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Heights of characters and defect groups

Alexander Moretó

1. Introduction

An important result in ordinary character theory is the Ito-Michler theorem, which
asserts that a prime p does not divide the degree of any irreducible character of
a finite group G if and only if G has a normal abelian Sylow p-subgroup. The
famous Brauer’s height zero conjecture can be thought as the block version of this
result. Given a block B with defect d the height of a character χ ∈ Irr(B) is the
integer h such that χ(1)p = pa−d+h, where |G|p = pa. The height zero conjecture
asserts that the height of any character χ ∈ Irr(B) is zero if and only if the defect
group is abelian. The goal of this note is to discuss some possible extensions of
the Ito-Michler theorem and its “block version”, the height zero conjecture.

P. Fong [3] proved that all characters in a block with abelian defect group
have height zero in a p-solvable group. The converse was proved by D. Gluck and
T. Wolf in [4]. (However, both parts of the height zero conjecture remain open
for arbitrary finite groups.) In their work in [4] Gluck and Wolf prove in fact
a stronger result, namely that if e is the largest height of the characters in B,
then the derived length of the defect group D cannot exceed 2e + 1 (we will keep
this notation thorought this note). This generalized a result of Isaacs [8] which
asserts that the derived length of a Sylow p-subgroup of a p-solvable group does
not exceed 2f + 1, where pf is the largest p-part of the degrees of the irreducible
characters of G (we will also maintain this notation in the remaining of this paper).
The following conjecture asserts that these results should hold for arbitrary finite
groups.

Conjecture A Let G be a finite group. Then the derived length of a Sylow
p-subgroup is bounded in terms of f , where pf is the largest p-part of the degrees
of the irreducible characters of G. More precisely, if B is a p-block of G with defect
group D, then the derived length of D is bounded in terms of the largest height
of the irreducible characters in B.

It is clear that the first statement of Conjecture A follows from the second
statement for the principal block. Isaacs bound was improved to a logarithmic
bound in the case of solvable groups in [15] and it seems reasonable to hope that
a logarithmic bound should hold in both statements for arbitrary groups.
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The work in [15] began as an attempt to relate p-parts of character degrees not
with the derived length of a Sylow p-subgroup P but with the largest degree of
the irreducible characters of P . It was conjectured in [12] that if we write b(P )
to denote the largest degree of the irreducible characters of P then logp b(P ) is
bounded by a function of f , where pf is the largest p-part of the degrees of the
irreducible characters of G. Now, we restate this conjecture and present its block
version.

Conjecture B Let P be a Sylow p-subgroup of a finite group G and b(P ) = pb.
Then b is bounded in terms of f . More precisely, if B is a p-block of G with defect
group D then logp b(D) is bounded in terms of e

Again, the first statement of the conjecture follows from the second one for the
principal block. It is tempting to conjecture that the bound logp b(D) ≤ 2e holds.
For p ≤ 3, there are examples due to Isaacs in [8] and [12] that show that this
bound would be best possible. It is clear that Conjecture B implies Conjecture A
and that this bound would imply the desired logarithmic bound in Conjecture A
(using Theorem D of [13], for instance).

Our final conjecture relates the derived length of a Sylow p-subgroup (or of a
defect group) and the number of p-parts of character degrees (or the number of
heights of the characters in the block).

Conjecture C The derived length of a Sylow p-subgroup of a finite group is
bounded in terms of the number of different p-parts of the degrees of the irreducible
characters of the group. More precisely, the derived length of the defect group of
a block B is bounded in terms of the number of different heights of the characters
in B.

As before, the second statement for the principal block implies the first state-
ment and it is clear that this conjecture implies Conjecture A. It also seems tempt-
ing to conjecture that a logarithmic bound should hold but, among other things,
one would need to solve the hard problem that says that the derived length of a
p-group is bounded by a logarithmic function of the number of character degrees.

In this note we discuss these conjectures for several important classes of finite
groups: in Section 2 we consider p-solvable groups, in Section 3 the general linear
groups in the defining characteristic, in Section 4 the symmetric groups and in
Section 5 the sporadic groups. We prove that most of them hold for these groups.

Before proceeding to do this, we consider the possible existence of reversed
inequalities. There are p-groups of derived length 2 with arbitrarily many character
degrees, so there is no hope that we can find any class of reversed bound in the
situation of Conjectures A and C. Also, as Frobenius groups whose complement is
an abelian p-group show, there is no possible reversed inequality for the first part
of Conjecture B. Hence, it is perhaps surprising that something can be said about
the second part of Conjecture B. It has recently been proved in [14] that if G is
p-solvable, then the height of any character in a p-block with defect group D does
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not exceed 2 logp b(D) if p is odd and 5 logp b(D) if p = 2. However, as shown by
an example due to G. Malle (see Section 4 of [14]) there is no hope to obtain any
bound for arbitrary groups.

2. p-solvable groups

As commented in the introduction, Conjecture A was proved for p-solvable groups
in [8] and [4]. A logarithmic bound for the first statement for solvable groups was
obtained in [15]

For solvable groups, the first statement of Conjecture B was recently proved
in Corollary B of [15] and that of Conjecture C in Theorem A of [13]. In the
remainder of this section we discuss the block forms of these conjectures. Our
first result reduces the p-solvable case of the modular form of Conjecture B to a
problem in ordinary character theory.

Theorem 2.1. The second statement of Conjecture B for p-solvable groups holds
if the following is true: if Z is a cyclic central p′-subgroup of a p-solvable group
G, P ∈ Sylp(G), λ ∈ Irr(Z) and for any χ ∈ Irr(G|λ), χ(1)p ≤ pn, then logp b(P )
is bounded in terms of n.

At first sight this statement looks very similar to that of the first part of
Conjecture B, which was proved for solvable groups in [15]. However, it doesn’t
seem possible to prove it using the methods of [15]

Proof of Theorem 2.1. We begin working toward a proof of the second statement
of Conjecture B for p-solvable groups. Using an argument due to Fong (see The-
orems 9.14 and 10.20 of [16] or the first paragraph of the proof of Theorem A of
[14]) we may assume that the defect group of B is a Sylow p-subgroup of G and
that Irr(B) = Irr(G|θ) where θ ∈ Irr(Op′(G)) is G-invariant. Put N = Op′(G).
Let (G∗, N∗, θ∗) be a character triple isomorphic to (G, N, θ) (see Definition 11.23
of [10]). By Theorem 5.2 of [9] and Theorem 11.28 of [10], we may assume that
N∗ ≤ Z(G∗) is a cyclic p′-group. Furthermore, by Lemma 11.24 of [10] we know
that the sets of p-parts of the degrees of the characters of G∗ that lie over θ∗ and
the set of p-parts of the degrees of G that lie over θ coincide. Also, by the definition
of character triple, the Sylow p-subgroups of G/N and G∗/N∗ are isomorphic, and
the result follows.

ut

We remark that the same proof would allow to obtain the corresponding re-
statement of the block form of Conjecture C for p-solvable groups. Using the results
of [15] it is possible to reduce the block form of Conjecture B to a somewhat more
restricted situation, but we do not think that it is worth including it here.
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3. General linear groups

The goal of this section is to prove Conjectures A, B and C for GL(n, q) where
q = pe. We prove the following result.

Lemma 3.1. Suppose that G = GL(n, q), where q = pu and p is a prime. Then
the set of p-heights of the ordinary irreducible characters of G lying in any of the
p-blocks of defect bigger than 0 of G contains {ut(t− 1)/2 | t = 1, . . . , n− 1}.

Proof. By [2], G has q− 1 blocks of defect zero and q− 1 blocks of full defect. Let
B be a block of G of full defect whose characters lie over a character ρ ∈ Irr(Z(G)).
By Proposition 3.1 of [18], the number of characters in B whose p-part of the degree
is pui is bigger than 0 whenever there is a partition µ of n such that n′(µ) = i,
where if µ = (al1

1 , . . . , alδ
δ ) then

n′(µ) =
δ∑

j=1

(
aj

2

)
lj .

Now, it suffices to consider the partitions µt = (t, 1n−t) for t = 1, . . . , n − 1.
The result follows. ut

Now, we can prove Conjectures A, B and C for the general linear group. Note
that the bounds we obtain are good. By the structure of the blocks of GL(n, q)
we may assume that B has full defect.

Theorem 3.2. Let G = GL(n, q), where q is a power of p. Suppose that B is a
block of full defect of G. Then the derived length of a Sylow p-subgroup P of G is
bounded logarithmically in terms of the number of heights in B and also in terms
of the largest height of the characters in B. Furthermore, logp b(P ) ≤ 2e.

Proof. By Satz III.16.3 of [6], the derived length of P is of the order of log n. We
have just proved that the number of heights is at least n− 1 and that the largest
height is at least (n − 1)(n − 2)/2, so the first claim follows. In order to prove
the second claim it suffices to use, for instance, the information on the character
degrees of P that appears in [7]. ut

4. Symmetric Groups

In this section we will find the set of heights of the characters in the blocks of the
symmetric groups when p ≥ 5. As a consequence, we will see that Conjectures A,
B and C hold for these groups. We need to recall some terminology. It is well-
known that the irreducible characters of the symmetric group Sn are labelled by
the partitions of n. If λ is a partition of n and [λ] is the Young diagram associated
to λ a p-hook of [λ] is the part of the diagram associated to a hook of length p.
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The diagram (or the partition) obtained by succesively removing all the rim p-
hooks successively is called the p-core of λ (it is known that this does not depend
on the order). The p-weight of a partition λ is the number of rim p-hooks that
have to be removed before obtaining the p-core. By Nakayama’s conjecture (which
was proved independently by Brauer [1] and de Robinson [19]), we know that two
characters of Sn belong to the same block if and only if the associated partitions
have the same p-core. Hence, it makes sense to define the weight of a block as the
weight of the partition associated to any character of the block. For more details
on all these concepts see [11].

Next, we need to recall some notation from [17]. We write c(p, n) to denote the
number of p-core partitions of n and Fp(x) is the formal power series

Fp(x) =
∞∑

n=0

c(p, n)xn.

We also put

Fp(x)s =
∞∑

n=0

Cp(s, n)xn.

Now, we can prove the key result of this section.

Theorem 4.1. If p ≥ 5, then the set of heights of the characters in any p-block
B of Sn is the set of integers {0, 1, 2, . . . , (w − a0 − a1 − · · · − ar)/(p− 1)}, where
w is the weight of B and w = a0 + a1p + · · ·+ arp

r is the p-adic decomposition of
w.

Proof. It was proved in Corollary 3.8 of [17] that the maximal possible height of
characters in B is (w−a0−a1−· · ·−ar)/(p−1) and that the number of characters
of such height is Cp(p, w). It was proved in [5] that for every integer n there exists
a p-core partition on n when p ≥ 5. Hence c(p, n) > 0. This means that for any s
all the coefficients of Fp(x)s are non-zero positive integers. Hence it follows from
Proposition 3.5 of [17] that the set of heights is the one asserted in the statement
of the theorem (here we are using the fact that the set Ea(p, w) defined in [17] is
not empty for all a with 0 ≤ a ≤ (w − a0 − a1 − · · · − ar)/(p− 1)). ut

Corollary 4.2. Let B be a p-block of Sn for p ≥ 5 and D the defect group of B.
Then logp b(D) is the maximum height of the characters in B.

Proof. Write b(D) = pb. We have to show that b = (w−a0−a1−· · ·−ar)/(p−1),
where w is the weight of B and w = a0+a1p+· · ·+arp

r is the p-adic decomposition
of w. It is well-known that D is isomorphic to a Sylow p-subgroup of Spw. We have
that pw = a0p + a1p

2 + · · ·+ arp
r+1, so D is isomorphic to the direct product of

a0 copies of a Sylow p-subgroup of Sp, a1 copies of a Sylow p-subgroup of Sp2 ,. . . ,
ar copies of a Sylow p-subgroup of Spr+1 . It was proved in [7] that the largest
character degree of a Sylow p-subgroup of Spn (for n ≥ 2) is p1+p+···+pn−2

. We
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deduce that

b = a1 + a2(1 + p) + a3(1 + p + p2) + · · ·+ ar(1 + p + · · ·+ pr−1)

=
r∑

i=1

ai(pi − 1)/(p− 1) = (w − a0 − a1 − · · · − ar)/(p− 1),

as desired. ut

Hence, we have proved that Conjecture B holds for symmetric groups when
p ≥ 5. It is also clear from Theorem 4.1 that Conjectures A and C also hold
in this case. Similarly, one could prove that all these conjectures also hold when
p ≤ 3 for symmetric groups, but this would require some more tedious calculations
using the structure of the 2-cores and 3-cores and the results of [17].

5. Sporadic Groups

Using the information provided by the GAP character table library, we have
checked that the bound logp b(D) ≤ 2e holds for the sporadic groups. Actually,
in order to check this bound we do not need to know the structure of the defect
groups; it suffices to know their order.
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