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1. Introduction

Let G be a finite group, p a prime, and P a Sylow p-subgroup of
G. Let kp(G) denote the number of conjugacy classes of non-trivial

p-elements of G. Furthermore, we write k̃p(G) to denote the number
of orbits of non-trivial p-elements of G under the action of Aut(G).

Clearly, k̃p(G) ≤ kp(G) for all finite groups G and all primes p. Our

goal is to bound the derived length of P in terms of kp(G) or k̃p(G).
For p-solvable groups there is a straight forward bound.

Theorem A. Let G be a finite p-solvable group and P ∈ Sylp(G).

Then the derived length of P cannot exceed k̃p(G) (and hence, can not
exceed kp(G) either).

As it stands, this bound is not valid for all finite groups. Indeed,
checking in the Atlas [2] yields the following facts. There are groups
with extraspecial Sylow 3-subgroups of order 27 but only one conjugacy
class of non-trivial 3-elements, such as the Tits Group 2F4(2)

′, the
Fourth Janko Group J4 and the Rudvalis Group Ru. Furthermore, if
G = M is the Monster and p = 7, then kp(G) = k̃p(G) = 2, while
the derived length of a Sylow p-subgroup is 3. However, using the
Classification of Finite Simple Groups, we also prove the following.

Theorem B. Let G be a finite group and P ∈ Sylp(G). Then the

derived length of P cannot exceed k̃p(G)+7 (and hence, cannot exceed
kp(G) + 7 either).
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We have not tried to use the smallest possible additive constant.
Instead, we use 7 to provide smooth proofs. We propose this result as
qualitative only, and suggest that there could, in fact, be a logarithmic
bound. Indeed, such logarithmic bound does exist for solvable and
simple groups. It could even be true that the best possible bound
is a double logarithmic one. Notice that a logarithmic bound for the
derived length would follow from a linear bound for the nilpotency class,
however, it is not clear to us if the nilpotency class can be bounded at
all by any function of kp(G). On the other hand, although our results
refer to the derived length, the proofs work as well for the length of
the Frattini series (defined by P0 = P , Pi = Φ(Pi−1) for i > 0). As the
semilinear groups show, it is not possible to bound the exponent of p
in the order of a Sylow p-subgroup by any function of the number of
conjugacy classes of p-elements.

2. Proofs

We begin by proving a convenient property of the invariant k̃p(G).

Lemma 2.1. Let G be a finite group and let p be a prime. Let N be a
characteristic subgroup of G. Then

k̃p(G/N) + k̃p(N) ≤ k̃p(G).

Proof. Clearly the representatives of the orbits of non-trivial p-elements
of N under the action of Aut(N) are also representatives of distinct
orbits of non-trivial p-elements of N under the action of Aut(G). Now,
for each representative gN of an orbit of the action of Aut(G/N) on
the non-trivial p-elements of G/N , we take the p-part gp of g. Notice
that gp 6∈ N . All these elements gp determine different orbits of non-
trivial p-elements under the action of Aut(G), so the inequality follows
immediately. �

We can now deduce Theorem A.

Proof of Theorem A. Suppose false, and let G be a counterexample
with minimum order. Suppose that G is not characteristically simple.
Then let N be a characteristic subgroup of G, with 1 6= N 6= G. Let
P ∈ Sylp(G). By the minimality of our counterexample, we have

dl(P ) ≤ dl(PN/N) + dl(P ∩N) ≤ k̃p(G/N) + k̃p(N).

Therefore, the result follows immediately from Lemma 2.1 in this case.
Hence, G is characteristically simple. Since G is p-solvable, it follows
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that G is an abelian p-group or a p′-group. Hence the result holds for
G. This contradiction completes the proof of the theorem. �

We could have given an easier proof of this theorem: it suffices to
observe that if G is p-solvable and we take a series of characteristic sub-
groups with characteristically simple factors, then the derived length
of a Sylow p-subgroup of G is at most the number of factors which are
p-groups. On the other hand, if we take a non-trivial element in each
of these factors, then the p-part of their pull-backs in G produce repre-
sentatives of different orbits under the action of Aut(G), so the result
is clear. However, we have preferred to include the present argument
since it will be used twice later on in the proof of Theorem B.

For solvable groups the following stronger result holds relating the
derived length and the number of conjugacy classes of p-elements.

Theorem 2.2. There exist constants A and B such that if G is solvable
and p divides |G|, then

dl(G/Op′(G)) ≤ A log (kp(G/Op′(G))) + B.

Proof. It is clear that we can assume that Op′(G) = 1. It is proved
in Theorem 2.4 of [4] that if V is a faithful irreducible module for a
solvable group G, then the derived length of G is bounded by a doubly
logarithmic function of the number of orbits. It is easy to see that this
result can be extended to completely reducibly actions, so in our case
we can apply it to the action of G/F (G) on F (G)/Φ(G), by Gaschutz’s
theorem (see Satz III.4.2 and III.4.5 of [3]). This yields that the derived
length of G/F (G) is bounded by a doubly logarithmic function of the
number of G-conjugacy classes of F (G) and, since this is a p-subgroup,
by the number of classes of p-elements of G.

Now, it suffices to find a logarithmic bound for the derived length of
F (G) in terms of kp(G). But it is well-known that the derived length
of a p-group is bounded logarithmically by the nilpotency class (see
Satz III.2.12 of [3]) and this is obviously smaller than the number of
G-classes contained in F (G). �

We begin work toward a proof of Theorem B. Our first lemma is
probably well-known, but we include its easy proof for the sake of
completeness.

Lemma 2.3. Let F be any field and let P be a finite p-subgroup of
GL(n, F ). Then the derived length of P does not exceed blog2(n)c+ 1.
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Proof. Assume first that the characteristic of F is p. Then P is con-
jugate to a subgroup of the group of upper unitriangular matrices and
the result follows since the derived length of this group is log2(n) or
blog2(n)c+ 1, depending on whether n is a power of 2 or not (see Satz
III.16.3 of [3] for a proof).

Thus, we may assume that the characteristic of F is coprime to
|P |. Let F be an algebraic closure of F . The group P embeds into
GL(n, F ). Since P acts completely reducibly on its natural module, we
may assume that it is an irreducible subgroup of GL(n, F ), that is, P
has a faithful irreducible character χ of degree n. In particular, n = pa

for some a. Since P is a monomial group, there exists a subgroup H
of index n in P and λ ∈ Irr(H) such that χ = λP . Since P (a) ≤ H,
we have that P (a+1) ≤ H ′ is a normal subgroup contained in Ker χ =
1. Therefore dl(P ) ≤ logp(n) + 1 ≤ log2(n) + 1 and the proof is
complete. �

In the next result, we prove a strong form of Theorem B for certain
groups.

Lemma 2.4. Let G be a finite group all of whose composition factors
are either abelian or subgroups of S7. If P ∈ Sylp(G), then dl(P ) ≤
k̃p(G).

Proof. Let G be a counterexample with minimum order. By the proof
of Theorem A, G is characteristically simple. Clearly, G is not abelian.
Hence, G is a direct sum of isomorphic non-abelian simple groups.
Assume that G is not simple and let S be a simple normal subgroup of
G. By the minimality of G, we have that

dl(P ) = dl(P ∩ S) ≤ k̃p(S) ≤ k̃p(G).

Hence, G is simple. Then |G| divides |S7| = 24 · 32 · 5 · 7. The Sylow
p-subgroups of G are abelian for p > 2 and the result follows in this
case. If p = 2, then the derived length of P cannot exceed 2 and it
suffices to observe that groups of exponent 2 are abelian to deduce the
result. �

Now, we prove Theorem B for each family of simple groups

Lemma 2.5. Theorem B holds for the alternating groups.

Proof. It is well-known that the derived length of the Sylow p-subgroups
of Sn is blogp(n)c (see Satz III.15.3 of [3]), so all we need to prove is
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that blogp(n)c ≤ 7 + k̃p(An). We can suppose that n > 6, so that
the automorphisms of An consist of conjugation by elements of Sn.
If p is odd, by considering products of disjoint p-cycles, we get that
k̃p(An) ≥ bn/pc. For p = 2 we consider products of an even number

of transpositions so that k̃2(An) ≥ bn/4c. The result is clear in both
cases. �

Lemma 2.6. Suppose G has a faithful projective representation of di-
mension at most 255 over some field. Then, Theorem B holds for G.

Proof. Since Theorem B holds when p does not divide the order of
G, it suffices to show that dl(P ) ≤ 8. By Lemma 2.3, we have that
dl(P ) ≤ blog2(255)c+ 1 = 8. The result follows. �

Lemma 2.7. Theorem B holds for all the sporadic simple groups, all
exceptional or exceptional twisted simple groups, and all classical simple
groups whose defining module has dimension smaller than 256.

Proof. ¿From the order formulas of the sporadic groups, we notice that
dl(P ) ≤ 7 for every sporadic group G and prime p. Hence, Theorem
B holds for the sporadic groups. By p. 43 of [1], any exceptional or
exceptional twisted group of Lie type embeds into the automorphism
group of a vector space whose dimension does not exceed 248. Hence,
Lemma 2.6 completes the proof of the lemma. �

The following estimation for the derived length of a p-subgroup of
GL(n, q) is a refinement of Lemma 2.3.

Lemma 2.8. Let P be a p-subgroup of GL(n, q). Then the derived
length of P does not exceed blog2(n/e)c+1, where e is 1 if q is a power
of p, and otherwise, e is the order of q modulo p.

Proof. We can suppose that q is not a power of p (for e = 1 the result
reduces to Lemma 2.3). Set m = bn/ec. The group GL(m, qe) can be
embedded into GL(me, q) which in turn can be mapped into GL(n, q).
On the other hand, the order of the Sylow p-subgroups of GL(m, qe)
and GL(n, q) is the same (the key is that p does not divide qi − 1
unless i is a multiple of e). We conclude that the Sylow p-subgroups
of GL(m, qe) and GL(n, q) are isomorphic and so P can be embedded
into GL(m, qe). The result follows now from Lemma 2.3. �

Lemma 2.9. Theorem B holds for all classical simple groups of Lie
type.
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Proof. Let S be a classical simple group of Lie type. We can describe S
as a factor group X/X ∩Z, where X is a suitable subgroup of GL(n, q)
(GL(n, q2) in the unitary case) and Z is the group of invertible scalar
matrices. By Lemma 2.6, we assume without loss that n ≥ 256. It
follows that all automorphisms of S can be viewed as compositions of
conjugation by elements of GL(n, q2), field automorphisms, and the
inverse-transpose automorphism. As in Lemma 2.8, we define e to be
1 if q is a power of p, and otherwise, we define e to be the order of q
modulo p. Considering a particular set of matrices of X, we shall prove
that k̃p(S) ≥ cn/e for some (not too small) explicit constant c. It will
be obvious in all the cases that this linear bound is much bigger that
the logarithmic bound in Lemma 2.8 and so Theorem B will be proved
for these groups too.

The matrices in X that will represent the desired different orbits of
p-elements in S under the action of Aut(S) will have a simple diagonal
block structure. We start by taking a suitable small r × r matrix C of
order p and then, for each i with ri < n, we construct the matrix Ti with
i diagonal blocks equal to C and the identity block of size n− ri. Any
automorphism of S lifts to X and moreover preserves the multiplicity
of the eigenvalue 1, so if one of the matrices Ti is transformed into a
scalar multiple of Tj, say λTj, then either λ = 1 or λ−1 is an eigenvalue
of C. In any case, by comparing the multiplicity of 1 as an eigenvalue
of Ti and λTj, we notice that j is uniquely determined by λ and i. Since
the number of possibilities for λ cannot exceed r + 1, it is clear that
the matrices Ti define at least 1

r+1
bn−1

r
c orbits for the action of Aut(S)

on S. Actually, if p does not divide q − 1, C cannot have eigenvalues
different from 1, and so the matrices Ti define at least bn−1

r
c different

orbits. If q is a power of p, the only eigenvalue of C is 1 and all the
matrices Ti with ri ≤ n have different Jordan forms, so we obtain in
this case at least bn

r
c different orbits.

We start by the linear groups S = PSL(n, q). We distinguish three
cases. If p does not divide q−1 and q is not a power of p, then p divides
the order of SL(e, q) and we can choose a matrix C of order p in this
group. By the preceding discussion, the matrices Ti define at least
bn−1

e
c orbits and so k̃p(S) ≥ bn−1

e
c. If p divides q−1, then SL(2, q) has

elements of order p and we obtain the bound k̃p(S) ≥ 1
3
bn−1

2
c. Finally,

if q is a power of p, then again there are matrices of order p is SL(2, q)

and k̃p(S) ≥ bn
2
c.

The symplectic and unitary cases can be dealt with similarly, so we
consider next the orthogonal case S = Ω(2n+1, q) in odd characteristic.
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If q is not a power of p, then p divides the order of Ω(2e + 1, q) and
we can take a matrix C of order p in this group. The matrices Ti yield
then the bound k̃p(S) ≥ b 2n

2e+1
c. If q is a power of p we can take C in

Ω(3, q) and we obtain k̃p(S) ≥ b2n+1
3
c.

We consider now the orthogonal groups in odd characteristic and
even dimension. There are two families of such groups, S = PΩ±(2n, q).
In any of the two cases there is a natural embedding Ω(2n − 1, q) ⊆
Ω±(2n, q). Suppose that q is not a power of p and take a matrix C
of order p in Ω(2e + 1, q). Then the matrices Ti with (2e + 1)i < 2n

give the bound k̃p(S) ≥ 1
2
b2n−1

2e+1
c (we divide by 2 because there are two

scalar matrices in Ω±(2n, q)). If q is a power of p, then we can take C

in Ω(3, q) and k̃p(S) ≥ b2n−1
3
c.

Finally suppose that S = Ω±(2n, q), where q is a power of 2. We
can describe the elements in the orthogonal group O±(2n, q) as the
matrices M such that M t(B + Bt)M = B + Bt and all the elements
in the diagonal of M tBM are zero. Here the superscript t indicates
transposition and B is the diagonal block matrix in which n− 1 blocks

are equal to J =

(
0 1
0 0

)
and the last block is either J (in the + case) or(

α 1
0 α

)
(in the − case), α being an element in the field such that the

polynomial αx2 + x + α is irreducible. The group S is the commutator
subgroup of SO±(2n, q). If p 6= 2, we take a matrix C of order p in
Ω+(2(e + 1), q). All the matrices Ti with 2(e + 1)i ≤ 2n − 2 belong to

Ω±(2n, q) and so k̃p(S) ≥ b 2n−2
2(e+1)

c. If p = 2, we can take C in Ω+(4, q)

and then k̃p(S) ≥ b2n−2
4
c. �

Now, we are ready to conclude the proof of Theorem B

Proof of Theorem B. Assume false. Let G be a counterexample with
minimum order. By Lemmas 2.6, 2.7, 2.5 and 2.9, G is not sim-
ple. Suppose F (G) 6= 1. Then, by Theorem A, we have dl(P ∩
F (G)) ≤ k̃p(F (G)), and by the minimality of our counterexample, we

have dl(PF (G)/F (G)) ≤ k̃p(G/F (G)) + 7. Arguing as in the proof of

Theorem A, it follows that dl(P ) ≤ k̃p(G) + 7. As G is a counterex-
ample to Theorem B, it follows that F (G) = 1. In a similar way, we
also obtain that Op′(G) = 1. Assume that N1 and N2 are two different
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minimal characteristic subgroups of G. By the inductive hypothesis,

dl(P ) = max{dl(PN1/N1), dl(PN2/N2)}
≤ max{k̃p(G/N1) + 7, k̃p(G/N2) + 7}
≤ k̃p(G) + 7.

Thus F ∗(G) is the direct product of, say, t copies of a non-abelian
simple group S and G/F ∗(G) embeds into Out(S) o St. By Schreier’s
Conjecture, Out(S) is solvable. Since Op′(G) = 1, we have that p
divides |S|.

It follows that if t ≤ 7, G/F ∗(G) satisfies the hypothesis of Lemma

2.4. Therefore, dl(PF ∗(G)/F ∗(G)) ≤ k̃p(G/F ∗(G)). Now, if S1 is one
of the direct factors of F ∗(G) isomorphic to S,

dl(P ) ≤ dl(PF ∗(G)/F ∗(G)) + dl(P ∩ F ∗(G))

= dl(PF ∗(G)/F ∗(G)) + dl(P ∩ S1)

≤ k̃p(G/F ∗(G)) + k̃p(S1) + 7

≤ k̃p(G/F ∗(G)) + k̃p(F
∗(G)) + 7

≤ k̃p(G) + 7

(the second inequality follows from Lemmas 2.6, 2.7, 2.5 and 2.9).

Hence, t > 7. We remark that, since t > 7 and p divides |S|, there

are at least tk̃p(S) ≥ k̃p(S)+7 orbits of non-trivial p-elements of F ∗(G)
under the action of Aut(G). By the minimality, we have that

dl(PF ∗(G)/F ∗(G)) ≤ k̃p(G/F ∗(G)) + 7

and

dl(P ∩ F ∗(G)) = dl(P ∩ S1) ≤ k̃p(S1) + 7 ≤ k̃p(F
∗(G)).

Hence, it follows from Lemma 2.1 that dl(P ) ≤ k̃p(G) + 7, against the
assumption that G is a counterexample. This contradiction completes
the proof of Theorem B. �
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