from the inclusion of unlabeled samples, the quality of the available labeled information

is critical, and cannot solve situations with a dramatic sample selection bias problem.

C. On the Relative Importance of Labeled and Unlabeled Samples

In the previous sections, performance of the supervised and semisupervised kernel methods in

different situations was analyzed. In the experiments, we explored the robustness of the classifiers

to the number of labeled samples available during the training process; from ill-posed situations

with only 4 labeled samples per class (ℓ = 8) up to well-posed supervised cases with 200 labeled

samples per class (ℓ = 400). For the semisupervised methods, the number of unlabeled samples

used in the training of the models was fixed tou = 800. However, in the case of semisupervised

learning, it is also interesting to analyze methods performance as a function of the number of

unlabeled samples.

Fig. 6 shows theκ surface of the different methods as a function of the number of labeled (ℓ)

and unlabeled (u) samples used in the training phase. Only theimage-fold caseis considered

since the value of unlabeled samples can be better evaluated when labeled samples do not

perfectly define the class distribution in the test image (sample selection bias problem).

The κ surface for the standard SVM (Fig. 6(a)) provides us with a baseline ofκ and shows

its dependence on the number of labeled samples. The more supervised information is available

(high ℓ), the more accurate should be the classification for all methods. However, due to the

sample selection bias problem, whenℓ is high enough, the model is biased towards the labeled

training samples, which produces worse results in test since the training and test distributions

are rather different. On Fig. 6(b), theκ surface for the LapSVM confirms, in general terms,

the importance of the labeled information in this problem. The LapSVM benefits from the

information of unlabeled samples, since it provides better results than the standard SVM in all

cases. However, classification accuracy slightly improves with the number of unlabeled samples,

which suggests a higher weight of the supervised information than of the geometry of the

February 24, 2009 DRAFT

Page 23 of 29 Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. Y, 2009 24

8
15

29
56

107
207

400

112

214

414

800
0.4

0.5

0.6

0.7

# Labeled Samples# Unlabeled Samples

K
ap

pa
 s

ta
tis

tic
, κ

(a) SVM (Kℓ×ℓ)
8

15
29

56
107

207
400

112

214

414

800
0.4

0.5

0.6

0.7

# Labeled Samples# Unlabeled Samples

K
ap

pa
 s

ta
tis

tic
, κ

(b) LapSVM (K(ℓ+u)×(ℓ+u))

8
15

29
56

107
207

400

112

214

414

800
0.4

0.5

0.6

0.7

# Labeled Samples# Unlabeled Samples

K
ap

pa
 s

ta
tis

tic
, κ

(c) µs-SVM (KH
ωs

)

8
15

29
56

107
207

400

112

214

414

800
0.4

0.5

0.6

0.7

# Labeled Samples# Unlabeled Samples

K
ap

pa
 s

ta
tis

tic
, κ

(d) µs-SVM (KH
µs

)

Fig. 6. Average cloud classification results for the 5 MERIS sample images (BR-2003-07-14, BR-2004-07-14, TU-2004-07-

15, FR-2005-03-19, and FI-2005-02-26) training the model for each image with labeled samples from the other 4 images and

unlabeled samples from the image to be classified (image-fold case): Kappa statistic surface over the validation set for the (a)

SVM, (b) LapSVM, andµs-SVM for (c) the KH
ωs

and (d) theKH
µs

kernels as a function of the number of labeled (ℓ) and

unlabeled (u) samples.

marginal data distribution (unsupervised information) in the trained LapSVM classifiers. Finally,

theκ surfaces for bothµ-SVM methods are significantly different. TheKH
ωs

classifier (Fig. 6(c))

is affected by the sample selection bias problem for high values ofℓ as the standard SVM. On the

other hand,KH
µs

(Fig. 6(d)) confirms the importance of both labeled and unlabeled information in

this problem. The method uses both the labeled samples to fix asupportfor the class distribution,

and the unlabeled samples to characterize (parametrize) thedata marginal distribution.

In general, the potential of SSL classification methods increases when a reduced labeled

training set is available, which is the most likely situation in RS applications, and they require

a higher number of unlabeled samples than labeled to provide a noticeable improvement in the

classification accuracy, as suggested by [55], [60], [61]. However, to include a high number of

unlabeled samples in the formulation of kernel methods is not straightforward and usually implies
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an extremely high computational cost. We mitigate this problem by using the EM algorithm as

a preprocessing stage of theµ-SVM.

V. D ISCUSSION ANDCONCLUSION

A family of semisupervised SVM classification methods based on both sample and cluster

similarity has been presented for cloud screening from optical sensors. The methods assume that

some supervised information is available, which is used together with the unlabeled samples of

the analyzed image to develop a classifier. The information from unlabeled samples of the test

set is included by means of a linear combination of kernels, and the cluster similarity is based

on the mean of the samples in the feature space. A second approach has been also presented

by noting that not all the training samples are equally reliable. The cluster similarity kernel is

thus modified taking into account the image information in terms of likelihood. Results with this

method suggest that the so-called soft mean map kernel constitutes a suitable approach to face

the sample selection bias. From a methodological point of view, proposed methods have two

main advantages: (1) the complexity of the QP problem is not increased (similar computational

complexity) and the objective function is still convex; and (2) the mixture of kernels is much

more flexible than an objective function and parameters are easier to tune.

Good results have been obtained in different real cloud screening scenarios using ENVISAT/MERIS

L1b multispectral images representing critical situations in cloud screening. These results suggest

that, when a proper data assumption is made, the proposed semisupervised methods outperform

the standard supervised or unsupervised algorithms.

We should note that, even though the presented approaches benefit from the inclusion of

unlabeled samples by estimating the marginal data distribution and alleviate the sample selection

problem, results have shown that these methods are limited by the quality of the available labeled

information and can not alleviate situations with a dramatic sample selection bias problem.

This suggests that further developments might be focused on new validation methods for these

situations. There is still more room for improvement in the form of learned kernels for specific

data sets, or by increasing the computational capabilities of kernel methods. We should stress

here that linearly scalable SSL kernel methods are still required for remote sensing applications.

Finally, it is worth noting that the proposed method is general and can also be applied to

classification problems under sample selection bias (for which the considered assumptions hold)
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different form cloud masking.
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