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1. INTRODUCTION

M. Isaacs has given the following definition: two finite groups X and Y are field
equivalent if there is a bijection y +— x’ from Irr(X) onto Irr(Y') such that Q(x) = Q(x’)
for every x € Irr(X), where Irr(X) is the set of complex irreducible characters of X and
Q(x) is the field of values of . In this paper, we give solution to a problem proposed by
him.

THEOREM A. Suppose that G is field equivalent to a cyclic group. Then G is cyclic.

In general, we cannot expect much more than this. For instance, there exists a group G
of order 64 with 16 conjugacy classes such that all of its irreducible characters are rational
valued. Hence, G is field equivalent to an elementary abelian 2-group and G is not abelian.
Even more, there exists another group H of order 32 with 11 conjugacy classes and rational
valued characters. In particular, H is field equivalent to the symmetric group of degree 6.

There is an application of Theorem A: if A acts coprimely on a finite group G, then the
fields of values of the A-invariant irreducible characters of G' determine if the fixed points
subgroup Cg(A) is cyclic. (See Section 4 below.)

2. GROUPS OF ODD ORDER

We notice that a finite group G is field equivalent with a cyclic group C of order n if
and only if

Irr(G) = U Irrg(G),
d|

where Irrg(G) NIt (G) = 0 if d # e, |Irry(G)| = ¢(d), and if ¢ € Irry(G), then Q(v)) = Qq,
the cyclotomic field of d-th roots of unity. This easily follows by writing Irry(C) = {\ €
Irr(C) | o(A\) = d}, and noticing that if A € Irrg(C'), then Q(\) = Qq4. Since groups of odd
order are exactly the groups with exactly one real character, we have that |G| is odd if
and only if n is odd.

In order to use inductive arguments in groups of odd order, it is convenient to have the
following weaker hypothesis.

(2.1) HYPOTHESIS. Suppose that G is a finite group such that

Irr(G) = U Irrg(G),

where A is a set of positive odd integers such that if i) € Irrg(G), then Q(v) = Q4 and
Irra(G)| = ¢(d).

Our aim in this Section is to classify all finite groups satisfying Hypothesis (2.1).

Throughout this paper, we shall use an elementary fact on cyclotomic fields: if d < e
are positive integers, then Q; C Q. if and only if d divides e or e is odd and d = 2f, for
some f dividing e. Hence, if e and d are odd , then Q; C Q. if and only if d divides e and
therefore Qg = Q. only if d = e. If a group G satisfies (2.1) and d € A, then notice that
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G has exactly ¢(d) characters x with Q(x) = Qg and all of them are Galois conjugate. In
particular, if a group G satisfies (2.1), then all factor groups of G satisfy (2.1). Notice too
that groups satisfying (2.1) are of odd order. Finally, if x € Irr(G) is such that Q(x) = Qy,
where f is odd, then f € A.

(2.2) LEMMA. Suppose that G is a nilpotent group satisfying (2.1). Then G is cyclic.

Proof. Since G/®(G) satisfies (2.1), we may assume that the Sylow subgroups of G are
elementary abelian. Now let p be a prime divisor of |G| and let A € Irr(G) be of order p.
Then Q(A\) = Q, and G has exactly p — 1 irreducible characters with field of values Q,.
Hence all Sylow subgroups of G are cyclic. ||

We shall repeatedly use the following fact.

(2.3) LEMMA. Suppose that G has a normal Sylow p-subgroup P and let 6 € Irr(P). If
T is the stabilizer of § in G and 0 is the canonical extension of § to T, then x = §¢ € Irr(G)
lies over 6 and Q(x) C Q(6).

Proof. By Corollary (8.16) of [3], there exists a unique 6 € Irr(T) extending 6 such that
the determinantal order of # is a power of p. In fact 0o(f) = o(#). (This is called the

A~

canonical extension of § to T.) Now, x lies over 6 and Q(x) C Q(#). Since # uniquely

A~

determines 6, it follows that Q(0) = Q(0). 1

(2.4) THEOREM. Suppose that G is a group satisfying (2.1). Suppose that G has an
elementary normal p-subgroup V such that G/V has a normal p-complement and a cyclic
Sylow p-subgroup. If A € Irr(V) has order p, then {\,\2,..., A\P71} is a complete set of
representatives of G-orbits on Irr(V) — 1.

Proof. We may write G/V = (K/V)(P/V), where K/V < G/V has p’-order, P € Syl (G)
and P/V is cyclic. Suppose that |P/V| = p/. Since P/V is isomorphic to a quotient of
G, we have that for e < f, G has exactly ¢(p©) irreducible characters with field of values
Qpe, all having K in its kernel.

Let 1 # X € Irr(V) and let T' = I5(\) be the stabilizer of A in G. Now, by Corollary
(8.16) of [3], there exists a unique = Irr(T' N K) of order p extending A. Also, by
uniqueness, we have that \ is T-invariant. In particular, if L = ker(j\), then L < T. Also,
(T N K)/L| = p. Now, T/T N K is cyclic, and therefore A extends to T. Suppose that
the cyclic group T/T N K has order p?. We have that d < f. If 3 € Irr(T) lies over A\,
we have that 3 extends A and de+1 = 1. We have that Q(3%) C Q(B) C Qpa+1. Since
Q(B%) = Qpe for some e < d+ 1 and K is not contained in the kernel of B¢, necessarily
e>f. Thene = f+1,d=f, QB% = Qpr+1 and Q(B) = Qpr+1. In particular,
o(B) = p/T1. Since L C ker(3), we deduce that T/L is cyclic of order p/*!. Now, by
considering the p/ extensions 8 of A to T', we notice that G has pf different irreducible
characters with field of values Qs+ lying over A.

Suppose now that A9 = \° for some g € G and 1 < s < p. Then T9 = I5(\°%) = T.
Hence, g € Ng(T'). By the uniqueness of canonical extensions, we easily have that A = )8
and also ker(\) = ker(A\*) = ker(\9) = LY. Thus g also normalizes L. Write T/L = (yL)
and notice that ygflL = y"L for some 1 < n coprime with p. Now, let g € Irr(T') be
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over \ and let x = B9 € Irr(G), which we know has field of values Qpr+1. Now, we have

that 89 = 3™. Hence, A = A" = )\ and therefore n = smod p. Now, let ¢ be the Galois
automorphism of Gal(Q)|/Q) fixing p-roots of unity and sending each p-power order root
of unity £ to £. Then

X7 =(89)° = (8" = (B9 =p% =y,

and therefore o fixes Q,s+1 = Q(x). Then o fixes Q, and therefore n = 1modp. Thus
s = 1 mod p, and this is impossible.

Hence, for each 1 < j < p— 1, we have at least p/ irreducible characters of G with field
of values Q,s+1 lying over AJ. This gives rise to at least p/(p — 1) = ¢(p’*!) irreducible
characters, and we conclude that there are no more. This implies the theorem. |

In what follows, we shall use a well-known fact: if V' is a faithful irreducible GF(p)C-
module, where C is cyclic of order m, then |V| = p™, where n is the order of p modulo
m.

(2.5) LEMMA. Suppose that V is a faithful irreducible GF (p)C-module of dimension
n, where C' is cyclic of order e coprime with p. Suppose that there exists v € V' such that
{v,2v,...,(p — 1)v} is a complete set of representatives of C-orbits on V' — {0}. Then
|ICl=p"—1/p—1and (p—1,e) = 1.

Proof. Our hypotheses easily imply that Co(v) = Co(V) = 1 and therefore Co(w) = 1
for all 0 # w € V. Hence, |C| =p" —1/p—1=e. Let d = (p — 1,¢e) and let D be the
subgroup of C' of order d. Now, let W be a simple D-submodule of V. Then W is faithful
and if [W| = p™, we know that m is the order of p modulo d. Hence m =1. If 1 # x € D
and 0 # w € W, we have that wx = kw for some 1 < k < p. Now, w = jvc for some ¢ € C'
and 1 < j < p, and we conclude that vx = kv. This is not possible. |}

In the proof of the following result, we use a nontrivial theorem of E. Shult, namely,
if A acts as automorphisms on an odd p-group P transitively permuting the subgroups of
order p of P, then P is abelian ([6]).

(2.6) THEOREM. Suppose that G is a group satifying (2.1) with Fitting length 2. Let
N be the smallest normal subgroup of G such that G/N is nilpotent. Then G = NC,
where C' is cyclic, (|N|,|C|) = 1 and N is nilpotent such that all of its Sylow subgroups
are non-cyclic elementary abelian and minimal normal subgroups of G.

Proof. By Lemma (2.2), we have that G/N is cyclic. Also, by hypothesis, 1 < N is
nilpotent.

First, we want to see that (|G/N|,|N|) = 1. Let p be a common prime divisor of |N|
and |G/N]|. If K is the p-complement of N, by working in G/K (which has Fitting length
two) we may assume that N is a p-group. Since G/N is abelian, we have that G has a
normal Sylow p-subgroup P > N. We may write G = PD, where D is a cyclic p’-group,
[P,D] C N and P/N is cyclic. Since p divides |G/N|, we have that G/N has a linear
irreducible character of order p. Hence, all the p — 1 irreducible characters ¢ of G with
Q(¢v) = Q, contain N in the kernel. Suppose that P is not cyclic. Then P/®(P) is not
cyclic and therefore there exists A € Irr(P) linear of order p with N not contained in its
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kernel. By Lemma (2.3), there exists x € Irr(G) lying over A with Q(x) € Q,. Now,
Q(x) = Qy for some odd integer f, and we deduce that Q(x) = Q,. This is impossible.
Therefore, P is cyclic. Since P = [P, D] x Cp(D), we conclude that [P, D] = 1. Hence, G
is abelian, and this is a contradiction. We conclude that (|G/N|, |N|) = 1.

We may write G = NC, where C is cyclic and (|N|,|C|) = 1. It remains to show that
the Sylow subgroups of N are non-cyclic elementary abelian minimal normal subgroups of
G. Let P € Syl,(INV) and notice that PC' is isomorphic to a factor group of G with Fitting
length two. Hence, it is no loss if we assume that N = P. Also, since G/C¢(P) cannot
be nilpotent, we may assume that Co(P) = Co(P/®(P)) = 1.

By Theorem (2.4), if 1 # X\ € Irr(P/®(P)), we know that {\, A%, ..., AP~ 1} is a complete
set of representatives of C-orbits on Irr(P/®(P)) — 1p. Since C' is abelian, notice that
all nontrivial irreducible characters of P/®(P) have the same stabilizer T. Now, the
elements of T'N C' fix every irreducible character in P/®(P) and we deduce that T'N
C = C¢(P/®(P)) = 1 and T = P. In particular, we have that Irr(P/®(P)) is an
irreducible faithful C-module. Thus, if |P/®(P)| = p”, by Lemma (2.5), we have that
|IC| =p*—1/p—1=e with (e,p—1) = 1. If P/®(P) = (\) is cyclic, then n = 1 and
[C, P] = 1. Hence G is nilpotent and this is not possible. Hence, P is not cyclic.

Notice now that G exactly has p — 1 irreducible characters with field of values Q,,, and
these are lying over A\, A\?,... AP~ respectively, where 1 # \ € Irr(P/®(P)).

Suppose that P/P’ is not elementary abelian. Hence P’ < ®(P) and let U/P’' =
®(®(P)/P"). Now, U< G, P/U is abelian and exp(P/U) = p*. Now, ®(P)/U C Q1(P/U)<
G/U. Hence, ®(P)/U = Q1 (P/U). In particular, P/U is a direct product of n cyclic groups
of order p?.

Suppose that pu € Irr(P/U) is one of the p?>™ — p" characters of P/U of order p?. By
Lemma (2.3), there exists x € Irr(G) over p with Q(x) = Q, € Q2 for some odd integer
a. Now, a divides p* and necessarily a = p?. Hence there are exactly ¢(p?) = p(p — 1)
irreducible characters in G with field of values Q2. This implies that the p?" —p" characters
of order p? lie in at most p(p — 1) different C-orbits. On the other hand, if x € C fixes
1, then x fixes p? and thus x € P. Hence, each C-orbit exactly contains p;__ll elements.
Then

2n n p "1
p"—p" <plp—1) P
and n = 1, which is not possible.

We wish to prove that P is abelian. We may assume that P’ is a minimal normal
subgroup of G, and therefore elementary abelian. Also, P’ C Z(P). Since P/P’ is a chief
factor of G, we have that Z = Z(P) = P’. Now, the exponent of P divides p?. Hence,
if € Irr(P), Q(0) C Qp2. If § € Irr(P) does not contain P’ in its kernel, by Lemma
(2.3), there exists x € Irr(G) lying over 6 such that Q(x) € Q(f) C Q2. Since the
irreducible characters of G with field of values Q, contain P’ in its kernel, we deduce that
Q(x) = Q(0) = Qp2. In particular, the exponent of P is p?. Now, since P/Z is abelian, Z
is elementary abelian and p is odd, we have that

QM (P)=(xePlaP=1)={z e Plaz? =1} < P.

We conclude that all the subgroups of order p of P lie inside Z. By coprime action,
and using that p is odd, it is well-known that Co(Z) = Co(P) = 1. Hence Z is a
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faithful irreducible C-module and therefore |Z| = |P/P’| = p™. Now, we claim that C' acts
transitively on the subgroups of order p of Z. Let 1 # z € Z and suppose that ¢ € C fixes
(z). Then 2¢ = z* for some 1 < k < p. Since (e,p — 1) = 1, we deduce that z¢ = z. Then
c centralizes (z%|u € C) = Z, and this is impossible. Therefore the stabilizer of (z) in C is
trivial. Since there are p” — 1/p — 1 = |C| subgroups of order p in Z, we conclude that C
acts transitively on them. By Shult’s theorem, this is a contradiction.

Finally, since P is an irreducible C-module, we have that P is a minimal normal sub-
group of G. |}

In the next result, we use a well-known theorem of Brodkey ([1]): if a finite group G
has an abelian Sylow p-subgroup P, then there is g € G such that P N P9 = O,(G).

(2.7) THEOREM. If G satisfies (2.1), then the Fitting length of G is at most 2.

Proof. We argue by induction on |G|. We may assume that G has a minimal normal
subgroup V such that the Fitting length of G is 3 and G/V has Fitting length 2. We have
that V' is an elementary abelian p-group.

By Theorem (2.6), we know the structure of G/V. We have that G/V = (N/V)(C/V),
where N/V and C/V are coprime, C'/V is cyclic and the Sylow subgroups of N/V are
non-cyclic elementary abelian. Also, IV is not nilpotent.

First, we prove that p does not divide |N/V|. Suppose it does. By taking a linear
character of N/V of order p and using Lemma (2.3), we see that there are exactly p — 1
irreducible characters of G with field of values Q, all of them having V' in their kernel. Let
Q/V be a Sylow p-subgroup of G/V, which is normal in G/V. Also Q/V is elementary
abelian and ®(Q) C V. Hence, the exponent of @ is at most p? and all irreducible
characters of @ have their values in Qp2. Let p € Irr(Q) be not containing V' in its kernel.
By Lemma (2.3), there exists x € Irr(G) such that Q(x) € Q(u) € Qp2. Necessarily,
Q(x) = Q(1r) = Qp2. In particular, V = ®(Q). Now, we have that a p-complement H of
N acts trivially on Q/®(Q). Thus [H,Q] = 1. So N is nilpotent and this is impossible.

Now, by Theorem (2.4), we have that the stabilizers of all nontrivial elements of Irr(V')
are (G-conjugate.

Now, Cn(V) =U x V, where U< G and U C Z(N). If U > 1, by induction we have
that N/U is nilpotent, and therefore N is nilpotent. So we may assume that Cy (V) = V.

Let ¢ be a prime dividing [N : V| and let X/V € Syl (N/V). Hence, X/V is a normal
abelian Sylow g-subgroup of G/V. Let S € Syl (X). By Brodkey’s theorem, there exists
v € V such that SN SY = 1. Therefore Cg(v) = 1. Since the actions of S on V' and on
Irr(V) are permutation isomorphic (by Theorem (13.24) of [3]), there exists A € Irr(V)
such that TN X = V, where T is the stabilizer of A in G. Now, T N X/V is a Sylow
g-subgroup of T'/V and we deduce that T/V is a ¢’-group. Now, if p € Irr(V) and I is
its stabilizer in G, we deduce that I/V is a ¢’-group. In particular, I N X = V. Then
pX € Irr(X) for all 1 # p € Irr(V) and we deduce that Cg(w) = 1 for all 1 # w € V.
Then X is a Frobenius group and S is a Frobenius complement of odd order. Hence, S is
cyclic, and this is impossible. |}

3. PROOF OF THEOREM A
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In the proof of our main result, we use the following result of Iwasaki ([4]). For the
reader’s convenience, we write down a proof.

(3.1) LEMMA. If G has at most two real valued characters, then a Sylow 2-subgroup
of G is normal.

Proof. We argue by induction on |G|, and we may assume that G is of even order. We
have that G has exactly two real classes. Hence, the only nontrivial real class K is the
class of involutions of G. If x,y are involutions, then xy is real, and therefore xy is an
involution. Thus N = K U1 is a normal 2-subgroup of G. If G/N has exactly one real
character, then G/N is of odd order, and we are done. Otherwise, we apply induction. [

We will also use the following result of Amit and Chillag.

(3.2) THEOREM. Suppose that G is a solvable group and let x € Irr(G) with Q(x) =
Qy. Then G has an element of order f.

Proof. See Theorem (22.1) of [5]. |

(3.3) LEMMA. Suppose that F' = GF(2™) and let o € Gal(F) be of order ¢ > 1 odd.
Let T' be the semidirect product of K = F* with I = (o). Suppose that H < T’ is not
cyclic and has order divisible by 2™ — 1. Then there exists 1 € Irr(H) such that Q(v)) is
not a cyclotomic field.

Proof. We claim that there exists P € Syl,(K) such that I acts Frobenius on P. Suppose
that m # 6. Let p be a Zsigmondy prime for 2™ — 1. (See, for instance, Theorem (6.2) of
[5].) If 1 # 7 € I has order d|m, then |Cg(7)| = 2™/¢ — 1 which is not divisible by p. If
P € Syl,(K), we have that Cp(7) = 1. Thus I acts Frobenius on P. If m = 6, then ¢ = 3
and in this case we can take P of order 7.

Now, since P is cyclic, we have that ¢g|p — 1 and P is a normal Sylow p-subgroup of T".
Hence, P C H, by hypothesis. Now, let A € Irr(P) be of order p. Notice that Ir(\) = K
because I;(\) = 1. Hence, K N H is the stabilizer of A in H. Let v € Irr(K N H) be
the canonical extension of A\ to K N H, so that o(v) = p. If h € H fixes v, then h
fixes A and therefore h € K N H. Hence, by the Clifford correspondence, we have that
¢ = v € Irr(H). Since H is not cyclic, we have that KNH < H. Now,if h € H—(KNH),
we have that v = " for some integer r with 1 < r < p. Now, Q(¢)) C Q,. We claim that
Q(%) cannot be Q,. If ¢ is the Galois automorphism fixing p’-roots of unity and sending
p-power roots of unity £ to ", then

and this proves the claim. ||

(3.4) THEOREM. Suppose that G is field equivalent with a cyclic group of order n.
Then G is cyclic.



Proof. By hypothesis, we have that
Irr(G) = U Irrg(G
d|n

where Irrg(G) NIt (G) = 0 if d # e, |Irry(G)| = ¢(d), and if ¢ € Irry(G), then Q(¢)) = Qq.
We notice that G has at most two real valued characters. By Lemma (3.1), we have that
P < G, where P € Syl,(G). Let H be a 2-complement of G.

Suppose that G has odd order. Then n is odd and G satisfies (2.1). If G is nilpotent,
then G is cyclic and we are done. By Theorems (2.6) and (2.7), we may assume that
G = NC, where C is cyclic and 1 < N is abelian with (|V|,|C|) = 1. Also, the Sylow
subgroups of N are not cyclic and minimal normal subgroups of G. Let p be any prime
divisor of |[N|. Now, G has an irreducible character with field of values Q|¢|. Hence, |C|
divides n. Also, by Lemma (2.3), G has an irreducible character with field of values Q,,
where p divides n. Thus p|C| divides n, and G has irreducible characters with field of
values Qp|c|. By Theorem (3.2), G has an element z of order p|C|. Write x = uv, where
u € N has order p, v has order |C| and uv = vu. Then o(vN) = o(v) = |G/N]|, and we
deduce that N(v) = G. Then u € Z(G) and (u) is a normal subgroup of G. Then (u) is a
Sylow p-subgroup of N, and this is not possible.

So we may assume that G is of even order. Hence, n is even and G has a unique real
valued non-trivial character x. Let ¢ € Irr(P) of order 2. By Lemma (2.3), § lies under Yy,
and we deduce that H transitively permutes the nontrivial elements of Irr(P/®(P)). Write
|P/®(P)| =2". If T is the stabilizer of § in H, then Cy(P) C T and |H : T| =2V — 1.

Write n = 2°m, where m is odd. We claim that

Irr(G/®(P U Irrg(G

d|2m

Suppose that ¢ € Irr(G) has ®(P) in its kernel and suppose that Q(v)) = Qy for some
fln. Now, since the exponent of G/®(P) has 2-part 2, we have that Q(v’) C Q¢g|,, and
therefore f divides 2. Hence, f divides 2m. Conversely, suppose that ¢ € Irry(G), where
d|2m. Then Q(v) = Qf for some odd number f. Let p € Irr(P) be under v. Let
o € Gal(Q)¢|/Q|q),, ) (which necessarily has 2-power order). Then o fixes ¢ and therefore
p® = p® for some x € G/P. Since o(x) is odd, we conclude that u” = pu. Hence, u
has rational values. By Lemma (2.3), we conclude that p lies under some rational valued
character, which necessarily is x. Then u is G-conjugate to 9, and the claim follows.

If ®(P) > 1, arguing by induction, we have that G/®(P) is cyclic. Therefore P/®(P)
and H are cyclic. Hence P is cyclic, G = P x H, and therefore G is cyclic. Thus, we may
assume that ®(P) = 1. Therefore, Q(¢)) C Qg|,, for all ¢ € Irr(G). In particular, we have
that ny = 2, since otherwise there would exist ¢ € Irr(G) such that Q(v) = Q4 = Q(i),
and this is not possible.

Suppose that P is cyclic. Then |P| =2 and G = Px H. Then n = |Irr(G)| = 2|Irr(H)|,
where [Irr(H)| = m is odd. Now, for each d dividing m, there exist exactly 2¢(d) irreducible
characters of G with field of valued Qq. If x € Irr(G), we have that x = 1 xa or x = X a,
for some o € Irr(H) and in both cases Q(x) = Q(«). This easily implies that there are
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exactly ¢(d) irreducible characters of H with field of values Q4. Hence, H is field equivalent
to the cyclic group of m elements, and H is cyclic, by the second paragraph of this proof.
Thus G is cyclic in this case. Hence, we may assume that v > 2.

By Theorem (6.8) of [5], we deduce that H/Cpg(P) is a subgroup of I, where I is as
in Lemma (3.3). Now, H/Cpg(P) is isomorphic to a quotient of GG, and therefore all of its
irreducible characters have cyclotomic fields of values. By Lemma (3.3), we deduce that
H/Cpg(P) is cyclic. In particular, T'< H and we easily have that T = Cg(P).

Notice that the stabilizer of ¢ in G is I = PCy(P). If ¢ € Irr(G) does not contain P
in its kernel, then 1 lies over § and therefore ¢ = (o), where § € Irr(I) is the canonical
extension of 4 to I and « € Irr(Cy(P)). Hence, by using the Clifford correspondence and
Corollary (6.17) of [3], we have that

11(G) | = [Tex()| + [Txx(C (P))]

Since H is of odd order, by a theorem of Burnside (Problem (3.17) of [3]), we have that
14(G)| = |H| + [Cri(P)| = [Crr(P)|(H/Cra(P)| + 1) = 2°|Cr(P)| mod 16..

Hence, we deduce that 4 divides |Irr(G)| = n, and this was not possible. |

4. COPRIME ACTION

If X and Y are finite groups and A C Irr(X) and B C Irr(Y'), we say that A and B are
field equivalent if there exists a bijection x — x’ from A onto B such that Q(x) = Q(x)
for all x € A.

(4.1) THEOREM. Suppose that A acts coprimely on G and let C = Cg(A). Then C
is cyclic if and only Irr4(G) is field equivalent with the set of irreducible characters of a
cyclic group.

Proof. It is well-known that the Glauberman-Isaacs correspondence * : Irr 4 (G) — Irr(C)
preserves fields of values. (See Chapter 13 of [3] and Section 10 of [2].) Now, Theorem A

applies. |}
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