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Abstract. In this paper, we look at groups for which if 1 < a < b are
character degrees, then a does not divide b. We say that these groups have
the condition no divisibility among degrees (NDAD). We conjecture that the
number of character degrees of a group that satisfies NDAD is bounded and
we prove this for solvable groups. More precisely, we prove that if a solvable
group G has the condition no divisibility among degrees, then G cannot have
more than 4 character degrees and the derived length of G cannot exceed 3.
We give a group-theoretic characterization of the solvable groups satisfying
NDAD with 4 character degrees. We remark that, since the structure of
groups with at most 3 character degrees is fairly well-known, these results
describe the structure of solvable groups with NDAD.
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1 Introduction

The character table of a finite group G encodes a lot of structural proper-
ties of G. However, it is generally a difficult problem to compute the full
character table of a group. For this reason, it is interesting to be able to
deduce group theoretical properties of G from a small part of the character
table. In the last decades, a number of structural properties of a group G
have been deduced from the set ¢cd(G) of irreducible character degrees. For
instance, groups whose character degrees are ordered by divisibility where
studied by I. M. Isaacs and D. S. Passman in [9] and by R. Gow in [3]. In
that situation, they were able to determine a great deal of information about
the structure of those groups. In this paper, we look at groups that are in
the opposite situation.

*The research of the first author was partially supported by a research and creative
activities grant from Kent State University. The research of the second author was sup-
ported by the Spanish Ministerio de Ciencia y Tecnologia, the University of the Basque
Country and the Basque Government.



Definition. We say that a group G has the condition no divisibility
among degrees (NDAD) if for every a,b € cd(G) with 1 < a < b, a
does not divide b.

For example, if all the non-linear irreducible characters have prime degree
then G has the condition NDAD. This special case of NDAD was also consid-
ered by Isaacs and Passman in [9], who proved that in this case |cd(G)| < 3.
If we consider a solvable group G, then it can be proved that |cd(G)| < 3
if we only assume that any two different character degrees in cd(G) are co-
prime (see Problem 12.3 of [8]). If G has the condition that any two different
degrees are relatively prime, then G has NDAD, and thus, NDAD can be
viewed as a weakening of the condition that the degrees are relatively prime.
In this paper, we consider the following conjecture.

Conjecture A. There exists an (absolute) constant C' such that if G is a
finite group that satisfies the condition NDAD, then |cd(G)| < C.

We will prove this conjecture for solvable groups. In this case, we can
take C' = 4. Certainly, the conclusion of this conjecture does not hold with
C = 4 for nonsolvable groups. For instance, consider the character degrees
cd(A7) = {1,6,10,14,15,21,35}. We do not know any example of a group
G with the condition NDAD and [cd(G)| > 7.

In fact, we can say more in the solvable case. We have found a description
of those solvable groups that satisfy NDAD and have more than 3 character
degrees. Recall that a p-group P is called a Camina p-group if for any
g € P — P’ the conjugacy class of g in P is gP’. In terms of notation, we
define P' = P, and inductively, P* = [P*"!, P]. Let C be the class of groups
with the following properties:

(i) G = C x K where C is abelian.

(ii) F = F(K) = D x Z where D is a Sylow p-subgroup of K and Z is
central in K.

(iii) D is a Camina p-group of nilpotence class 3.
(iv) K/F is cyclic.

(v) There exist groups A and B so that ' < A < K and F' < B < K so
that:
(a) ANB=F.
(b) The action of K/F on D/D' is Frobenius.

(¢c) The action of K/B on D'/D? is Frobenius and B centralizes
D'/D3.



(d) The action of K/A on D? is Frobenius and A centralizes D3.

With this definition in mind, we can state our main result.

Theorem B. Let G be a solvable group that satisfies NDAD. Then either
lcd(G)| < 3 or G lies in C. Furthermore, if G lies in C, then cd(G) =
{1,|K: F|,e|K: B|, f|K: A|} where € =|P: P'| and f?> =|P: P3|.

Since the groups in C have 4 character degrees, we obtain the following
verification of Conjecture A for solvable groups. We know from Theorem
12.15 of [8] that if |cd(G)| < 3, then G has derived length at most 3. By
noting that the groups in C have derived length equal to 3, we also obtain a
bound on the derived length of solvable groups satisfying NDAD.

Corollary C. Let G be a solvable group that satisfies NDAD. Then we have
lcd(G)| <4 and G has derived length at most 3.

We have found an example of a group that lies in C. The structure
of groups with 3 character degrees is fairly well-known (see [10], [13], and
[21]), so Theorem B can be seen as a classification of solvable groups with
the condition NDAD. This solves Problem 58 of [1] for solvable groups.

In particular, these results are useful for the problem of determining the
sets of integers that can occur as sets of character degrees of solvable groups.
For instance, let S = {1, 56,76,77,120, 133,209}. We have that cd(J;) = S.
By Theorem B, we conclude that if G is a group with ¢d(G) = S, then G is
not solvable. This seems to bolster the conjecture by Huppert in [5] which
states that the character degree set of a nonabelian simple group can only
occur as the character degree set for a direct product of that simple group
with an abelian group.

Suppose that G is a group lying in C, and note that K/F' is cyclic.
Since AN B = F, it follows that |A: F)| and |B: F| must be coprime, and
thus, cd(G) involves at least three different primes. It follows that the set
{1,p% ¢*,pq} where p and q are different primes, cannot occur as the set of
character degrees of any finite group. (Recall that the character degrees of
a nonsolvable group must involve at least three primes.)

We begin in Section 2 by looking at a graph associated with cd(G). We
will prove that |cd(G)| < 3 when this graph is disconnected. This result will
be used in the proofs of the main theorems. In Section 3, we prove some
elementary results about Camina groups. We obtain a number of properties
of groups of Fitting height 2 with NDAD in Section 4. In particular, we
prove that Theorem B is true under the condition that the group has Fitting
height 2. The Fitting height 2 results will be used to prove Theorem B for
groups of Fitting height larger than 2 in Section 5. In Section 6, we present



a family of examples to show that the set C is not empty. We conclude the
paper with some comments on possible generalizations of the results that
we have obtained in Section 7.

Some of the work of the second author was done while he was visiting
Kent State University. He thanks the Department of Mathematical Sciences
for its hospitality.

2 Groups with disconnected graphs

In studying questions regarding the arithmetic structure of ¢d(G), it is often
useful to consider the graph A(G), which is called the degree graph. This
graph was first introduced in [17]. The vertices of this graph are the primes
that divide the members of ¢cd(G) and there is an edge between to vertices
if the product of the two primes divides some member of cd(G). O. Manz,
W. Willems and T. R. Wolf proved in [18] that A(G) has at most three
connected components and that if G is solvable then it has at most two
connected components. It is well-known that if G is solvable and A(G) is
disconnected, then the structure of G is quite limited. This can be seen in
[12]. Thus, it is not surprising that we can bound |cd(G)| for solvable groups
with a disconnected degree graph. This is the main result in this section.

Theorem 2.1. Assume that G is solvable, satisfies NDAD, and A(G) has

two connected components. Then |cd(G)| = 3.

We need some lemmas that will also be useful in the proof of Theorem B.
In the sequel, we will use that the NDAD property is inherited by quotients
without mentioning it explicitly. First, we study affine semilinear groups.
We will rely on results that were proved in [13]. If NV is a normal subgroup
of a group G, then Irr(G|N) = {x € Irr(G)|N & ker(x)} and cd(G|N) =
{x(M)Ix € Ier(GIN)}-

Lemma 2.2. Let G act faithfully on an elementary abelian p-group V where
p is some prime. Let A be maximal among abelian normal subgroups of G,
and suppose that A acts irreducibly on V. Then there exists an integer a so

that a|A| € cd(GV|V) and a|A| divides every degree in cd(GV|V).

Proof. We use the notation set up in [13]. In other words, there is a group
I which contains G, where I' is the semi-direct product of group H acting
on a group F. The group F is cyclic of order |[V| — 1 and acts transi-
tively on V' — {1}. The group H is cyclic of order f = |G: A|, and Cy(H)
has order p. Also, we know that G N F = A. In addition, F' acts tran-
sitively on the nonprincipal characters of Irr(V'), and for every nonprinci-



pal character A € Irr(V), the stabilizer Cr(\) is a conjugate of H. Ob-
serve that Cg()) is cyclic and that A extends to VCg(A). It follows that
cd(GV|X) = {|G: Cg(N)|} and all the degrees in cd(GV|V') have the form
|G: Cg ()| for some character 1 # X € Irr(V).

We know that the action of A on V' is Frobenius, so cd(AV|V) = {|A]}.
It follows that |A| divides every degree in c¢d(GV|V). We suppose that the
lemma, is false, and we work to obtain a contradiction. Thus, there are
degrees m|A|,n|A| € cd(GV|V) where m # n, and both m|A| and n|A|
are minimal in the partial ordering of cd(GV|V) determined by divisibil-
ity. We can find characters v,y € Irr(V) so that |G: Cg(v)| = n|A| and
|G: Ca(p)| = m|A|. Observe that |G| = f|A|, so |Cq(v)| = f/n and
Caw)] = f/m.

Now, Cg(v) € Cp(v) and Cg(u) € Cp(u). We know that both Cr(v)
and Cr(u) are conjugate to H = (h). It follows that Cg(v) is conjugate to
(h™) and Cg(u) is conjugate to (k™). Now, we may apply Lemma 6 (a) of
[13] to see that h™[h™, F] is the set of I'-conjugates of h™ and h™ [k, F] is the
set of I-conjugates of h™. Our previous comments imply that A" [h", F]NG
and A" [h™, F| N G are both nonempty sets.

Let d be the greatest common divisor of n and m. Since n|A| and m|A|
are minimal among divisibility, it follows that d is less than both n and m.
Observe that [", F] and [™, F] are both contained in [h¢, F]. Thus, there
exist elements z € h"[h?, F]NG and y € h™[h?, F]NG. Using the Euclidean
algorithm, we can find integers a, b so that na +mb = d. We have 2% € G
and z%® € K™ [, F] = h[h?, F], and h%h?, F] N G is nonempty. By
Lemma 6(a) of [13], ¢ has a conjugate g € G, and note that |G: (g)| = d|A|.
Also, there exists a character 1 # § € Irr(V') which is stabilized by g. As we
have seen before, |G: Cg(0)| € cd(GV|V). Also, (g) C Cg(d). Therefore,
|G: Cg(0)| divides d|A| which is a proper divisor of both n|A| and m|A].
This is our contradiction since n|A| and m|A| were chosen to be minimal in

d(GV|V). 0

Corollary 2.3. Let G be a group that acts faithfully on an elementary
abelian p-group V. Suppose that A is mazximal among abelian normal sub-
groups of G, and that A acts irreducibly on V. If GV satisfies NDAD, then
led(GV)| < 3.

Proof. We see that cd(GV) = ¢d(G) U cd(GV|V). In Lemma 2.2, we show
there is a degree a|A| € cd(GV|V) dividing all degrees in cd(GV|V). Since
GV satisfies NDAD, we conclude that [cd(GV|V)| = 1. By Lemma 2.6
of [21], we know that |G: A| € ¢d(G), and by 1td’s theorem, all degrees
in ¢d(G@) divide |G: A|. Since G must satisfy NDAD, we conclude that
cd(@) = {1,|G: A}, and finally, [cd(GV)| <2+ 1 = 3. O



Now, we are ready to proof Theorem 2.1. Recall that it asserts that
lcd(G)| = 3 if G is solvable, satisfies NDAD, and has a disconnected graph.

Proof of Theorem 2.1. In [12], the first author classified the solvable groups
G where A(G) has two connected components. We will use that classification
here.

In the Main Theorem of [12], it was proved that if G is solvable and
A(G) has two connected components, then G satisfies the hypotheses of one
of six possible examples that are labeled Examples 2.1-2.6 in [12]. We begin
by supposing that G satisfies the hypotheses of Example 2.1 of [12]. In this
case, G has a nonabelian normal Sylow p-subgroup for some prime p and
G/P is abelian. We take F' to be the Fitting subgroup of G. By Lemma
3.1 of [12], |G: F| € ¢d(G) and cd(G) consists of powers of p and divisors
of |G: F|. Since G satisfies NDAD, cd(G) contains at most one nontrivial
p-power and no nontrivial, proper divisors of |G: F|. We conclude that
led(G)| = 3.

If G satisfies the hypotheses of Examples 2.2 or 2.3 of [12], cd(G) was
computed in Lemmas 3.2 or 3.3 of [12]. In both cases, 2 and 8 lie in c¢d(G),
so G does not satisfy NDAD.

If G satisfies the hypotheses of Example 2.4 of [12], then G is the semi-
direct product of a group H acting on an elementary abelian p-group V for
some prime p. Let Z = Cy(V) and K be the Fitting subgroup of H where
K/Z is abelian and V is irreducible under the action of K. In Lemma
3.4 of [12], it is shown that ¢d(G) = cd(G/Z). It is not difficult to see
that G/Z = V H/Z satisfies the hypotheses of Corollary 2.3. Applying the
conclusion of Corollary 2.3, we have |cd(G)| = |cd(G/Z)| < 3. Since A(G)
has two connected components, we must have |cd(G)| = 3.

Suppose G meets the hypotheses of Example 2.5 in [12]. In this case,
G has a normal nonabelian 2-subgroup ) and a Hall 2-complement K so
that K@ has index 2 in G. If Z = Cg(Q), then |K: Z| = 2% 4+ 1 for some
positive integer K. In Lemma 3.5 of [12], it is shown that c¢d(G) consists
of 1, 2 + 1, and powers of 2. Since G satisfies NDAD, only one nontrivial
power of 2 can occur in c¢d(G), and thus, |cd(G)| = 3. (This is not proved
in [12], but it is not too difficult to show that cd(G) must contain at least
two powers of 2, and so, G cannot satisfy the hypotheses of Example 2.5 of
12].)

Finally, we show that G cannot satisfy the hypotheses of Example 2.6 of
[12]. We suppose that G is such an example, and we obtain a contradiction.
In particular, G has a normal subgroup A = T’ = [T, D]’ where A is a
nonabelian p-group for some prime p. Take L to be a normal subgroup of G
contained in A’ so that A’/L is a chief factor for G. We note that G/L also



satisfies the hypotheses of Example 2.6 of [12]. If we find a contradiction
in G/L, then we will have a contradiction in G, so we assume L = 1. This
implies that A’ is minimal normal in G.

Let F' be the Fitting subgroup of G, and E/F the Fitting subgroup of
G/F. We know that A'NZ(F) > 1, and A’ is minimal normal in G, so A’ C
Z(F). In Lemma 3.6 of [12], it is proven that F/A’ is the Fitting subgroup
of G/A" and G/A" satisfies the hypotheses of Example 2.4 of [12]. Using
Lemma 3.4 of [12], both |G: E| and |E: F| occur in c¢d(G/A’). Our earlier
work shows that |cd(G/A")| = 3, and hence, cd(G/A") = {1,|G: E|,|E: F|}.
In addition, G/A’ satisfies the hypotheses of Lemma 4.1 (a) of [10]. It follows
that m = |G: E| is prime. Looking at Lemma 4.1 (a) of [10], we see that
we can find a positive integer e so that |A: A’| = ¢ where ¢ = p°, and
(g™ —1)/(q — 1) divides |E: F|. We can show F/A" = Cg 4/ (A/A’). From
Lemma 3.6 of [12], we see that m divides no degree in c¢d(G) that is divisible
by p.

We now consider a nonprincipal character ¢ € Irr(A”). We take C' to be
the stabilizer of ¢ in G, and note that |G: C| divides the degree of char-
acter in Irr(Glg). We know that p divides the degree of every character
in Irr(A|p), and so, p divides the degree of every character in Irr(G|y).
Therefore, m divides the degree of no character in Irr(G|p), and in partic-
ular, m does not divide |G: C|. We conclude that m divides |C: F| and
G = CE. Suppose that ¢ is fully ramified with respect to A/A’. We know
that |A: A'| = ¢"™ = p®™ is a square. Thus, 2 divides em. Using Section
5 of [7], we can specify a character, called the magic character, ¥ of C/F
where W(1) = p/2. It follows from the proof of Theorem 5.7 of [7] that
|C': F| must divide either p®™/2 _ 1 or p/2 4 1. In either case, we see that
m divides ¢™ — 1 = (p/2 — 1)(pc™/? + 1). If m divides ¢ — 1, it is not
difficult to see that m divides (¢™ — 1)/(¢ — 1). Obviously, if m does not
divide ¢ — 1, then m must divide (¢" — 1)/(q — 1). This is a contradiction
since m and the primes dividing (¢"™ — 1)/(¢ — 1) lie in different connected
components of A(G). We conclude that ¢ is not fully ramified with respect
to A/A'.

Using [7], ¢ determines a unique subgroup A’ C X C A so that all the
characters in Irr(X|¢) are extensions of ¢ and fully ramified with respect
to A/X. Since X is uniquely determined by ¢ and C' stabilizes ¢, it follows
that C' normalizes X. From [10], we know that the action of E/F on A/A’
is Frobenius. If C N E = F, then |E: F| will divide |G: C|. Recall that
p|G: C| divides every degree in c¢d(G|y), so this contradicts the fact that G
satisfies NDAD. We deduce that £ N C > F. Now, the action of £ N C on
X /A" is Frobenius. Using Glauberman’s lemma, we see that ¢ has a unique
C-invariant extension ¢ € Irr(X|p). We can show that E N C permutes
the remaining characters in Irr(X|p) in orbits of size | N C: F|. Thus,



cd(Clp) contains at least one degree divisible by |[E N C: F|. Applying
Clifford’s theorem, cd(G|¢p) contains a degree divisible by |G: C||[ENC': F| =
|E: ENC||ENC: F| = |E: F|. Since the degrees incd(G|g) are also divisible
by p this contradicts NDAD. O

An immediate and useful consequence of Theorem 2.1 is the following.

Corollary 2.4. If G is a solvable group satisfying NDAD and G has an
irreducible character of prime degree, then |cd(G)| < 3.

Proof. Let p be the degree in c¢d(G) that is prime. Since G satisfies NDAD,
p does not divide any other degree in cd(G), and so p is an isolated vertex
in A(G). Either ¢d(G) = {1,p} and the result holds, or A(G) has two
connected components and the result holds via Theorem 2.1. O

3 Camina Groups

Next, we study the characters of the Camina p-groups. We begin with a
character-theoretic characterization.

Lemma 3.1. A p-group P is a Camina p-group if and only if every nonlinear
character in Irr(P) vanishes off of P'.

Proof. Let g € P — P'. By the orthogonality relations, we have that

ICr(g)l = > Ix@P=IP: P+ > Ix(g)

x€EIrr(P) x(1)>1

If P is a Camina group, then [Cp(g)| = [P: P'|, and 0 = 37 1y Ix(g)]%.
We determine that x(g) = 0 for each character x € Irr(P) with x(1) >
1. Conversely, if every nonlinear character in Irr(P) vanishes on g, then
|Cp(g)] = |P: P’|. This implies that the conjugacy class of g in P has
size |P’|. Since the conjugacy class of g is contained in gP’, we see that g
is conjugate to all the elements in gP’. This implies that P is a Camina
group. O

We can apply this to Camina p-groups of nilpotence class 2 to obtain
the following:

Corollary 3.2. If P is a Camina p-group of nilpotence class 2, then every
nonlinear character in Irr(P) is fully ramified with respect to P/P’.



Proof. Consider a nonlinear character y € Irr(P). By Lemma 3.1, we know
that y vanishes on P — P’. Let 6 be an irreducible constituent of ypr. Since
P has class 2, P’ is central and 6 is invariant in P. In Problem 6.3 of [g],
one shows that x and 6 are fully ramified with respect to P/P’. O

In our next result, we consider Camina p-groups of nilpotence class 3.

Lemma 3.3. Let P be a Camina p-group of nilpotence class 3. Then all the
nonlinear characters of P whose kernels contains [P, P| are fully ramified
with respect to P/ P’ and all the characters of Irr(P|[P’, P]) are fully ramified
with respect to P/[P’', P].

Proof. The first statement of the lemma follows from Corollary 3.2. It was
proved in Theorem 5.2 of [14] that if P is a Camina p-group of class 3,
then |P : P'| = p** and |P’ : [P, P]| = p*" for some positive integer n and
that the conjugacy class of any element z € P’ — [P, P] is z[P’, P]. For
x € P' — [P, P], we have

\ P ‘ZICP(@I:ZIX(z)Iz: Y @R+ Y k@)P

PP
[ ] XElrr(P) xelrr(F o) xelr(P|[P",P])

For the characters in Irr(P/[P’, P]), we may replace x by the coset z[P’, P].
Since z[P’, P] is central in P/[P’, P], the second orthogonality relation tells

us that
X ol = ||

xEIrr( ﬁ)

The rest of the equation implies that

Y Ix@P=o.

XEIrr(P|[P,P])

Therefore, for every character y € Irr(P|[P’, P]), we obtain x(z) = 0. We
know from Lemma 3.1 that x(y) = 0 for y € P — P'. It follows that x
vanishes on P — [P’, P]. If 5 is an irreducible constituent of x[p: p), then v
is G-invariant since [P’, P] is central in G. Again, we may apply Problem
6.3 of [8] to see x is fully ramified with respect to P/[P’, P]. O

In [2], Dark and Scoppola proved that a Camina p-group has nilpotence
class at most 3. Thus, the previous lemmas cover all of the possible cases
for a Camina p-group.



4 Groups of Fitting height 2

In this section we prove some lemmas concerning the structure of groups
of Fitting height 2 with the NDAD property. In particular, we will prove
Theorem B in the Fitting height 2 case.

We begin with the following lemma, that will be used several times.

Lemma 4.1. Suppose that o, € Irr(N) with N normal in G and G satisfies
NDAD. Assume that « extend to Ig(a) and B extends to Ig(3).

(i) Then either (a) Ig(c)/N is abelian or (b) Ig(a) = G and a(1) = 1.
In both cases, |G : Ig(a)|a(l) € cd(G).

(ii) Assume that o is linear and Ig(o) < G and that f(1) > 1 or Ig(B) <
G. If Ig(ap) = Ig(a) N Ig(B), then Ig(a) = Ig(B).

Proof. (i) Let & € Irr(Ig(«)) be an extension of a. By Clifford’s Theorem,
(@)% € Irr(G) and |G : Ig(a)|a(l) € cd(G). 1If 7 € Irr(Ig(a)/N), then
ralrr(Ig(a)|a) and (7@)% € Iir(G). Thus |G : Ig(a)|a(1)7(1) € cd(G).
It follows from NDAD that 7(1) = 1 for all 7 € Irr(Ig(a)/N) or that
|G : Ig(a)|a(l) = 1. In the first case, Ig(a)/N is abelian; while in the
second case « is linear and G-invariant, proving (i).

(ii) Since a and 3 both extend to I () and « is linear, also a3 extends
to Ig(af). By (i) and hypotheses, |G : Ig(a)|,|G : Ig(6)|5(1) and |G :
Ic(af)|B(1) are all character degrees of G. Since Ig(af) C Ig(a), it follows
from NDAD that Ig(af) = Ig(«). Likewise, Ig(af) = I¢(8). This proves
(ii). O

If G is a nonabelian, nilpotent group satisfying NDAD, it is not difficult
to see that cd(G) = {1,p?} for some positive integer a and a prime p.
We now show that if G is a solvable group satisfying NDAD that has a
nonabelian nilpotent quotient, then G either is itself nilpotent, or c¢d(G) =

{L.p}.
Lemma 4.2. Let G be a solvable group satisfying NDAD. Assume G/OP(QG)

is nonabelian for some prime p. Then cd(G) = ¢d(G/OP(G)) = {1,p*} for
some positive integer a and either G is nilpotent or ¢cd(G) = {1, p}.

Proof. Let N = OP(G). The condition NDAD is inherited by quotients,
so as we mentioned earlier, cd(G/N) = {1,p*} for some positive integer
a. Consider a character x € Irr(G). If p does not divide x(1), then xn €
Irr(N), and x(1)p® € ¢d(G) via Gallagher’s theorem. Using NDAD, we see
that x(1) = 1. It follows that p divides every nontrivial degree in cd(G).
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By a theorem of Thompson (see Corollary 12.2 of [8]), N is a normal p-
complement of G.

We need to show that x(1) is a power of p. Assume not and let § € Irr(N)
be a constituent of yy. Then @ is non-linear since G/N is a p-group. By
Lemma 4.1 proposition, Ig(a)/N is abelian and |G : Ig(6)[0(1) € cd(G).
By Problem 2.9 of [8] applied to G/N, |G : I5(0)| > p* and so p® is a proper
divisor of |G : I(0)]0(1), contradicting NDAD.

We now apply Lemma 1.6 of [21]. That result states that if |cd(G)| = 2
and G is not nilpotent, then either the nontrivial degree is a prime or else
all Sylow subgroups of G are abelian. Since the Sylow p-subgroup of G is
not abelian, it follows that either a = 1 or G is nilpotent. O

Let G be a group. We define Fy(G) = 1 and F1(G) = F(G) the Fit-
ting subgroup of G. Inductively, we define F;(G) by Fi(G)/Fi_1(G) =
F(G/F;—1(G)). This yields a series of characteristic subgroups Fy(G) C
F1(G) C ... which is called the Fitting series of G. When G is solvable, it
is not difficult to see that there is some integer n so that G = F,(G). The
smallest such n is called the Fitting height of G.

We now apply Lemma 4.2 to the Fitting height 2 case. Notice that this
result gives the character degrees of G when G satisfies NDAD, has Fitting
height 2, and has an abelian Fitting subgroup.

Corollary 4.3. Suppose that G is a solvable group with Fitting height 2 that
satisfies NDAD. Let F' be the Fitting subgroup of G. Then G/F is cyclic
and ¢d(G/F") ={1,|G: F|}.

Proof. Let A/F be an abelian normal subgroup of G/F. By Lemma 18.1 of
[19], |A: F| = o(1) for some character o € Irr(A). By Clifford’s theorem,
|A: F| divides x(1) for some character x € Irr(G).

If G/F is abelian, we now have |G : F| divides x(1) for some character
X € Irr(G). By Itd’s theorem, every degree in c¢d(G/F’) divides |G : F|,
whence NDAD implies that ¢d(G/F’) = {1,|G : F|}. We apply Lemma 1.6
of [21] to see that G/F is cyclic.

Assuming now that G/F' is nonabelian but nilpotent, it follows from
Lemma 4.2 that ¢cd(G) = {1, p} for some prime p. By the first paragraph, the
abelian normal subgroups of G/F have order p. This is a contradiction since
every nonabelian p-group has a normal abelian subgroup of order divisible
by p?. O

An immediate consequence of this result is the following,.
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Corollary 4.4. Let G be a solvable group of Fitting height | > 1 that
satisfies NDAD. Then G/F;_1 is cyclic and |G : F_1| € cd(G), where
Fi_1 = F_1(G).

The next result gives us the structure of the Fitting subgroup for a
solvable group that satisfies NDAD.

Lemma 4.5. Let G be a solvable group that satisfies NDAD. Let F' be the
Fitting subgroup of G. Then F = P x Z where P is the Sylow p-subgroup
of F' for some prime p and Z is abelian. Furthermore, if G is not nilpotent,
then F' is abelian or Z C Z(QG). Also if G/F is cyclic and F' is not abelian,
then cd(G) = c¢d(G/Z).

Proof. If G is nilpotent the result is clear, so we may assume that G > F.

By Gaschiitz’s Theorem (see 111.4.2, 111.4.3 and 111.4.5 of [4]), F//®(G)
is a completely reducible and faithful G/ F-module (possibly of mixed char-
acteristic). Furthermore, F'/®(G) is complemented in G/®(G) by H/P(G)
for some H < G. Now each v € Irr(F/®(G)) is linear and since F/P(G) is
complemented, we have that v extends to /() (by Problem 6.18 of [8], for
instance).

Since G > F, we may fix a non-central chief factor F//M. We let p be
the prime divisor of |F'/M|. If r # p is another prime, we may choose N
normal in G such that F//N is isomorphic to a Sylow r-subgroup of F. Now,

F/MNN2=M/MAN x N/MnN.

If 6 € Irr(F/M) is not principal, then éy € Irr(N) and F C Ig(dn) =
I¢(d) < G. By Lemma 4.1, F'/N is abelian and so is the Sylow r-subgroup
of F. Thus the Hall p’subgroup of F' is abelian and F' = P x Z, where P is
the Sylow p-subgroup of F' and Z is abelian.

Since F' C Ig(p) for all p € Irr(Z), it follows from Lemma 4.1 that
P is abelian or all the irreducible characters of Z are G-invariant. Thus
Z CZ(G) or F is abelian.

Assume now that F' is not abelian and G/F is cyclic. Then Z C Z(G)
and 1p x § extends to G for all § € Irr(Z), whence ¢ extends to G and
cd(G|o) = cd(G/Z). Thus cd(G) = cd(G/Z). O

The next pair of technical lemmas will be useful, among other things, to
prove that |cd(G)| < 3 when G is a solvable group of Fitting height 2 whose
a Fitting subgroup has nilpotence class 2.

Lemma 4.6. Let a group H act faithfully and coprimely on a p-group P
for some prime p. Write C = Cp(H) and D = [P, H]. Assume that the
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action of H on DP'/P" is Frobenius. Suppose that there is an H-invariant
subgroup M in Z(P) so that P/M = CM/M x DM/M, and suppose that
Cy(M) > 1. Then C centralizes D, so C' is normal in P. Furthermore, if
CNnM=1, then P=CxD.

Proof. Since the action of H on P is coprime, P = C'D, and since C' nor-
malizes itself, C' will be normal in P once we have shown that C' central-
izes D. Suppose that C' does not centralize D, then there is some element
¢ € C so that [D,c] is not trivial. We define a map f. : D — [D,¢] by
fe(d) = [d,¢] for all d € D. Since P/M = CM/M x D/M, we know that
[D,c|] C[D,C] C M CZ(P), and it follows that f. is a surjective homomor-
phism. For each element x € H and d € D, we have

fe(d®) = [d*,d = [d*, ¢*] = [d, " = (fe(d))",

so f. commutes with the action of H. Let B = Cp(c), and note that B is
the kernel of f. so B will be normalized by H. Because M is abelian and
fe(D) =[D,C] C M, it follows that P’ C B.

Let Y = Cgx(M). Because the action of H on D/P’ is Frobenius, the
action of Y on D/B is Frobenius. On the other hand, Y centralizes [D, c] C
M. This is a contradiction since f. is an isomorphism from D/B to [D,¢]
that commutes with the action of Y, and we have proved that C centralizes
D.

Suppose that C N M = 1. We know that CN D CCMnN D C M, and
thus, CN D =CNM = 1. We also have P = C'D where both C' and D are
normal in P, so it follows that P = C x D. U

Lemma 4.7. Let G be a solvable group of Fitting height 2 that satisfies
NDAD. Suppose P is a normal Sylow p-subgroup of G of nilpotence class 2.
Take H to be a Hall p-complement of G, and set C = Cp(H). Then C is
a normal subgroup of G, and furthermore, if cd(G) contains no nontrivial
p-powers, then C is central in G and we have the decompositions: P =

[P,H| x C and G =[P,H|H x C.

Proof. Let F be the Fitting subgroup of G. By Lemma 4.5, F'N H is central
in G, and cd(G) = cd(G/F N H). Notice that if the conclusions hold for
G/(F N H), then they will hold for G. Thus, without loss of generality, we
may assume that F'N H = 1. This implies that P = F and H acts faithfully
on P. Also, H = G/F which is cyclic via Corollary 4.3.

We know that H normalizes C, so to prove that C' is normal in G, it
suffices to prove that C' is normal in P. Let D = [P, H]. By Corollary
4.3, cd(G/P") = {1,|G: P|} = {1,|H|}, so it is not difficult to see that the
action of H on P/CP’ is Frobenius. By Fitting’s lemma, we know that
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P/P'=CP'/P'x DP'/P', and thus, the action of H on DP'/P" = P/CP’
is Frobenius.

Let Y = Cg(P’), and our goal is to prove that Y > 1. We suppose
that Y = 1. This implies that H acts faithfully P’/®(P’). Thus, there is a
character A € Irr(P’) with Cgy(\) = 1. Pick a character v € Irr(P|)), and
note that ypr = v(1)\ since P’ is central in P. We have Cg(y) C Cuy()\) =
1. We deduce that Cg () = 1, and thus, y(1)|H| € cd(G). Because y(1) > 1
and |H| € cd(G), we may use NDAD to see that this cannot occur, and thus,
Y > 1. We may now apply Lemma 4.6 to see that C' is normal in P.

Assume now that c¢d(G) contains no nontrivial powers of p. We will prove
that this implies C' N P’ = 1, and using Lemma 4.6, we will have P = C' x
[P, H]. Since H centralizes C|, this implies that G = C x [P, H|H. Suppose
that C' N P’ > 1, and pick a nonprincipal character § € Irr(C'N P’). We can
find a character v € Irr(C|9), and let v* € Irr(P) be the preimage under the
Glauberman correspondence of « (see Chapter 13 of [8]). If 4*(1) = 1, then
P’ C ker(v*) and C' N P" C ker(y). Since this does not occur, v*(1) > 1.
Now, ~* is G-invariant, and using Corollary 6.28 of [8] this implies that
v* extends to G which would yield a nontrivial p-power in ¢d(G). This
contradicts the assumption that cd(G) has no nontrivial p-powers, so we
must have C' N P’ = 1. O

Next, we prove |cd(G)| = 3 when G is a solvable group of Fitting height
2 whose Fitting subgroup has nilpotence class 2. In the process, we obtain
additional structural information of G.

Lemma 4.8. Let G be a solvable group of Fitting height 2 that satisfies
NDAD. Let P be a normal Sylow p-subgroup of G that has nilpotence class 2
where p is a prime. Let H be a Hall p-complement of G, Z = Cyx(P), Y =
Cu(P), C=Cp(H) and E = Cp(Y). Then E = C x [P, H|, all the non-
linear characters of Irr(P) are fully ramified with respect to P/E and have Y
as their stabilizer in H, cd(P) = {1,e}, and ¢cd(G) = {1,|H: Z|,e|H: Y|}.
In particular, |cd(G)| = 3, Y > Z, and P' = [P,H|. Furthermore, if
Y < H, then e? = |P: E|, and C is abelian.

Proof. Let F' be the Fitting subgroup of G. We know from Lemma 4.5 that
F = Px Z where Z C Z(G). (Note that Z = FNH C Cg(P). On the other
hand, Cg(P) is a normal, abelian subgroup of G, so Cy(P) C FNH = Z.
So the definition of Z here is consistent with the Z in the statement of the
lemma.) Also, we have via Corollary 4.3 G/F is cyclic and |G: F| € c¢d(G).
Let H be a Hall p-complement for G. Note that Z C Y. It is not difficult to
see that H/Y acts faithfully on the modules P’'/®(P’) and Irr(P'/®(P")).
We can find a character 1 # X € Irr(P'/®(P’)) so that Cy(\) =Y. Using
Glauberman’s correspondence, we can find a character v € Irr(P|\) so that
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v is stabilized by Y. Since P’ C Z(P), we see that vpr = ~(1)A, and
thus, Cg(y) € Cg(N\) =Y. We deduce that Y = Cpg(y). We see that
PY is the stabilizer of v in G, and v extends to PY. This implies that
|H: Y|y(1) € cd(G). Since y(1) > 1, it follows that |[H: Z| does not divide
|H: Y|, and hence, Y > Z.

Consider any nonlinear character 6 € Irr(P). Observe that PCg(0)
is the stabilizer of ¢ in G, and § extends to PCg(d). This implies that
0(1)|H: Cg(d)] € cd(G) and Cg(0) is abelian. We know that dpr = 0(1)p
for some character 1 # p € Irr(P'), so Cg(d) C Cp(p). Using the Glauber-
man correspondence as before, we can find a character o € Irr(P|u) so that
Cu(o) = Cg(n). As before, PCp(o) is the stabilizer of o in G and o
extends to PCg(o). It follows that o(1)|H: Cg(o)| € cd(G). By [7], there
is a subgroup A with P’ C A C P, so that every character in Irr(A|p) is an
extension of p and is fully ramified with respect to P/A. We conclude that
d(1) = o(1). This implies that 6(1)|H : Cg(0)| divides o(1)|H: Cr(o)|. By
NDAD, we have Cg(0) = Cg(o) = Cg(u). Since Y C Cy(p), it follows
that ¢ has only extensions on Y.

We have shown that cd(Y P|P") = c¢d(P) — {1}. On the other hand,
it is not difficult to see that cd(YP/P') = {1,|Y: Z|} since cd(G/P’") =
{1,|G: F|} = {1,|H: Z|}. This implies that A(Y P) has two connected
components. We may apply the results of [12] to YP. We know from
[12] that P’ C F and every nonlinear character in Irr(P) is fully ramified
with respect to P/E. Since H normalizes both P and Y, it follows that H
normalizes F/. As F is normal in P, this is enough to show that F is normal
in G. Observe that Y stabilizes every nonlinear character in Irr(P), so we
may apply Theorem 19.3 of [19] to deduce that P’ = [P, H|'.

By Lemma 4.7, we know that C' is normal in G. Since c¢d(G/P’) =
{1,|G: F|}, any coset of P/P’ centralized by Y must be centralized by H.
We determine that F = CP’. From Fitting’s lemma, P’ = (CNP’)x [P, H],
and thus, £ = C x [P’, H]. Because P’ is central in P, we see that [P/, H|
is normal in P and in G. If [P/, H] = 1, then Y = H, and the assertions
of the lemma follow. We may assume that [P’, H] > 1, and we choose a
nonprincipal character a € Irr([P’, H]). Let T = Cpg(a), and let & be the
unique irreducible constituent of (1¢ xa)?. Observe that PT is the stabilizer
of & in G and that & extends to PT. It follows that e|H : T'| € ¢cd(G) where
e? =|P: E| so that e = &(1).

For any character 8 € Irr(C), we see that T'= Cg (8 X «). We take B,
to be the unique irreducible constituent of (8 x ). Observe that [a(1) =
eB(1) and PT is the stabilizer of 3, in G. This implies that eS(1)|H: T| €
cd(G). Applying NDAD, we deduce that 3(1) = 1, and thus, C' is abelian.
This implies that F is abelian, and in particular, cd(P) = {1, e}. Recall that
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Y = Cyg(P’) and that there is a character v € Irr(P) so that |[H: Y|y(1) =
|H: Yle € c¢d(G). Furthermore, we showed for every nonlinear character
0 € Irr(P) that Y C Cg(9) and that 0 extends to Cg(d). This implies that
e|H: Cy(0)| € cd(G) and e|H: Cg(d)| divides e|H: Y|. By NDAD, this
implies Cy(0) = Y, and we conclude that ¢d(G) = {1,|H: Z|,e|H: Y|}
which is the desired result. O

We now come to the main result of this section. The following theorem
proves Theorem B when G has Fitting height 2.

Theorem 4.9. Let G be a solvable group with Fitting height 2 that satisfies
NDAD. Then G satisfies the conclusion of Theorem B.

Proof. Let F be the Fitting subgroup of G. We know from Lemma 4.5 that
F = P x Z where P is a normal Sylow p-subgroup of G for some prime p and
Z CZ(G). Also, cd(G/Z) = cd(G). We may assume that Z =1, and F' =
P. We have via Corollary 4.3 G/P is cyclic and ¢d(G/P’) = {1,|G: P|}.
We assume that |cd(G)| > 3, and we prove that G lies in C. Take H to be
a Hall p-complement of G. Observe that H acts faithfully on P. If P has
nilpotence class 2, then Lemma 4.8 would imply that |cd(G)| < 3 which is a
contradiction, so P must have nilpotence class at least 3. This implies that
P3>1.

Define C = Cp(H) and D = [P, H|. Since H acts coprimely on P,
we have P = CD. Obviously, D and H will normalize DP'H. In ad-
dition, C normalizes DP’ and centralizes H, so DP’'H is a normal sub-
group of G. We may apply Lemma 4.8 to G/P? to see that P'/P? =
(P/P3) = (DP3?/P3) = D'P3/P3, and P’ = D'P3. Also, from that lemma,
we determine that Y > 1 and Y is the stabilizer of all the characters in

Irr(P/P3|P'/P3), where Y = Cy(P'/P3?).

For the time being, we assume that P has nilpotence class 3, and we will
prove that G lies in C. We will then use the results about the nilpotence
class 3 case to prove that P must have nilpotence class 3. Therefore, until
we say differently, assume that P has nilpotence class 3. That is, we assume
that P* = [P3, P] = 1.

We take a nonprincipal character p € Irr(P3). Consider a character
v € Irr(CP'|u), and observe that vps = v(1)u, so Cy(v) C Cy(p). Assume
that Cg(v) > 1. Let T be the stabilizer of v in P, and using [7], we find a
subgroup S so CP’ C S C T that is uniquely determined by v so that every
character in Irr(S|v) is an extension of v and is fully ramified with respect
to T'/S. In particular, all the characters in cd(P|v) have degree |P : T'|nv(1)
where n? = |T': S|. Since Cg(v) stabilizes v and v uniquely determines T
and S, it follows that Cp(v) normalizes 7' and S. Now, the action of H
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on P/CP' is Frobenius, so the action of Cg(r) on S/CP’ is Frobenius or
S = CP'. Thus, there is a unique Cg(v)-invariant character o € Irr(S|v).
In particular, for any element h € Cpg(v), the character o is the unique
character in Irr(S|v) that is invariant under the action of h.

Assume now that S > C'P’. By Gallagher’s theorem, any other character
k € Irr(S|v) has the form Ao for some character 1 # A € Irr(S/CP’). Tt
follows that Cy(A) N Cy(r) = 1, and thus, Cy(k) = Cu(c) N Ch(N) =
1. Take % to be the unique irreducible constituent of x?. This implies
that & is irreducible, and Cg (i) = Cy(k) = Cg(x) = 1. Thus, |G :
P|&P (1) € c¢d(G) which contradicts NDAD since #7(1) > 1 and |G: P| =
|H| € cd(G). Tt follows that S = CP" and Irr(P|v) = {6} where & is the
unique irreducible constituent of 7. We conclude that Cg(67) = Cy(v).

Define X = Cg(P?), and recall Y = Cg(P'/P?). We now work to show
that X NY = 1, and to find a contradiction we assume that X NY > 1.
Consider a nonlinear character v € Irr(P). If P3 is in the kernel of v, then
Y (and hence, X NY) stabilizes 4. Suppose that P? is not in the kernel of
~v. We take v to be an irreducible constituent of vops, and we take u to be
the unique irreducible constituent of vps. In fact, yps = v(1)u, and thus,
p # 1ps. Observe that X centralizes P3, Y centralizes P'/P3, and both
X and Y centralize C, so X N'Y centralizes CP’. This implies that X N Y
stabilizes v. Using the previous paragraph, we see that X NY stabilizes ~.
Thus, X NY stabilizes all nonlinear characters in Irr(P). By Theorem 19.3
of [19], this implies that P has nilpotence class 2 which is a contradiction.
Therefore, X NY = 1.

Now, H/X acts faithfully on P3, and H is cyclic, so we can find a
character p € Irr(P3) so that Cg(u) = X. Using the Glauberman corre-
spondence, we can find a character v € Irr(C'P'|u) so that v is X-invariant.
Note that vps = v(1)u, and thus, X C Cgx(v) C Cgy(u) = X. We saw
earlier that v’ has a unique irreducible constituent v and Cg(y) = X. Ob-
serve that PX is the stabilizer of v in G and that v extends to PX. Thus,
y(1)|H: X| € ¢d(G). Since y(1) > 1 and |H| € c¢d(G), we conclude that
X > 1. Recall that Y > 1, and since X N'Y = 1, this implies that X < H
and Y < H.

By Lemma 4.8, we see that cd(G/P?) = {1,|H|,e|H: Y|} where e? =
|P: P'| since Y < H. This contains no powers of p, so we may apply Lemma
4.7 to P/P3 to see that P/P? = CP3/P3 x DP3/P3. Now, P? is central in
P, and X > 1. Using Lemma 4.6, we determine that C' centralizes D and
C' is normal in P. Recall that P = C'D and P’ = D'P>. This implies that
P3 =[P, P] = [D'P3,P| = [D', P| = [D',C'D] = [, D], since P is central
in P and C centralizes D. We determine that P’ = D'P3 = D'[D', D] = D'
and DP3 = D[D', D] = D.
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We are now finally ready to show that D is a Camina group. In Lemma
4.8, we showed that all the the nonlinear characters in Irr(P/P3) are fully
ramified with respect to P/CP’. This implies that all the nonlinear char-

acters in Irr(P/C'P3) are fully ramified with respect to P/C'P’ = %.
Since D/P3 = P/CP3, it follows that all nonlinear characters in Irr(D/P3)
are fully ramified with respect to D/P’. This implies that all the nonlinear
characters in Irr(D/P?) vanish on D — D', and D/P? is a Camina p-group.
By Corollary 2.3 of [14], D/D’ is elementary abelian. Since H centralizes C
and P = CD, we see that D H is a normal subgroup of G. Also, it is not dif-
ficult to see that DH/D" is a Frobenius group with ¢cd(DH/D’) = {1, |H]|}.
For any nonlinear character ¢ € Irr(D), if 6(1)|H| € cd(DH), then there is
a degree in cd(G) which is divisible by p and |H| which contradicts NDAD
since |H| € c¢d(G). By Theorem 12.4 of [8], this implies that ¢ vanishes on
D—D'. Therefore, D is a Camina p-group. By Lemma 3.3, all the characters
in Irr(D/[D’', D]|D'/[D’, D)) are fully ramified with respect to D/D’ and all
the characters in Irr(D|[D’, D]) are fully ramified with respect to D/[D’, D],
so cd(D) ={1,e, f}.

By Lemma 3.3, we know that all nonprincipal characters in Irr(P?3) are
fully ramified with respect to D/P3. Also, H stabilizes all the charac-
ters in Irr(P3/[P3, H]). This implies that H stabilizes all the characters
in Irr(D/[P3, H||P3/[P3, H]). Since Y stabilizes all the nonlinear charac-
ters in Irr(D/P3), we see that Y stabilizes all the nonlinear characters in
Irr(D/[P3, H]). As we have noted before, Theorem 19.3 of [19] implies that
D/[P3, H| has nilpotence class 2, and thus, [D',D] C [P3 H|] C P? =
[D', D]. We conclude that P3? = [P3, H]|, and Fitting’s lemma implies that
CNP? = 1. We may now use Lemma 4.6one more time to obtain P = C'x D.
Since C" C P/ C D and C N D =1, it follows that C is abelian. We obtain
P=CxDand G=C x DH. Note that D will have nilpotence class 3.
It is not difficult to determine that cd(G) = {1, |H|,e|H: Y|, f|H: X|}. We
take K = DH and A = DX and B = DY. We have now shown that G has
the desired properties when P has nilpotence class 3.

We now assume that G is a counterexample with |G| minimal. It is
not difficult to see that P has nilpotence class 4 where P* = [P3, P] is
a minimal normal subgroup of G. This implies that P* is central in P.
The previous work shows that P/P* = CP*/P* x DP*/P* P3 C DP*,
and C' C P* Now, H/Cy(P*) acts faithfully on P* so we can find a
character § € Irr(P*) with Cg(6) = Cg(P*). Working as before, we can
find a character n € Irr(P|J) so that Cy(n) = Cg(d). This implies that
n()|H: Cy(P*)| € cd(G). Since |H| € cd(G), we may use NDAD to see
Cy(P*) > 1. By Lemma 4.6, C is normal in P and centralizes D. We know
that either P* C D or P*ND =1. If P*ND =1, then P = C x D where C
has nilpotence class at most 2 and D has nilpotence class at most 3 which
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contradicts P having nilpotence class 4. We obtain P* C D, and hence,
P’ = D'. Note that D will have nilpotence class 4. We know that D/P3
is a Camina p-group, as before D/D’ is elementary abelian, and DH/D' is
a Frobenius group. As before, we deduce that all the nonlinear characters
in Irr(D) vanish on D — D', Therefore, D is a Camina p-group. This is a
contradiction, since the Main theorem of [2] shows that a Camina p-group
has nilpotence class at most 3. U

5 Groups of Fitting height larger than 2

The goal of this section is to prove Theorem B for solvable groups that
have Fitting height greater than 2. We will see that this case reduces to
looking at GV where G is a G of Fitting height 2, V is an irreducible,
faithful G-module, and GV satisfies NDAD. Our first lemma looks at GV
without assuming that GV satisfies NDAD, but it does assume that G acts
transitively on V' — {0}.

Lemma 5.1. Suppose that G is a solvable group acting faithfully on a vector
space V' of order q". Assume that G acts transitively on the non-zero vectors
of V.. Let F' be the Fitting subgroup of G. Then one of the following occurs:

(i) G is nilpotent;

(ii) There exists a character o € Irr(G) such that 1 # o(1) is a proper
divisor of ¢" — 1; or

(iii) G/F and F are cyclic of orders dividing n and ¢" — 1 (respectively)
and cd(GV|V) = {q¢" — 1}. Furthermore, if ¢cd(G) = {1,|G : F|},
then either (1) |G : F| properly divides ¢" — 1 or (2) |G : F| = r and
|F| = q" —1 where r is a prime divisor of n that does not divide g™ —1.

Proof. If A € Irr(V'), then A extends to Igy (A) = VIg(A) since V' is comple-
mented in GV (see Problem 6.18 of [8]). It follows that |G : Ig(A\)| = |GV :
Igv(XN)| € cd(GV). Since G is acting transitively on V', we have by the Fun-
damental Counting Principal |G : Ig(A\)| = ¢" — 1, and so, ¢" —1 € c¢d(GV).

A theorem of Huppert (Theorem 6.8 of [19]) classifies those solvable
groups that act transitively on the nonidentity elements of a finite vector
space. From that theorem, we have that either G is a subgroup of the
semi-linear group I'(¢") or ¢" = 32,52,7%,112,23% or3*. Furthermore, the
structure of G is explicitly given in these exceptional cases. In all of the
exceptional cases, c¢d(G) contains a degree ¢ > 1 with ¢ a proper divisor of
q" — 1. Thus, conclusion (ii) is satisfied in the exceptional cases. We may
assume that G is a subgroup of the semi-linear group I'(¢") and G is not
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nilpotent. Note that F' < G. Applying Corollary 6.6 and Lemmas 6.4 and
6.5 of [19], F' and G/ F are cyclic of orders dividing ¢""—1 and n, respectively.

If A € Irr(V) is not principal, then from the first paragraph there is a
character x € Irr(GV|A) with x(1) = |G : Ig(A\)| = ¢" — 1. Now, Ip(A) =1,
so Ig(X) is isomorphic to a subgroup of G/F. Thus, Ig()\) is cyclic. By
Gallagher’s theorem (Corollary 6.17 of [8]), every character in cd(GV|))
has degree ¢" — 1, and hence, cd(GV|V) = {¢" — 1}.

For the rest of this proof, we assume that c¢d(G) = {1,|G : F|}, and
notice that this implies cd(GV) = {1,|G : F|,¢" — 1}. Certainly, F' is
maximal abelian normal subgroups of G. Also, Vi is homogeneous since G
acts transitively on the nonprincipal characters in Irr(V). Since F' is abelian
and Vr is homogeneous, Vr is irreducible (see Lemma 2.2 of [19]). Because
|cd(GV)| = 3 and Vp is irreducible, the results of [13] apply. By Theorem
B of [13], either (a) cd(GV) ={1,|G : F|,|G|} or (b) G/F is an r-group for
some prime r and ¢cd(GV') = {1,|G : F|,|G|/r}. We know |G| cannot lie in
cd(G), so it must be that |G| € cd(GV|V), and equating this with the value
in the previous paragraph, |G| = ¢" — 1 or |G| = (¢" — 1)r. Since |G : F|
divides n, it is well-known that |G : F| <n < ¢" —1. When |G| = ¢" — 1,
it follows that |G : F| is a proper divisor of ¢" — 1.

We now assume that G/F is an r-group for some prime r and |G| =
(¢" — )r. Since |G : F| divides n, we conclude that r divides n. By
Theorem 5 of [13], either |G : F| divides |G|/r or (|G : F|,|G|/r) = 1. If
|G : F| divides |G|/r = ¢"™ — 1, then |G : F| will be a proper divisor of
q" — 1. We assume that (|G : F|,|G|/r) = 1. This implies that |G : F| =r,
|F| = |G|/r = q" — 1, and r does not divide ¢" — 1. O

We continue in the situation outlined at the beginning of this section.
When looking at GV, we break the proof up into two cases depending on
whether V' is quasi-primitive or not. In the next lemma, we consider the
case when V is quasi-primitive.

Theorem 5.2. Suppose V is a faithful, irreducible, and quasi-primitive G-
module for some group G and GV satisfies NDAD. If G is solvable with
Fitting height 2, then |cd(GV)| = 3.

Proof. Notice that GV has Fitting height 3, so |cd(GV)| > 3, and it suffices
to prove [cd(GV)| < 3. Set F' = F(G). Now, Vp is homogeneous. If F is also
abelian, then G acts semi-linearly on V' (see [19]) and Corollary 2.3 implies
that |cd(GV)| < 3. Thus, we may assume that F is not abelian, and we will
find a contradiction. Since G must satisfy NDAD, we may apply Lemma
4.5 to see that F' = P x Z where P is a nonabelian Sylow p-subgroup of F'
and Z C Z(G).
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We may apply Corollary 4.3 to conclude that G/F cyclic and |G : F| €
cd(G). Now, F/®(G) is a completely reducible and faithful module for the
cyclic group G/F. Since Z C Z(G), we see that P/(®(G) N P) is a faithful
G/F module. We deduce that p does not divide |G : F|.

We claim that cd(G) has no degree of the form p® with a > 1. Suppose
v € Irr(G) with v(1) = p*. Since (v(1),|G : F|) = 1, we know that vp is
irreducible. Therefore, p* < |P|'/2. On the other hand, Irr(V) has a P-orbit
O with |O] > |P|'/? (see Theorem 4.7 of [19]). If 7 € O and o € Irr(GV|7),
then |P : Ip(7)| divides (1) using the fact that P is normal in G. It follows
that (1) properly divides 7(1). In view of NDAD, it must be that v(1) =1
and a = 0. Thus, the claim is proved.

Since V' is quasi-primitive, we may use Corollary 1.10 of [19] to see that
P = ET for normal subgroups F and T of G with E extra-special and
ENT =Z(FE). Also, T has a subgroup U of index 1 or 2 that is cyclic and
normal in G. In addition, U = Cp(U), [E,T] = 1, and Z(FE) C Z(F).

Suppose that Z(E) C Z(G). Let A € Irr(Z(E)) be nonprincipal, and we
know that A is G-invariant. We know that Z(F) is the unique subgroup of
order p in the cyclic group Z(P). Since P’ > 1, we know that P'NZ(P) > 1,
and so, Z(F) C P'. Let H be a p-complement for G. We know that G = PH
and HNF = Z. Now, H acts coprimely on P, and ) is invariant under the
action of H. By Theorem 13.28 of [8], some irreducible constituent u of AP
is H-invariant. Notice that p cannot be linear. Since G = PH, we see that
w is G-invariant, and hence, p x 1z € Irr(P x Z) = Irr(F) is G-invariant.
Since G/F is cyclic, p x 1z extends to v € Irr(G). Now, v(1) = p(1) = p°
for some a > 1. This contradicts the earlier claim that cd(G) contains no
nontrivial p-powers. Thus, Z(FE) is not central in G, and since |Z(E)| = p,
we deduce that p > 2.

Since p is odd, T is cyclic and 7' C Z(F'). But Z(E) , which is the unique
subgroup of T of order p is not central in G. It follows that Cp(H) = 1.

We claim that P = E and T' = Z(FE). We assume that the claim is not
true, and we work to find a contradiction. Let S be the unique subgroup of
index p in T, and observe that Z(E) C S and P/S = ES/S x T/S. Now,
ES/S is a direct product of G/F-modules, each of even dimension (see
Theorem 1.9 of [19]). Since Cp(H) = 1, it follows that 7'/S is nontrivial as
a module for G/F, and P/S = ES/S xT/S is a direct product of nontrivial
G/F-modules. For a nonprincipal character § € Irr(P/S), we obtain 1 #
|G : Ig(d)| € cd(G). Now, F C Ig(d) and |G : F| € Irr(G). Applying
NDAD, we obtain F' = I5(d) for all nonprincipal characters § € Irr(P/S).
In particular, 7'/S is a faithful G/F-module. Since |T'/S| = p and G/F
is cyclic, we determine that |G : F| divides p — 1. Every irreducible G/F-
module over Z, must have dimension 1. Now, ES/S is a direct product of
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irreducible G/F-modules of even dimension. It follows that £S = S and
P =T'is abelian. This is a contradiction since P is nonabelian. We deduce
that T =Z(F) =Z(P) and P=F . Also, Z(F) = Z x Z(E).

Now, P/Z(P) = F/Z(F) is a direct product of irreducible G/F-modules
that are nontrivial and have even dimension. Working as in the previ-
ous paragraph, we can show I5(d) = F for every nonprincipal character
0 € Irr(F/Z(F)). Thus, G/Z(F) is a Frobenius group, whose only abelian
subgroups are p-groups and p’-groups.

We know that P is not abelian, and since p > 2, we see that P cannot
act Frobeniusly on Irr(V). There exists a character p € Irr(V) with 1 <
Ip(p) < P. By Lemma 4.1, Ig(p) is abelian. Now, Izmy (1) = 1, and thus,
Io(p) =2 Z(F)1c(pn)/Z(F) is abelian and has order divisible by p. By the last
paragraph, Z(F)Ig(p)/Z(F) is a P-group, and thus, Ig(u) € P C F. We
now have |G : F||F : Ip(p)| = |G : Ig(p)| € cd(GV). Since |G : F| € cd(G),
this is a contradiction to NDAD. With this contradiction, the lemma is
proved. O

We now turn to the case where V' is not quasi-primitive. We will make
use of the following lemma which is essentially Gluck’s theorem on orbits

of power sets for solvable primitive permutation groups (see Theorem 5.6 of
[19]).

Lemma 5.3. Suppose that S is a solvable primitive permutation group on

Q with || = n.

(i) If S is abelian, then |S| = |Q| = p for some prime p;
(ii) If S is nonabelian, then one of the following occurs:

(a) There exists A C § such that Ng(A) = 1;

(b) S has an irreducible character of prime degree;
(¢) n=>5 and S is a Frobenius group of order 20;

(d) n="T and S is a Frobenius group of order 42.

Proof. As a solvable primitive permutation group S has a unique minimal
normal subgroup M that regularly and transitively permutes €2, so that
n = Q| = |M| = p* for a prime power p¥. Also, M is a faithful irreducible
module for S/M. If S is abelian, then S = M has prime order. Thus, we
may assume that S is nonabelian.

Gluck showed that S must satisfy (i) unless n < 9 (see Theorem 5.6 of
[19]). The exceptions to Gluck’s theorem are listed explicitly in Theorem 5.6
of [19]. In the exceptions when n is 8 or 9, S/M has an irreducible character
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of degree 2 or 3. The exceptions to Gluck’s theorem when n < 8 are Ss,
Sy, Ay, the Frobenius group of order 10, and those listed in (ii) (c) and (d)
above. This proves the proposition as Ss, Sy, A4, and the Frobenius group
of order 10 each have an irreducible character of prime degree. O

We now apply Lemma 5.3 to GV'. Since we are working in the case where
V' is not quasi-primitive, there will be a normal subgroup N so that Vy is
not homogeneous.

Lemma 5.4. Suppose that V is a faithful, irreducible G-module for some
group G where GV satisfies NDAD. If Vi is not homogeneous for some
normal subgroup N of G, then either (1) |cd(GV)| < 3 or (2) there exists
a normal subgroup C with N C C C G and |G : C| = 2 such that Vo =
Vi x Vo for homogeneous components V; of Vo and C' transitively permutes
the nonprincipal characters in Irr(V;) for each i.

Proof. Choose C' normal in G maximal with respect to V¢ is not homoge-
neous and N C C. Then Vg = V; x --- x V,, for homogeneous components
Vi of Vo that are transitively and faithfully permuted by S = G/C. Fur-
thermore, S primitively permutes Q = {V,...,V, }.

Let A C Q. We claim that |S : Ng(A)| divides x(1) for some character
x € Irr(GV). To see this, we may assume that A = {V},V5,...,V;} for
some integer j. Let A; € Irr(V;) be a nonprincipal character for each i, and
let 5 =X x---xAjx1x---x1e€lrr(V). Then Ig(B) fixes A, and so,
Clg(B)/C C Ng(A). Thus, |S : Ng(A)| divides |G : Ig(F)| and divides
x(1) for every character x € Irr(GV'|3), proving the claim.

First, we assume that S is abelian, so that |S| = [2| = p for some prime
p by Lemma 5.3. We also assume that p > 2. Since S acts primitively on
Q, we see that Ng(A) = 1 whenever A is not empty and proper in €. Let
A; € Irr(V;) be nonprincipal for each 7. Let « = Ay x 1 x --- x 1 € Irr(V)
and B =1x A x1x---x1¢€&lr(V). Since Ng(A) = 1 whenever A is a
nonempty subset of {1,2}, it follows that Ig(«), Ig(B), and Ig(af) all lie
in C. Since C fixes each V;,we see that Ig(afB) = Io(af) = Ic(a)NIc(8) =
Ig(a) N 1g(B). By Lemma 4.1, we have I = Ig(a) = Ig(0). Since this is
true for all nonprincipal characters A\; € Irr(V1), it follows that I centralizes
V1. By symmetry, I centralizes V5. In a similar fashion, we can show that
I centralizes V3,...,V,. We determine that I centralizes V. Since V is a
faithful G-module, this implies that I = 1. Therefore, |G| € ¢cd(GV'). Now,
V' is an abelian normal subgroup of GV, so we may apply 1td’s theorem to
see that every degree in cd(GV) divides |G|. In view of NDAD, we conclude
that cd(GV) = {1,|G|} and the result holds in this case.

The other possibility when S is abelian is that p = 2 = |G : C|. If C
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acts transitively on the nonprincipal characters in Irr(V;) for i« = 1,2, then
(2) will hold, and we will be done. Since S transposes the V;, it suffices to
show that C' acts transitively on the nonprincipal characters of one of them.
If not, then there is some nonprincipal character do € Irr(V2) that is not G-
conjugate to A1 € Irr(V1). Then o = A\ x 1 and =1 x s € Irr(V) are not
G-conjugate. We have Ig(af) = Ic(af) = Ic(a) N Ic(B) = la(a) N Ig(B).
By Lemma 4.1, I = Ig(a) = Ig(3). Now, 5 is not G-conjugate to A; for
all ¢ € C. Applying Lemma 4.1, we obtain I = I¢(85) = I¢ for all c € C.
Thus, I is normal in C' and has a nontrivial centralizer in V5. This implies
that I C Cg(Va) since C acts irreducibly on Va. Likewise, I C Cg(V1), and
so, I centralizes V. Because G acts faithfully on V', we have I = 1. Again,
|G| € cd(GV), and as before, every degree in ¢cd(GV) divides |G|, so by
NDAD, ¢d(GV') = {1,|G|}. This completes the lemma when S is abelian.

We now assume that S is not abelian. If S has prime character degree,
then so does G, and thus, [cd(GV)|[ < 3 by Corollary 2.4. If there exists
A C Q such that Ng(A) = 1; it follows from the second paragraph that |S|
divides some degree a € cd(GV|V). Since S is not abelian, there is a degree
b € cd(S) C cd(G) so that 1 < b < |[S|. Now, b must divide |S|, and so, b
is a proper divisor of a in violation of NDAD. We may now apply Lemma
5.3 to see that either n =5 and S is a Frobenius group of order 20 or n =7
and S is a Frobenius group of order 42.

Let M be the Fitting subgroup of S. We know that |M]| is either 5 or
7, so Ny(A) = 1 for all nonempty proper subsets A C . Now, S/M is
isomorphic to the point stabilizer S, for any « € 2. Note that S, is a cyclic
group of order p — 1. The S,-orbits in Q are {a} and Q2 — {a}. Thus, for
any nonempty, proper subset A of 2, Ng(A) is cyclic of order dividing p— 1
and must be contained in some point stabilizer. If also, 1 < |A| < p — 1,
then Ng(A) is not a point stabilizer, so it must have order 2 or 3.

Let ¢t be an involution in S. Then ¢ is in a unique point stabilizer, and
so the cycle structure of ¢ is without loss of generality, either (1)(23)(45) or
(1)(23)(45)(67). Thus, (t) is the stabilizer in S and S; of the sets {2,3},
{4,5}, and when p = 7, {6,7}. But the normalizer in S of each of these
sets lies in a point stabilizer, and the point stabilizers are disjoint. Thus,
S7 contains the normalizers in S of {2,3}, {4,5}, and when p = 7, {6,7}.
Likewise, S7 will also contain the normalizers in S of {1,2,3} and {1,4,5}.
Let J be the pre-image in G of S1, so J/C = S;. Observe that J < G.

For each i, let \; € Irr(V;) be nonprincipal. Set v = A; X 1 x -+ x 1,
B=1xdxA3x1x1, (or B=1xAxA3x1x1x1x1whenp="7)and
0=1x1Ix1IXxAxAs(ord=1x1x1xAxXAsx1x1whenp=7)in
Irr(V). It follows from the last paragraph that the inertia groups of a, 3, 9,
af, and a0 all lie in J. Since J stabilizes {1}, {2,3} {4, 5}, and {6, 7} (when
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p =T), it follows that Ig(aB) = I;(af) = I;(a)NI;(B) = Ig(a)NIg(B). By
Lemma 4.1, we obtain Ig(a) = Ig(3). Similarly, we obtain Ig(a) = I5(0).
Set I = Ig(a) = Ig(8) = 1(9).

Now, I = Ig(«) for all nonprincipal character a € Irr(V7). It follows
that I centralizes Vi. Also, I fixes 8 =1 X Ag X A3 x 1 x --- x 1 for all
nonprincipal characters Ao € Irr(V3) and A3 € Irr(V3). If € I exchanges V5
and V3, then A3 = A3 for all nonprincipal Ag € Irr(V3). This can only occur
if |Vi| = 2. If |V;] = 2, then C will centralize each V; and hence, V. This is
a contradiction since V¢ is not homogeneous. It must follow that I C C. In
addition, [ fixes every nonprincipal character in Irr(V3), so I centralizes V5.
Similarly, I will centralize all the V;’s, and thus, V. Since V is faithful, this
implies I = 1, and |G| € ¢d(GV). This is a contradiction to NDAD since
S (and hence G) are not abelian, and thus, cd(GV') will have a nontrivial
degree that is a proper divisor of |G|. With this contradiction the lemma is
proved. O

Finally, we are able to prove that [cd(GV)| < 3 when V' is not quasi-
primitive. Notice that we are not making any assumption on the Fitting
height of G.

Theorem 5.5. Suppose V' is a faithful irreducible G-modules for a solv-
able group G and GV satisfies NDAD. If V is not quasi-primitive, then
led(GV)] < 3.

Proof. By Lemma 5.4, we may assume that there is a normal subgroup C
in G so that |G : C| = 2, Vo = Vi x Va5 for homogeneous components V; of
Ve, and C' transitively permutes the nonprincipal characters in Irr(V;). Let
F be the Fitting subgroup of G. By Lemma 5.4, we may assume that either
VE is homogeneous or F' C C.

Observe that V is the Fitting subgroup of GV. If G is nilpotent, then
GV has Fitting height 2. Since V' = 1, we have from Corollary 4.3 that
cd(GV) = {1, |G|}, and the theorem is proved. Thus, we may assume that
F < G. Applying Corollary 4.4 to the NDAD group G, we see that G/F;_;
is cyclic and |G : Fj_1| € ¢d(G) where [ is the Fitting height of G and the
F;’s are the terms of the Fitting series for G.

Suppose C' is nilpotent. Since G is not nilpotent, and |G : C| = 2, we
deduce that C' = F, and it follows that 2 = |G : F| € ¢d(G) C cd(GV).
Applying Corollary 2.4, we have |cd(GV')| < 3. This proves the result in
this case, and so, we assume that C' is not nilpotent.

Let A; € Irr(V4) be nonprincipal. Since C' transitively permutes the
nonprincipal characters in Irr(V;) and G transitively permutes {V1, V2}, the
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G-orbit of A\; x 1 is precisely
S = {61 x 92]6; € Irr(V;) and exactly one ¢; is principal}.

Since \; x 1 extends to its inertia group in GV, it follows that |S| = |G :
Ig(A1 x 1)] € cd(GV). Now, |V;| = ¢" for some prime ¢q and some integer n.
We have 2(¢" — 1) = |S| € cd(GV).

Set M; = Cc(V;) = Ce(V;) so that My N My = Co(V) = 1, and observe
that M; and My are G-conjugate. If C'/M; has an irreducible character of
degree t, then so does C'. It follows that either ¢ or 2¢ must lie in cd(G). If
1 # t is a proper divisor of ¢" — 1, then this will violate NDAD as 2(¢"™ — 1)
is in ¢d(GV). Also, C/M; is not nilpotent, since C' is not nilpotent. We
now apply Lemma 5.1 to C/M;. We have seen that conclusions (i) and
(ii) do not apply, so we must have conclusion (iii). Setting F;/M; to be
the Fitting subgroup of C'/M;, we conclude that F;/M; is cyclic of order
dividing ¢" — 1 and that C/Fj is cyclic of order dividing n. Because G/M;
is not nilpotent, F; < C. Since M1 N My = 1, routine arguments show that
E =F(C) = F1 N Fy. Since C/F; and F;/M; are cyclic, it follows that E
and C/FE are abelian. Now, C'/F is a normal abelian subgroup of index 2
in G/E. If G/E is not abelian, we use 1t0’s theorem to see that 2 € cd(G),
and the result follows from Corollary 2.4. Therefore, we may assume that
G/E is abelian. Also, F1/E and Fy/E are G-conjugate, so I} = F» = E.
Since M; and My lie in F} and Fy, we have My, My C E.

Notice that FNC = E. If F' > E, then FC > C, and G = F(C since
|G : C| = 2. This implies that |F' : E| = 2. By the choice of C', we know
that Vg is homogeneous. If F'is abelian, then F' acts irreducibly on V' by
Corollary 2.2 of [19], and |cd(GV')| < 3 by Corollary 2.3. Thus, we may
assume that F' is not abelian. Since F' is abelian and |F': F| = 2, it follows
that F' =T x Z where T is a nonabelian 2-group and Z is an abelian of odd
order. By Lemma 4.5, Z C Z(G). In particular, E/M; = Ty /My x S1/M;
where T1/M; is the Sylow 2-subgroup of E/M; and S1/M; C Z(C/M,).
Since E/M; is the Fitting subgroup of the solvable group C'/M; and S1/M;
is central in C/M;, it follows that C/F is isomorphic to a subgroup of
Aut(Ty/My). Because Ty /M is a cyclic 2-group, C'/F will be a 2-group.
This implies that C'/S; is a 2-group, and as S7/M; is central in C/My, we
determine that C'/M; is nilpotent. Hence, C = F} = F, and C' is nilpotent,
which is a contradiction since we earlier assumed that C' is not nilpotent.
Therefore, we must have F' = F.

Now G has Fitting height 2 and satisfies NDAD and F' is abelian, so we
can use Corollary 4.3 to see that G/F is cyclic and cd(G) = {1,|G : F|}.
Also, |G : F| =2|C : F| # 2. Since G/F is cyclic, any irreducible character
of F' will either extend to G or induce irreducibly to G. It follows that
cd(C/M;) = {1,|C : F|}. We may apply Lemma 5.1 to the semi-direct
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product (C/M;)V; to conclude that either |C : F| is a proper divisor of
q" —1orthat |C: F| =r and |F : M;| = ¢" — 1 for a prime r that does not
divide ¢" — 1. In the first case, |G : F| = 2|C : F'| will be a proper divisor
of 2(¢" — 1), contradicting NDAD as |G : F|,2(¢" — 1) € c¢d(GV). Thus,
|C: F|=r and |F': M;| = ¢" — 1 for a prime r that does not divide ¢" — 1.

Let A1 € Irr(V1) be nonprincipal, and let I = Ig(\ x 1). Since C acts
transitively on the nonprincipal characters in Irr(V1), it follows that /M
has order . By Lemma 4.1, I is abelian. But, F'is also abelian, and so M,
is central in F'I = C. Likewise, My and MMy = M; x My are central in
C. All the Sylow subgroups of C'//M; are cyclic as = does not divide ¢" — 1.
Hence, every character in Irr(M;Ms) extends to C. If G has a character of
degree 2, then the result would hold by Corollary 2.4, and so, we assume
that every character § € Irr(M;Ms) extends to G. It follows that ker(d) is
normal in G. Since this is true for every character 0 € Irr(M; x Ms), we
conclude that M; is normal in G. Since M7 and My are G-conjugate and
My N My =1, we obtain My = My = 1.

Now, F'is cyclic of order ¢" — 1 and acts Frobeniusly on Irr(V). It
follows that ¢" — 1 divides every degree in ¢cd(GV|V). Since |G : F| = 2r,
it follows that ¢cd(GV|V) C {¢" — 1,2(¢" — 1),7(¢" — 1),2r(¢" — 1)}. We
already know that 2(¢" — 1) € ¢d(GV'), so by NDAD, we determine that
(¢" —1) and 2r(¢"™ — 1) do not lie in cd(GV|V). Since cd(G) = {1,|G : F|},
the result will hold if cd(GV|V') = {2(¢" — 1)}. If » = 2, then this is true.
Therefore, we assume that » > 2. By way of finding a contradiction, we
assume that r(¢" — 1) € cd(GV|V). Because r < n, we have 2 < ¢" — 1.
Since 2r = |G : F| also lies in ¢cd(GV'), we apply NDAD to see that 2r cannot
be a divisor of r(¢"™ — 1), and so, 2 does not divide ¢" — 1. Now, |G : F| = 2r
and |F| = ¢"™ — 1 are coprime, and G has a cyclic subgroup X of order 2r.

Let R be the Sylow r-subgroup of X, and ¢ be the involution in X. There
is a nonprincipal character A1 € Irr(V1) so that the stabilizer of Ay x 1 in G is
R. Notice that ' € Trr(V3) and ¢ stabilizes A\; x A\{. But R = R’ C Ig(\}),
and thus, R stabilizes \; x A{. This implies that X C Ig(A\; x A\Y), but
Ir(M\1 x M) = 1. We obtain X = Ig(\1 x A}), and hence, ¢" — 1 = |G :
X| € Irr(GV). This contradicts NDAD as 2(¢" — 1) € c¢d(GV'). Therefore,
cd(GV) = {1,2r,2(¢™ — 1)}, and the theorem is proved. O

We are ready to prove Theorem B for groups of Fitting height bigger
than 2. Together with Theorem 4.9 this proves Theorem B in general.

Theorem 5.6. If G is a solvable group of Fitting height larger than 2 that
satisfies NDAD, then |cd(G)| = 3.

Proof. Since G has Fitting height at least 3, we know via Garrison’s theorem

27



(Corollary 12.21 of [8]) that |cd(G)| > 3. Notice that the groups lying in C
have Fitting height 2, so we know that G ¢ C. Hence, it suffices to prove
that |cd(G)| < 3. That is, we have to prove that if G has the condition
NDAD and the Fitting height of G is at least 3, then |cd(G)| < 3. We work
by induction on |G].

Suppose first that G has a nontrivial normal subgroup N so that G/N has
Fitting height at least 3. By the inductive hypothesis, cd(G/N) = {1, a, b}.
If a and b are not relatively prime, then Theorem 5.6 of [21] would imply
that G/N has Fitting height 2, which is a contradiction. Thus, a and b are
relatively prime. Applying Lemma 4.1 (a) of [10], one of a or b must be a
prime number. This implies that cd(G) contains a prime. By Corollary 2.4,
lcd(G)| < 3 and this contradicts the choice of G. Thus, we may assume that
G/N has Fitting height 2 for every nontrivial normal subgroup N.

Recall that the Fitting height of G/®(G) is the same as G where ®(G)
is the Frattini subgroup of G. If ®(G) > 1, then by the previous paragraph
G/®(G) and thus, G will have Fitting height 2, a contradiction to the as-
sumption G has Fitting height greater than 2. Therefore, ®(G) = 1. Let
F' be the Fitting subgroup of G. By a theorem of Gaschiitz, Satz 111.4.5 of
[4], F is a direct product of minimal normal subgroups of G. In particular,
F' is abelian, so we may apply Hilfsatz 111.4.4 of [4] to see that there is a
subgroup H so that G = HF and HNF = 1. Thus, H = G/F. By the
last paragraph, we know that H has Fitting height at most 2. Since G has
Fitting height at least 3, we conclude that H has Fitting height 2.

If F' is not minimal normal in G, then we can find normal subgroups M
and N in G so that F' = M x N. Since M N N = 1, the Fitting height of
G will be the maximum of the Fitting heights of G/M and G/N. Since G
has Fitting height at least 3, one of G/N or G/M must have Fitting height
at least 3. We can now apply the second paragraph to obtain the result.
Therefore, F' is minimal normal in G. This is equivalent to saying that F'
is irreducible under the action of H. When F' is not quasi-primitive as a
module for H, the result holds by Theorem 5.5. If F'is quasi-primitive as
a module for H, then since H has Fitting height 2, we may apply Theorem
5.2 to obtain the result. In either case, the theorem is proved. O

6 Examples

In this section, we show that the set C is nonempty.

We begin by choosing a prime p that is congruent to 1 mod 3 and is not a
Mersenne prime. Since p is not a Mersenne prime, we can find an odd prime
g that divides p+ 1. As p is odd, there is some integer a with 1 < a < p so
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that a is not a square mod p. Because p is congruent to 1 mod 3, there is
some integer b with 1 < b < p so that b3 is congruent to 1 mod p. We take
F to be the Galois field of order p and F to be the splitting field of 22 — a
over F. Since a is not a square mod p, it follows that the polynomial 2% —a
is irreducible over F'. We know that 22 — a has a root A € F, and in fact,
E = F[A]. Since ¢ divides p + 1, we can find o € E so that a has order q.
We write a = a3 + as A where a1 and ao are integers between 0 and p — 1.

We will construct a solvable group G of order p”3q for each choice of p, g,
a, b, and a. We start by constructing a Camina p-group P of nilpotence class
3 using the construction in [14]. The group P will have exponent p. The
group P will have the generators: {ai,as,as,as}. Also, P’ will be generated
by {b1,bo.c} and P? = Z(P) is generated by {c}. We have the relations:
[al,ag] = 1, [al,ag] = bl, [al,a4] = %Cm, [ag,a3] = bg, [ag,azd = blc“,
las,a4] = ¢, [b1,a1] = 1, [be,a1] = ¢, [b1,a2] = ¢, and [bg,as] = 1. In
addition, b; and by will commute with ag and a4. The parameters x5 and x4
are defined to be the integers between 0 and p—1 that satisfy the congruences
mod p: 2z2 = a and 2z4 = 1. Notice that xo = z4a. Also, the polynomial

used in [14] to determine this group is 72 — a.

We now define commuting automorphisms ¢ and 7 on P as follows.
Recall that b is element of multiplicative order 3 in F, and o = a7 + asA
has order ¢ in E. First, 73 = 1 and 0? = 1. We define 7 by a] = af,

2 2
ab = ab, af = af, af = af, b] = by, b] = by, and ¢ = *. We define o as
o _ ,01  —Q2a o _ 2 O] o _ L1 pa2a o _ jpa2p00 g
by af = aj'a; Y, ag = a] ay", b = b7 b5 ,22 = b7{%b5", and ¢ =c. In
addition, we define a§ = a3'aj’c¥? and af = a3*“a]'c¥* where the following
equivalences mod p define the parameters: v; = o2 + a3a, 12 = 20109,

Y3 = —7172/2, and y4 = ysza. The group G will be the group generated by
P, o, and 7. We claim that cd(G) = {1,3q,p%q,p>3}. The fact that the
group P exists is proved in [14]. To see that ¢ and 7 are automorphisms
of P, it suffices to check that o and 7 preserve the relations of P. We
leave these computations to the reader. Also, the reader should check that
2?7 = 279 for every element x € P.

There are several other ways to construct Camina p-groups of nilpotence
class 3. (See [15], [16], and [2].) We would not be surprised if examples could
be constructed using automorphisms of those Camina p-groups. We would
expect that other examples can be constructed using the groups from [14]
where an irreducible polynomial of the form z? + a;x + ag is used or where
FE is the Galois field of order p® where e is an even integer larger than 2.
The examples constructed in these situations are surely going to be more
complicated than the example we presented here.
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7 Further comments

As already mentioned in the Introduction, Huppert [5] has conjectured that
simple groups are determined by their sets of character degrees (up to abelian
direct factors). As we see in our next result, sometimes it is possible to
determine simple groups just in terms of certain properties of their character
degrees.

Corollary 7.1. Let G be a finite group with square-free character degrees
and the NDAD property. If |cd(G)| > 4, then G = A; x B, where B is
abelian.

Proof. By Theorem B, if G were solvable, then there is some prime p so
that ¢d(G) has two degrees with different nontrivial p-parts. Since these
two p-parts cannot both be square-free, we deduce that G is not solvable.
It was proved in [6] that if a non-solvable group has square-free character
degrees then G =2 A7 x B, where B is solvable. Now, the NDAD property
forces B to be abelian, as desired. O

Let G be a group. The set cd(G) — {1} can be partially ordered by
divisibility. If G satisfies NDAD, then the chains in this partial ordering all
have length 1. We can generalize NDAD by supposing that all the chains
have length at most k for some integer k. It seems reasonable to ask whether
there is a function f on the natural numbers so that |cd(G)| < f(k). Taking
direct products of groups in C, it is not difficult to see that if f(k) exists,
then f(k) > 4*.

When G is a solvable group, Garrison has shown (Corollary 12.19 of
[8]) that the Fitting height of G is bounded by |cd(G)|. Since we have just
conjectured that |cd(G)| is bounded by a function in k& where k is the length
of the longest chain of divisibility in ¢cd(G) — {1}, it follows that the Fitting
height of G should be bounded by a function of k. We will now show that
this is indeed the case. Note that our conjecture might suggest that this
function is exponential in k£, but we show that it is in fact linear in k. Our

proof is an immediate consequence of a result by the second author and
Wolf, [20].

Lemma 7.2. Let G be a solvable group, and let k be the length of the longest
chain of divisibility in ¢d(G) — {1}. Then the Fitting height of G is at most
10k + 1.

Proof. We will prove the contrapositive. We will show that if G has Fitting
height greater than or equal to 10k + 2, then cd(G) — {1} has a chain of
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divisibility of length at least k + 1. Let F; = F;(G) for every ¢ > 0. Using
Theorem C of [20], we can find for every integer i with 1 < ¢ < k a character
degree a; € cd(G/Fig—1)) so that |G: Fi| divides a;. Since G/Fiqg is not
nilpotent, we can find a degree 1 # ag+1 € cd(G/Fior). For each i =
L,...,k+1, it is not difficult to see that a; is a proper divisor of |G Fig;—1)],

and for i = 2,...,k + 1, we have |G: Fig;_1)| is a divisor of a; 1. It follows
that ag41,ak,...,a; is a chain of divisibility in ¢cd(G) — {1} of length k + 1.
This proves the lemma. O

There is another way to view Conjecture A. For any group G, we can
define nd(G) to be the minimum integer n such that there exist by,...,b, €
cd(G) such that for all a € ¢d(G), a divides b; for some ¢ = 1,...,n. With
this terminology, Corollary C yields that if G is solvable and |cd(G)| > 5,
then nd(G) < |ed(G)| — 2. We believe that the “right” order of magnitude
should be sublinear.

Conjecture 7.3. There exist real numbers a < 1 and C' > 0 such that
nd(G) < |cd(G)|* 4 C for every finite group G.

Taking direct products of n groups in C, we can find groups G with
Ind(G)| = 3™ and |cd(G)| = 4™. In particular, the value of o in Conjecture
7.3 cannot be smaller than log,(3).

Finally, we consider class sizes and prove the analog of Conjecture A in
this setting. In this case, the problem is much easier than the corresponding
one for character degrees.

Lemma 7.4. Let G be a solvable group and assume that if 1 < a < b are
sizes of conjugacy classes of G then a does not divide b. Then G has at most
3 different conjugacy class sizes.

Proof. Our hypothesis implies that if Cg(z) C Cg(y), then Cg(x) =
Cqa(y). Groups with this property where studied in [22]. Using the main
result of that paper, we have that solvable groups with this property are
divided into five families. It is not difficult to see in all the cases that the
groups cannot have more than 3 conjugacy classes if we assume that there
is not any divisibility relation among the different class sizes of non-central
elements. O

The same interpretations that we have presented in this section for the
problem on character degrees can be done for the corresponding one for class
sizes.
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