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1 Introduction

I. M. Isaacs [2] has conjectured that if the product of two faithful irre-

ducible characters of a solvable group is irreducible, then the group is

cyclic. In this note we discuss the following conjecture, which generalizes

Isaacs conjecture.

Conjecture A. Suppose that G is solvable and that ψ,ϕ ∈ Irr(G) are

faithful. If ψϕ = mχ where m is a positive integer and χ ∈ Irr(G) then ψ

and ϕ are fully ramified with respect to Z(G).

Other ways to state the conclusion of this conjecture are that ϕ,ψ and

χ vanish on G − Z(G) or that ϕ(1) = ψ(1) = χ(1) = |G : Z(G)|1/2 (by

Problem 6.3 of [2]). In particular, if m = 1, these equalities yield ϕ(1) = 1

and since it is faithful, we deduce that G is cyclic. So Conjecture A is

indeed a strong form of Isaacs conjecture.

Among other results, Isaacs proved that a counterexample to his con-

jecture has Fitting height at least 4 (see Theorem A of [3]). We can prove

Conjecture A for nilpotent groups.

Theorem B. Conjecture A holds for p-groups.

Using Theorem B we can prove Conjecture A for p-special characters

(see [1] for their definition and basic properties).

Theorem C. Let G be a p-solvable group and suppose that the product

of two faithful p-special characters is a multiple of a p-special character.

Then G is a p-group.

Theorem C is an easy consequence of the following elementary, but

perhaps surprising, result.
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Theorem D. Let ϕ be a faithful irreducible character of a finite group

G and assume that ψ ∈ Irr(G). Write ϕψ = m∆, where ∆ is a (not

necessarily irreducible) character of G. If ∆(1) ≤ min{ϕ(1), ψ(1)}, then

∆(x) = 0 for all x ∈ G− Z(G).

We thank E. C. Dade and I. M. Isaacs for many useful conversations.

The work of the third author was done while he was visiting the univer-

sities of Crete and Wisconsin, Madison. He thanks both Mathematics

Departments for their hospitality.

2 Proof of Theorem B

We begin work toward a proof of Theorem B. We need two elementary

lemmas.

Lemma 2.1. Let χ ∈ Irr(G), where G is a p-group. Suppose Z ⊆ Y C G,

where Z C G and |Y : Z| = p. If Z ⊆ Z(χ) and Y * Z(χ), then χ

vanishes on Y − Z.

Proof. Let λ be the unique (linear) irreducible constituent of χZ . Then

every irreducible constituent of χY is an extension of λ, and in particular

is linear. Because Y * Z(χ), the number of distinct linear constituents of

χY is a power of p exceeding 1, and so is at least p. It follows that the

irreducible constituents of χY are all of the extensions of λ, and they all

occur with equal multiplicity, as Y EG. Since the sum of these extensions

is λY , that sum vanishes on Y − Z and the result follows.

Lemma 2.2. Let ε and δ be pth roots of unity, where p is an odd prime.
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If δ 6= 1, then ∣∣∣∣∣
p−1∑
i=0

εiδi(i−1)/2

∣∣∣∣∣ =
√
p .

Proof. Write ε = δk, where 0 ≤ k < p. Then the ith term of the sum is

δki+i(i−1)/2. Since p 6= 2, we can write this in the form δai2+bi for suitable

integer constants a and b, where 1 ≤ a < p and 0 ≤ b < p. Let τ = δa.

The ith term of our sum is then τ i2+2ci for some constant c. If we multiply

the sum by τ c2 , the ith term becomes τ (i+c)2 . Since i + c runs over the

same set of values (mod p) as i, we can rewrite our sum as
∑
τ i2 . This is

the well known Gauss sum, with absolute value
√
p (see, for instance, p.

84 of [4]).

The next result is Theorem B.

Theorem 2.3. Assume that G is a finite p-group, for some prime p.

Assume further that ϕ and ψ are faithful irreducible characters of G whose

product is a multiple of an irreducible character. Then ϕ and ψ vanish on

G− Z(G).

Proof. Let ϕψ = mχ, for some positive integer m and an irreducible

character χ of G. We argue by induction on |G|. So assume that G is a

minimal counterexample. Clearly G is not abelian. So the center Z(G)

of G is a cyclic proper subgroup of G, since G has a faithful irreducible

character ϕ.

Step 1. G has an elementary abelian normal subgroup of order p2.

Assume that every normal abelian subgroup of G is cyclic. Then 4.3 of

[5] yields that G is dihedral or semidihedral of order ≥ 16 or (generalized)

quaternion. If G ∼= Q8, the result is clear. Thus, we may assume that

4



|G| ≥ 16. Since ϕ and ψ lie over the unique non-principal irreducible

character of Z(G), χ lies over 1Z(G). Also, it is clear that ϕ(1) = ψ(1) = 2

and they vanish on G − G′. It follows that χ is not linear, i.e, χ(1) = 2

and m = 2. Pick x ∈ Z2(G)− Z(G). We have that

4 = 2|χ(x)| = |ϕ(x)||ψ(x)| < 4,

because x ∈ Z(χ) but x 6∈ Z(ϕ). This contradiction proves Step 1.

We fix an elementary abelian normal subgroup A of G of order p2.

Then Z = A∩Z(G) is the cyclic group Ω1(Z(G)) of order p. Furthermore

A = K × Z, for some subgroup K of G of order p. Put C = CG(A) =

CG(K). Note that |G : C| = p.

Step 2. ϕC and ψC are reducible and each has a unique irreducible con-

stituent with kernel containing K.

The center Z(C) certainly contains A and thus is not cyclic. Hence

C has no irreducible faithful character. Therefore ϕC and ψC reduce.

Because C has index p in G, both ϕC and ψC equal the sum of p dis-

tinct irreducible constituents that form a single G-orbit. Let ϕ1 be an

irreducible constituent of ϕC . Note that A ∩ Kerϕ1 is nontrivial since

A ⊆ Z(C) and A is noncyclic. Also, this intersection does not contain

Z since Z C G and ϕ is faithful. It follows that A ∩ Kerϕ1 is one of

the p subgroups of order p in A other than Z, and we note that these

subgroups form a G-conjugacy class. We can thus replace ϕ1 by a G-

conjugate and assume that K = A ∩ Kerϕ1. Similarly, ψC is reducible

and has an irreducible constituent, say ψ1, with kernel containing K.

Since K = A∩Kerϕ1 and K has p distinct conjugates in G, it follows

that the subgroups A∩Kerϕi are distinct as ϕi runs over the p irreducible
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constituents of ϕC . This establishes the uniqueness for ϕ1 and a similar

argument works for ψ1.

We now fix irreducible constituents ϕ1 and ψ1 of ϕC and ψC respec-

tively, such that K ⊆ Kerϕ1 and K ⊆ Kerψ1.

Step 3. ϕ and ψ vanish on G−C and χ is faithful. Also, χC is reducible

and ϕ1ψ1 = (m/p)χ1, where χ1 is the unique irreducible constituent of

χC with kernel containing K.

According to Clifford’s theorem, ϕ = ϕG
1 and ψ = ψG

1 , and thus ϕ,ψ

vanish on G − C. Hence χ vanishes on G − C. It follows that χC is

reducible, and thus is the sum of p distinct irreducible constituents. Since

K is in the kernel of both ϕ1 and ψ1, we see that ϕ1ψ1 is a sum (with

multiplicities) of irreducible constituents of χC having K in their kernel.

Let ψ2 be an irreducible constituent of ψC different from ψ1. Then K

is not in the kernel of ψ2, and so it is not in the kernel of ϕ1ψ2. It follows

that K is in the kernel of some irreducible constituent χ1 of χC but K is

not in the kernel of all of the conjugates of χ1.

If Z ⊆ Kerχ then A = ZK ⊆ Kerχ1, and since A C G, we see that

A is contained in the kernel of every irreducible constituent of χC , which

is not the case. Thus Z * Kerχ. This, along with the fact that Z(G) is

cyclic, implies that χ is faithful.

Therefore, the same argument we gave in Step 2 for ϕ, implies that

χ1 is the unique irreducible constituent of χC with kernel containing K.

It follows that ϕ1ψ1 = m1χ1 for some integer m1. Comparison of de-

grees yields (ϕ(1)/p)(ψ(1)/p) = m1(χ(1)/p). Since ϕ(1)ψ(1) = mχ(1),

we deduce that m1 = m/p.

6



Step 4. p 6= 2.

Otherwise |Z| = 2 and Z has a unique nonprincipal irreducible char-

acter. In this case, both ϕ and ψ lie above this nonprincipal character.

Hence Z ⊆ Kerϕψ. Then Z ⊆ Kerχ, which is not the case.

Let V/K = Z(C/K) and write Y = AZ(G). Note that Y C G and

that Y ⊆ Z(C) ⊆ V .

Step 5. V > Y .

Note that Y = KZ(G) and assume that V = KZ(G). Let K1 =

Kerϕ1. If K1 > K, then (K1/K)∩Z(C/K) > 1, and thus K1∩KZ(G) =

K1 ∩ V > K. It follows that K1 ∩Z(G) > 1, and thus Z ⊆ K1 as Z(G) is

cyclic. This is not the case, however, since Z * Kerϕ1. We conclude that

K1 = K.

Similarly we show that Kerψ1 = K. Hence ϕ1, ψ1 are inflated from

unique faithful characters ϕ̄1 and ψ̄1, respectively of the factor group C/K.

In addition, χ1 is also inflated from a unique character χ̄1 of C/K and

satisfies ϕ̄1ψ̄1 = m1χ̄1. By the minimality of G, we conclude that ϕ1 and

ψ1 vanish on C − V .

In this situation, where V = Y , we see that V C G, and thus all irre-

ducible constituents of ϕC vanish on C−V . We conclude that ϕ vanishes

on G− V . But |V : Z(G)| = p and V * Z(ϕ). By Lemma 2.1, therefore,

ϕ vanishes on V − Z(G), and hence on G − Z(G). Similarly, ψ vanishes

on G− Z(G), and this is a contradiction since G is a counterexample.

Step 6. Z(C) > Y .

7



Certainly, Y = AZ(G) ⊆ Z(C) and we suppose that equality occurs.

Since V > Y , we can choose a subgroup U such that Y ⊆ U ⊆ V and

|U : Y | = p. We have 1 < [C,U ] ⊆ [C, V ] ⊆ K, and thus [C,U ] = K.

In particular, we see that U ⊆ Z(ϕ1) and so all values of ϕ1 on U are

nonzero.

Now let ϕ2 be any irreducible constituent of ϕC other than ϕ1. We

argue U 6⊆ Z(ϕ2) since otherwise, K = [C,U ] ⊆ Kerϕ2, which is not the

case. But Y ⊆ Z(C), and |U : Y | = p, so Lemma 2.1 implies that ϕ2

vanishes on U − Y . Since ϕ2 is an arbitrary constituent of ϕC other than

ϕ1, it follows that if u ∈ U − Y , then

ϕ(u) =
p∑

i=1

ϕi(u) = ϕ1(u) 6= 0.

Similarly, ψ(u) = ψ1(u) 6= 0 and also χ(u) = χ1(u) 6= 0. We now have

mχ1(u) = mχ(u) = ϕ(u)ψ(u) = ϕ1(u)ψ1(u) = (m/p)χ1(u)

and this is a contradiction.

We choose W C G with Y ⊆W ⊆ Z(C) and |W : Y | = p. We also fix

elements g ∈ G−C and w ∈W −Y and we write [w, g] = a and [a, g] = z.

Then we can show

Step 7. 1 6= a ∈ A, 1 6= z ∈ Z and wgi
= waizi(i−1)/2.

Since |W : Y | = p, we have W/Y ⊆ Z(G/Y ), and thus [W,G] ≤ Y .

Hence a = [w, g] is an element of Y and thus ap ∈ Z(G). Also, |Y :

Z(G)| = p, and similarly we get z ∈ Z(G). Then ap = (ap)g = (az)p =

apzp. We conclude that z ∈ Z = Ω1(Z(G)).

Because wg = wa and ag = az we can easily calculate that wgi
=

waizi(i−1)/2 for integers i with 1 ≤ i ≤ p. Note that gp ∈ C while w ∈
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W ≤ Z(C). So wgp
= w. Also, since p 6= 2 and zp = 1, we see that

zp(p−1)/2 = 1. It follows that w = wgp
= wap and so ap = 1. Since a ∈ Y

and A = Ω1(Y ), we have a ∈ A, as wanted.

Finally, we must show that a 6= 1 and z 6= 1. If a = 1 then w ∈ Z(C)

is centralized by g, and thus w ∈ Z(G) contradicting the way w was

picked. Also if z = 1, then g centralizes a ∈ Z(C), and thus a ∈ Z(G).

Hence a ∈ A ∩ Z(G) = Z. Note that since A is not central in G we

have 1 < [A,G] C G. It follows that [A,G] = Z and thus [Y,G] = Z.

Hence [W, g] ⊆ Z since W = Y 〈w〉. But W is abelian, and it follows

that |W : CW (g)| ≤ |Z| = p. This is a contradiction, however since

CW (g) = Z(G) has index p2 in W .

Step 8. We have a contradiction.

Since W ⊆ Z(C), there exists a linear character α ∈ Lin(W ) such that

(ϕ1)W = ϕ1(1)α. Furthermore, as A ⊆ W we can write α(a) = ε and

α(z) = δ, where ε and δ are pth roots of unity and δ 6= 1 since z 6= 1 and

ϕ is faithful. We see now that

ϕ(w) =
p−1∑
i=0

ϕ1(wgi
) =

p−1∑
i=0

ϕ1(1)α(w)α(ai)α(zi(i−1)/2) = ϕ1(w)A ,

where A =
∑p−1

i=0 ε
iδi(i−1)/2. By Lemma 2.2, therefore, we have |A| = √

p.

We also have similar formulas ψ(w) = ψ1(w)B and χ(w) = χ1(w)D, where

|B| = |D| = √
p. Also χ1(w) 6= 0 since w ∈ Z(C).

We have

mχ1(w)D = mχ(w) = ϕ(w)ψ(w) = ϕ1(w)ψ1(w)AB = (m/p)χ1(w)AB ,

and thus AB = pD. But this is not consistent with |A| = |B| = |D| = √
p,

and the proof is complete.
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3 Proof of Theorems C and D

In order to prove Theorem D, we need the following easy lemma.

Lemma 3.1. Let n be a positive integer and a1, . . . , an, b1, . . . , bn, c1 . . . , cn

complex numbers. If both
∑n

i=1 |ai|2 and
∑n

i=1 |bi|2 do not exceed
∑n

i=1 |ci|2,

then there exists j ∈ {1, . . . , n} such that |cj |2 ≥ |aj ||bj |.

Proof. Write S =
∑n

i=1 |ci|2 and assume that |cj |2 < |aj ||bj | for all j.

Then

S =
n∑

i=1

|ci|2 <
n∑

i=1

|ai||bi| ≤ (
n∑

i=1

|ai|2
n∑

i=1

|bi|2)1/2 = S,

a contradiction. The second inequality is Cauchy-Schwarz’s inequality.

Proof of Theorem D. Set S = {x ∈ G − Z(G) | ∆(x) 6= 0}. We want to

prove that S is the empty set. Assume not and we will work to find a

contradiction. Using the orthogonality relations, we have that

∑
x∈G

|∆(x)|2 =
∑
x∈G

∆(x)∆(x) = (
n∑

i=1

m2
i )|G|,

where ∆ = m1χ1 + · · ·+mnχn with χi ∈ Irr(G). Similarly,

∑
x∈Z(G)

|∆(x)|2 = (
n∑

i=1

m2
iχi(1)2)|Z(G)|.

We deduce that

∑
x∈S

|∆(x)|2 = (
n∑

i=1

m2
i )|G| − (

n∑
i=1

m2
iχi(1)2)|Z(G)|.
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Now,∑
x∈S

|ψ(x)|2 ≤ |G| −
∑

x∈Z(G)

|ψ(x)|2 ≤ |G| −∆(1)2|Z(G)|

= |G| − (
n∑

i=1

miχi(1))2|Z(G)| ≤ |G| − (
n∑

i=1

m2
iχi(1)2)|Z(G)|

≤
∑
x∈S

|∆(x)|2.

In the same way,
∑

x∈S |ϕ(x)|2 ≤
∑

x∈S |∆(x)|2. Now, we can use

Lemma 3.1 to deduce that there exists x ∈ S such that |∆(x)|2 ≥ |ϕ(x)||ψ(x)|.

Thus
|ϕ(x)|2|ψ(x)|2

m2
= |∆(x)|2 ≥ |ϕ(x)||ψ(x)|

and we deduce that |ϕ(x)||ψ(x)| ≥ m2.

On the other hand, we have that |ψ(x)| ≤ ψ(1) = m∆(1)/ϕ(1) and,

since x 6∈ Z(ϕ), |ϕ(x)| < ϕ(1) = m∆(1)/ψ(1). Thus,

|ϕ(x)||ψ(x)| < ϕ(1)ψ(1) = m2∆(1)2/ϕ(1)ψ(1) ≤ m2,

by hypothesis. This is a contradiction.

Theorem C is an immediate consequence of the following result.

Theorem 3.2. Let G be a finite group and suppose that ϕ,ψ ∈ Irr(G) are

faithful and ϕψ = mχ with χ ∈ Irr(G). Then for every proper nilpotent

subgroup H of G, ϕH , ψH or χH is not irreducible.

Proof. Assume that all three restrictions to a proper nilpotent subgroup

H are irreducible. We can apply Theorem B and deduce that χ(1) =

ϕ(1) = ψ(1). By Theorem D, we have that χ is fully ramified with respect

to Z(G) and it follows that χH is not irreducible, a contradiction.
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Finally, we prove Theorem C, which we restate.

Corollary 3.3. Let G be a p-solvable group and suppose that the product

of two faithful p-special characters is a multiple of a p-special character.

Then G is a p-group.

Proof. Note that the restriction of p-special characters to a Sylow p-

subgroup is irreducible (see [1]). Apply Theorem 3.2.
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