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Abstract

In this paper, it is proved that if B is a Brauer p-block of a p-

solvable group, for some odd prime p, then the height of any ordinary

character in B is at most 2b, where pb is the largest degree of the

irreducible characters of the defect group of B. Some other results

that relate heights of characters with properties of the defect group

are obtained.

1 Introduction

Let p be a prime, let G be a finite group and let B a p-block of G with defect

group D. If χ ∈ Irr(B) is an irreducible complex character of B, the height

h of χ is the non-negative integer satisfying

χ(1)p = pa−d+h ,

where |G|p = pa and |D| = pd.

One of the main problems in finite group theory is to relate the repre-

sentation theory invariants of a finite group G with those of certain local

subgroups of G. If B is a Brauer p-block of G having defect group D, it is

believed that the complexity of D reflects and is reflected in the set Irr(B) of

complex irreducible characters in B. Brauer’s famous height conjecture, for

instance, asserts that D is abelian if and only all characters in Irr(B) have

height zero. The “only if” part of this conjecture was proved for p-solvable

groups by P. Fong (see Theorem 3C of [?] or Theorem 10.21 of [?]), who

in fact showed, in this case, that if D is the defect group of a block B and

|D : Z(D)| = pn, then the height of any character of B does not exceed n.

(The converse of Brauer’s conjecture was proved for p-solvable groups by D.
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Gluck and T. Wolf in [?], but both parts of the conjecture remain open for

arbitrary groups.)

For p-solvable groups, we go further. Instead of comparing the heights

of the characters in Irr(B) with the group theoretical structure of D, we

compare them against the heights (that is, the exponents of the character

degrees) of the group D.

Theorem 1. Let G be a finite p-solvable group and let B be a Brauer p-block

of G with defect group D, where p is an odd prime. Suppose that pb is the

largest degree of the irreducible complex characters of D. If χ ∈ Irr(B) has

height h, then h ≤ 2b.

Of course, if γ ∈ Irr(D), then γ(1)2 ≤ |D : Z(D)|, and from Theorem 1

we recover the bound ph ≤ |D : Z(D)| for odd primes. We have been unable

to decide whether or not Theorem 1 holds when p = 2. The bound that we

obtain in this case is h ≤ 5b.

In order to prove Theorem 1, we need the following result of independent

interest.

Theorem 2. Suppose that A acts coprimely as automorphisms on a finite

group G. If CA(G) = 1, then there exists a nilpotent A-invariant subgroup

H of G such that CA(H) = 1.

The proof of Theorem 2 that we present here, which relies on the clas-

sification of finite simple groups, was provided to us, independently, by R.

Guralnick and G. R. Robinson.

Now, we come back to discuss heights of characters and we compare

them with the order of the defect group. It is clear that if h is the height
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of an irreducible character of a block B and d is the defect of B, then

h ≤ d. Furthermore, h = d if and only if d = 0 (by Theorem 3.18 of [?]).

When d > 0, the ratio h/d can be as close to 1 as we wish. For instance,

for G = SLn(p) in the defining characteristic p, all characters except the

Steinberg character lie in the principal block, and there exists a unipotent

character with height (n−1)(n−2)/2. On the other hand, the defect of the

block is n(n− 1)/2.

Our next result shows that for p-solvable groups this cannot happen.

Theorem 3. Let B be a p-block of defect d of a p-solvable group G. If

χ ∈ Irr(B), then the height h of χ is less than or equal to 3d/4.

As we will remark after the proof of this theorem, we can also obtain a

sharper result that “almost” yields the bound h ≤ d/2 for large primes.

The result of Fong that we mentioned before was refined by A. Watanabe

in [?], who proved that if the height of some character is n (where pn =

|D : Z(D)|), then D is abelian. Our next result has, as an immediate

consequence, the solvable case of both Fong and Watanabe’s theorems.

Theorem 4. Suppose that G is a solvable group. Let χ ∈ Irr(B) of height

h and suppose that B has defect group D. Suppose that |D : Z(D)| = pn.

Then

h ≤ 7n/8 .

It seems likely that this result can be extended to p-solvable groups and

that, at least, the bound h ≤ 3n/4 holds. In fact, we will prove a strong

form of Theorem 4 (see Theorem ??) that “almost” yields this bound for

large primes.
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G. R. Robinson ([?]) has shown that if Dade’s conjectures hold, then

the Fong-Watanabe result should hold for arbitrary groups. We will provide

examples that show that, unfortunately, there is no hope to extend our

results to arbitrary groups.

We thank Guralnick and Robinson for their proof of Theorem 2 and G.

Malle for showing us Example 4.1(ii). Some of this work was done while the

first author was visiting the University of Wisconsin, Madison. He thanks

the Mathematics Department for its hospitality.

2 Coprime action

We begin with the proof of Theorem 2. As usual, we will write F ∗(G) to

denote the generalized Fitting subgroup of G. Recall that for any group G,

we have that CG(F ∗(G)) ≤ F ∗(G). So the following lemma, which is a well-

known application of the three subgroups lemma, applies when N = F ∗(G).

Lemma 2.1. Suppose that A acts coprimely on G and suppose that N E G

is A-invariant with CG(N) ≤ N . If [N,A] = 1, then [G, A] = 1.

Proof. We have that [N,A, G] = [G, N,A] = 1, and therefore [G, A,N ] = 1.

Hence [G, A] ≤ N and thus [G, A] = [G, A,A] = 1.

Lemma 2.2. Suppose that A acts faithfully and coprimely on a finite simple

group G. Then A acts faithfully on some A-invariant Sylow subgroup of G.

Proof. It is well-known that alternating and sporadic groups do not admit

coprime automorphisms, so by the classification of finite simple groups we

may assume that G is of Lie type. Let p be the characteristic of G. We

claim that A acts faithfully on any A-invariant Sylow p-subgroup of G.
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Clearly, we may assume that A = 〈a〉 is cyclic of prime order. Let U be

an A-invariant Sylow p-subgroup of G and, by way of contradiction, assume

that [U,A] = 1. First, we note that G must have rank 1. Let B = NG(U).

Then U = F ∗(B), so that [B, a] = 1. If G has rank greater than 1, then G

is generated by parabolic subgroups of the form NG(V ), where 1 6= V E U.

Notice that NG(V ) is A-invariant as [U, a] = 1. But for such subgroups,

F ∗(NG(V )) = Op(NG(V )) ≤ U so that a centralizes F ∗(NG(V )) and hence

centralizes NG(V ) (by Lemma ??). Thus G must have rank 1 as claimed.

It follows that G is one of the groups L2(q), U3(q), 2G2(q),2 B2(q) where

q is a power of p (where q is an odd power of p in the last two cases, and

p = 3, 2, respectively). In all cases, G is a doubly transitive group on the

cosets of B and we have |G : B| = 1 + |U |. Now G = B ∪ BwB, where

w is an involution. Furthermore, w normalizes B ∩ Bw = T, and T is

a (necessarily A-invariant) Hall p′-subgroup of B. Hence G = BNG(T )B.

Furthermore, |NG(T ) : T | = 2 in all cases, so it follows that [NG(T ), a] ≤ T

and [NG(T ), a, a] ≤ [T, a] = 1. Thus [NG(T ), a] = 1 by coprime action, so

that [G, a] = 1, contrary to assumption.

Proof of Theorem 2. We argue by induction on |G|. Let Z = Z(G). We

claim that we may assume that Z = 1. Suppose not. Let D = CA(G/Z).

We have that A/D acts faithfully on G/Z. By the inductive hypothesis,

there exists an A-invariant nilpotent subgroup V/Z of G/Z on which A/D

acts faithfully. Hence, V is A-invariant and nilpotent. Now, CA(V )D/D

centralizes V/Z, and therefore CA(V ) ≤ D. Since CA(V ) ≤ CA(Z), it

follows by coprime action that CA(V ) ≤ CA(G) = 1, and we are done in

this case.

Next, we claim that G cannot be expressed as the product of two proper
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A-invariant normal subgroups G = MN with [M,N ] = 1. Otherwise, let

B = CA(M), C = CA(N) and notice that B ∩ C = 1. Now, A/B acts

faithfully on M , and by induction there is a nilpotent A-invariant subgroup

H of M with CA(H) = B. Similarly, A/C acts faithfully on N , and again by

induction there is a nilpotent A-invariant subgroup K of M with CA(K) =

C. Then HK is nilpotent, A-invariant and CA(HK) = 1.

By Lemma ??, we may assume that G = F ∗(G). Since we may write

F ∗(G) = E(G)F (G), where E(G) is the layer of G, by the second paragraph

we may assume that G = E(G). Now, by using Theorem X.13.18 of [?], we

may write

G = K1 × · · · ×Kr ,

where Ki is simple non-abelian.

Now, A acts on {K1, . . . ,Kr} (by Theorem X.13.16 of [?]). Let ∆1, . . . ,∆s

be the distinct A-orbits, and Λi =
∏

T∈∆i
T . We have G = Λ1 × · · · × Λs.

If s > 1, then the theorem is again proved by using the claim in the second

paragraph. Therefore, we may assume that A acts transitively on the set

{K1, . . . ,Kr}. Write Ki = Kai for some ai ∈ A, where K = K1 and a1 = 1.

Now, let B = NA(K)/CA(K). We have that B acts faithfully on the

nonabelian simple group K. By Lemma ??, there exists a B-invariant Sylow

q-subgroup 1 6= Q of K such that B acts faithfully on Q. We claim that

CA(Q) ≤ CA(K). Let a ∈ CA(Q). Suppose that Ka = K2, for instance.

Then Q = Qa ≤ K1 ∩ K2 = 1, and this is not possible. Therefore, a ∈

NA(K). Hence, aCA(K) ∈ B centralizes Q, and the claim follows. Now,

let Qi = Qai and let U = Q1 · · ·Qr, which is again nilpotent. Notice that

CA(Qi) ≤ CA(Ki). Now, let a ∈ CA(U). Hence, a ∈ CA(Qi). Then a

centralizes G. It remains to show that U is A-invariant. Let x ∈ A. If

7



Kx
i = Kj , it suffices to show that Qa

i = Qj . Now, we have that Kaix = Kaj .

Hence, aixa−1
j ∈ NA(K). Thus Qaixa−1

j = Q, and Qx
i = Qj , as desired.

3 Heights of characters

Is this section, we prove Theorems 1, 3 and 4. In order to prove Theorem

1, we need the following regular orbit theorem.

Theorem 3.1. Suppose that G is a p-solvable group with Op(G) = 1, p

odd, and let P ∈ Sylp(G). Suppose that V is a faithful FG-module, where

charF = p. Then there exists v ∈ V such that CP (v) = 1.

Proof. We argue by induction on |G|. If G is solvable, then this is the main

result of [?]. (An alternative proof is available in [?].) Now, let N = Op′(G),

H = NP and notice that CP (N) = 1, since CG(N) ≤ N . By Theorem 2,

there exists a nilpotent P -invariant subgroup K of N such that CP (K) = 1.

In this case, Op(KP ) = 1, and since VKP is faithful, we may assume that

G = KP . Then G is solvable, and we are done.

If G is a finite group, we write b(G) for the biggest irreducible complex

character degree of G.

Theorem 3.2. Suppose that G is a p-solvable group and let P ∈ Sylp(G).

(i) If p is odd, then |G : Op′p(G)|p ≤ b(P ) .

(ii) If p = 2, then |G : Op′p(G)|p ≤ b(P )4 .

Proof. For the first part, argue as in Proposition 2.2 of [?], using Theorem

(2.4) instead of the main result of [?]. For the second part, use Proposition

2.3 of [?] and Theorem 12.26 of [?]
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Next is Theorem 1.

Theorem 3.3. Let G be a finite p-solvable group and let B be a Brauer

p-block of G with defect group D. Suppose that pb is the largest degree of

the irreducible complex characters of D. If χ ∈ Irr(B) has height h, and p

is odd then h ≤ 2b. If p = 2, then h ≤ 5b.

Proof. Put N = Op′(G). Let θ ∈ Irr(N) be lying under χ. Since N is a

p′-group, we have that {θ} is a block and it is covered by B (by Theorem

9.2 of [?]). Let T be the inertia group of θ, which coincides with the inertia

group of the block {θ}, and let ϕ ∈ Irr(T |θ) be the Clifford correspondent

of χ (see Theorem 6.11 of [?]). By the Fong-Reynolds theorem (Theorem

9.14 of [?]) the defect of the block of ϕ coincides (up to conjugacy) with

the defect of B and height(ϕ) = height(χ). Thus, we may assume that θ is

G-invariant.

By Fong’s theorem (Theorem 10.20 of [?]) Irr(B) = Irr(G|θ) and D is

a Sylow p-subgroup of G. Also, the height h of χ ∈ Irr(B) is χ(1)p = ph.

Write b(P ) = pb. Now, let M = Op′p(G) and let η ∈ Irr(M) be under χ.

Hence, we have χ(1)p ≤ η(1)p|G : M |p by Corollary 11.29 of [?]. Now, since

θ is M -invariant, it follows that θ has an extension θ̂ to M (by Corollary

8.16 of [?]). Hence, Gallagher’s Theorem (Theorem 6.17 of [?]) yields that

η = θ̂γ for some γ ∈ Irr(M/N). Since M/N ≤ PN/N ∼= P , we have that

η(1)p = γ(1) ≤ b(P ). Now, if p is odd, we can use the first part of Theorem

??, we conclude that χ(1)p ≤ b(P )2, as desired. Similarly, the theorem

follows for p = 2 by using the second part of Theorem ??

Now, we prove Theorem 3.

Proof of Theorem 3. Let θ ∈ Irr(Op′(G)) lie under χ. Arguing as in the
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beginning of the proof of Theorem 1, we may assume that θ is G-invariant.

We may also assume that Irr(B) = Irr(G|θ) and that the defect groups of

B are the Sylow p-subgroups of G. Let P ∈ Sylp(G).

Write |G|p = pa, |Op′p(G)|p = pn and |G : Op′p(G)|p = pm so that

n + m = a = d. Also, put G = G/Op′(G) and use the bar convention. Note

that F (G) = Op(G). By Gaschutz’s theorem (Satz III.4.2 and III.4.5 of [?]),

G/F (G) acts faithfully and completely reducibly on the elementary abelian

p-group F (G)/Φ(G). Since |F (G)/Φ(G)| ≤ pn we deduce that G/F (G) is

a completely reducible subgroup of GL(n, p). It follows from a theorem of

Wolf (see [?]) that m < n. Thus m < (n + m)/2 = d/2.

We have that θ extends to Op′p(G). Let θ̂ be an extension of θ, so

that all the characters of Op′p(G) that lie over θ are of the form θ̂µ, where

µ ∈ Irr(Op(G)). Of course, (θ̂µ(1))p < pn/2 and since χ lies over some of

these characters, we deduce using Clifford theory that χ(1)p < pm+n/2 =

pm/2+d/2 = p3d/4, as desired.

We note that, in order to keep the proof less technical, we have used a

weak form of Wolf’s theorem. Using the full strength of his result, we would

obtain that h ≤ f(p)d where f is a function of p whose value at any prime

is less than 3/4 and such that f(p) → 1/2 when p goes to infinity.

Now, we begin work toward a proof of a slightly strengthened version of

Theorem 4. We need the following lemma.

Lemma 3.4. Suppose that V is a finite dimensional faithful completely re-

ducible FG-module, where F is the field with p elements and G is solvable.

Let P ∈ Sylp(G) of order pn and suppose that dim(V ) − dim CV (P ) = t.

Then n < t(p + 1)/(p− 1).
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Proof. By [?], we know that

dim CV (P ) ≤ 2
p + 1

dim(V ) .

(Actually, this is stated for irreducible modules, but works for completely

reducible. Furthermore, this is the only place where solvability is required.)

By [?], we also know that |P | < |V |. Now, we have that

dim(V ) ≤ t +
2

p + 1
dim(V )

so dim(V ) ≤ t(p + 1)/(p− 1) and the result follows.

We remark that in his review of [?] D. Gluck (MR 2000e:20023) suggested

that a similar bound for dim CV (P ) could possibly be extended to arbitrary

groups G. If this were the case, then the remaining of our proof of Theorem

4 would work unchanged for p-solvable groups.

Finally, we can prove the strong form of Theorem 4.

Theorem 3.5. Suppose that G is a solvable group. Let χ ∈ Irr(B) having

height h and suppose that B has defect group D. Suppose that |D : Z(D)| =

pn. Then

h ≤ (3/4 + 1/4p)n .

Proof. Let θ ∈ Irr(Op′(G)) be a character lying under χ. Arguing as in the

beginning of the proof of Theorem 1, we may assume that θ is G-invariant.

We may also assume that Irr(B) = Irr(G|θ) and that the defect groups of

B are the Sylow p-subgroups of G. Let P ∈ Sylp(G).

As in the proof of Theorem 3, put G = G/Op′(G) and use the bar

convention. Note that P ∼= P . Observe also that F (G) = Op(G) and by

Gaschutz’s theorem , H = G/F (G) acts faithfully and completely reducibly
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on the elementary abelian p-group V = F (G)/Φ(G). Put Q = P/F (G) so

that Q is a Sylow p-subgroup of H. Note that Z(P/Φ(G)) ≤ F (G). In

particular, CV (Q) ≥ Z(P ).

Now, we have that θ extends to Op′p(G), so all the characters of Op′p(G)

that lie over θ are of the form θ̂µ for some µ ∈ Irr(F (G)). Notice that θ̂ has

p′-degree and that

µ(1) ≤ |F (G) : Z(F (G))|1/2 ≤ |F (G) : Z(P )|1/2 = pt/2,

where the second inequality follows from the fact that Z(F (G)) ≥ Z(P ) and

we have defined t by means of pt = |F (G) : Z(P )|. Thus, the p-part of the

degree of any irreducible character of Op′p(G) lying over θ does not exceed

pt/2.

Let |Q| = pm and observe that n = m + t. Therefore, using Clifford

theory, we have that the height of our character χ is at most m+ t/2. Now,

all we need to show is that

m + t/2 ≤ (3/4 + 1/4p)(m + t).

This is true if and only if (1− 1/p)m ≤ (1 + 1/p)t, i.e, if and only if

m ≤ 1 + 1/p

1− 1/p
t = t(p + 1)/(p− 1).

Applying Lemma ?? to the action of H on V , we have that m ≤ e(p +

1)/(p− 1), where

e = logp |V : CV (Q)| ≤ logp |F : Z(P )| = t.

The result follows.
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4 Examples

First, we see that it is not possible to obtain any analog of Theorem 1 if we

remove the p-solvability hypothesis.

Example 4.1. (i) If G = L3(q) where q ≡ −1 (mod 4) then the Sylow 2-

subgroup of G is semidihedral and it follows from work of Olsson [?] on the

structure of these blocks that there are characters in the principal block of

height d− 2, where |G|2 = 2d. This means that it is not possible obtain any

bound in the situation of Theorem 1 and that it is not possible to improve

on the bound conjectured by Robinson for the height in terms of the index

of the center of the defect group.

(ii) The following example is the analog to (i) for odd primes and has

been communicated to us by G. Malle. If G = GLr(q), where q is a power

of a prime p, r 6= p is prime and ra is the exact power of r that divides q−1,

then the Sylow r-subgroup of G is Cpa o Cp. On the other hand, there are

non-unipotent characters in the principal r-block whose height is a(r − 1).

It is perhaps remarkable, however, that the conclusion of Theorem 1

remains true for the symmetric groups, the general linear groups in the

defining characteristic and the sporadic groups.

In view of the bound obtained in Theorem ?? and of Theorem 4, it seems

natural to hope that the coefficient 1/4p can be erased from Theorem ??.

Still, the question of what the best possible bound is would remain open.

Our next example shows that the coefficients in the bounds of Theorems C

and D cannot be smaller than 1/2, so we are not too far from these best

possible bounds.

Example 4.2. (i) Let E be an extraspecial p-group of order p2n+1. By [?],
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we have that the group of outer automorphisms of E that fix all the elements

of Z(E), contains as a subgroup either the symplectic group Sp2n−2(p) or

an orthogonal group O2n(2). Choosing n large enough, we may assume that

Out(E) has a subgroup that is a solvable Frobenius group F = PH whose

complement P is a cyclic p-group of order pm with m ≥ 2. Let G be this

extension of E by F . First, note that Op′(G) = 1, so by Corollary 15.40 of

[?] we have that G has a unique p-block. Now, let θ ∈ Irr(E) be non-linear.

Since E is an extraspecial group, θ vanishes outside Z(E). By the choice of

F , we have that θ is G-invariant. Since P is cyclic, θ extends to PE and

by coprimeness, θ also extends to HE. Now, Corollary 11.31 of [?] yields

that θ extends to G. Let θ̂ be an extension of θ to G and let µ ∈ Irr(F )

non-linear. Then θ̂µ ∈ Irr(G) and

θ̂µ(1) = θ̂(1)µ(1) = pnpm = pn+m,

so the height of this character is n + m which is bigger than one-half of the

defect of the block. This is also an example of a group with h > b, where

pb = b(D).

(ii) The direct product of n copies of GL(2, 3) shows that if one could

prove that h ≤ 2b when p = 2, then this bound would be best possible.

However, it seems likely that our bound in Theorem 1 can be improved for

large primes.
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