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Departament d’Àlgebra
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1 Introduction

Given a group G, let cd(G) = {χ(1) | χ ∈ Irr(G)} be the set of degrees of
the ordinary complex irreducible characters of G. There are several papers
devoted to studying groups with few character degrees. For instance, groups
with 2 character degrees were studied in [11]. One year later, M. Isaacs
proved that groups with 3 character degrees are solvable of derived length
≤ 3 (see [8] or Theorem 12.15 of [9]). Several decades later, the structure
of (solvable) groups with 3 character degrees was analyzed in detail in [22]
(see also [18]). As the alternating group A5 shows, it is not possible to prove
that G is solvable when | cd(G)| = 4. Solvable groups with 4 character
degrees have also been considered. It was proved in Garrison’s Ph. D. thesis
[6] that they have derived length ≤ 4. (A new proof of this theorem was
provided in [10]). In view of the complexity of these results and of the
analysis of the structure of groups with 3 character degrees, it seems clear
that it is hopeless to try to classify the solvable groups with 4 character
degrees. However, solvable groups with 5 character degrees have also been
studied (see [16, 17, 25]). On the other hand, there appears to be no result
on the structure of nonsolvable groups with few character degrees. The aim
of this note is to provide some such results.

Problem 45 of [1], which is attributed to Isaacs, asks for a classification
of nonsolvable groups with 4 character degrees. The following result solves
this problem. Recall thatM10 is the stabilizer of a point inM11 in its natural
permutation representation.

Theorem A. Let G be a nonsolvable group with | cd(G)| = 4. Then one of
the following holds

(i) G ∼= L2(2n)×A for some n ≥ 2 and some abelian A;

(ii) G has a normal subgroup U such that U ∼= L2(q) or SL2(q) for some
odd q ≥ 5 and if C = CG(U) then C ≤ Z(G) and G/C ∼= PGL2(q); or

(iii) the group G has a normal subgroup of index 2 that is a direct product
of L2(9) and a central subgroup C. Furthermore, G/C ∼= M10.

Conversely, if (i), (ii) or (iii) holds, then | cd(G)| = 4.

In Theorem 1.2 of [24] it was proved that if cd(G) = {1, n,m, nm} for
nonnegative integers n and m, then G is solvable. As a by-product of The-
orem A, we have the following complementary result.

Corollary B. Let G be a nonsolvable group with | cd(G)| = 4. Then
cd(G) = {1, q − 1, q, q + 1} for some prime power q > 3 or cd(G) =
{1, 9, 10, 16}.
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In a series of papers, N. Ito [12, 13, 14] classified the finite simple groups
with 4 and 5 conjugacy class sizes and he obtained some partial results on
simple groups with 6 conjugacy class sizes. Using the classification of finite
simple groups and Deligne-Lusztig theory, we can describe the simple groups
with few character degrees.

Theorem C. Let G be a non-abelian finite simple group. Then | cd(G)| ≥ 8,
or one of:

(a) | cd(G)| = 4 and G = L2(2f ), f ≥ 2, or

(b) | cd(G)| = 5 and G = L2(pf ), p 6= 2, pf > 5, or

(c) | cd(G)| = 6 and G = 2B2(22f+1), f ≥ 1, or G = L3(4), or

(d) | cd(G)| = 7 and G = L3(3),A7,M11 or J1.

2 Simple groups with few character degrees

We start with the proof of Theorem C.

Proof of Theorem C. We use the classification of finite simple groups. For
the sporadic groups and the Tits group 2F4(2)′, the statement follows di-
rectly from the character tables printed in the Atlas [2]: only M11 and J1

have less than 8 different character degrees. For the alternating groups we
argue as follows: the irreducible characters of Sn corresponding to hook-
partitions are the exterior powers of the reflection representation of de-
gree n − 1 (see [7, Prop. 5.4.12]). Thus for n ≥ 16 we obtain at least 8
different degrees for Sn. Since the corresponding hooks are not self-dual,
each such representation restricts irreducibly to the alternating group An,
and we find the same number of different degrees for An. For smaller n it is
easy to check the assertion from the well-known hook-formula for character
degrees of the symmetric group.

For the groups of Lie type we make use of Lusztig’s classification of
character degrees and in particular of the formulae for degrees of unipotent
characters. For G of exceptional type G2, 3D4, 2F4, F4, E6, 2E6, E7 or E8

the tables in [3, 13.9] show that G has at least eight unipotent characters of
different degrees. For the Suzuki groups 2B2(22f+1), the character degrees
were worked out by Suzuki [29], and it turns out that each such group
has exactly six different degrees if f ≥ 1. The case f = 0 leads to the
solvable Frobenius group of order 20. The character tables of the Ree groups
2G2(32f+1) were worked out by Ward [30]; here all groups have at least eight
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different degrees if f ≥ 1. The case f = 0 belongs to the non-simple group
Aut(L2(8)).

It remains to treat the families of classical groups of Lie type. Here
the unipotent characters are parametrized by certain combinatorial objects,
either partitions (for types An and 2An) or so-called symbols, see for example
[3, 13.8]. Let first G be of type Bn or Cn, n ≥ 2, that is, G is a projective
symplectic group S2n(q) or an odd-dimensional orthogonal group O2n+1(q).
By [3, 13.8] G has unipotent characters parametrized by the symbols(

1 n
0

)
,

(
0 n
1

)
,

(
0 1 n

)
,

of degrees

q

2
(qn + 1)(qn−1 − 1)

q − 1
,
q

2
(qn − 1)(qn−1 + 1)

q − 1
,
q

2
(qn − 1)(qn−1 − 1)

q + 1
.

Together with the trivial character and the Steinberg character of degree
qn2

this already accounts for five different character degrees. If n > 2 then
the Alvis-Curtis duals (see [3, 8.2]) of the first three unipotent characters
yield another three new character degrees (they differ from the first ones by
a non-trivial power of q). Now let n = 2. Here the irreducible characters
were determined by Srinivasan [27] for odd q, and by Enomoto [5] for even q.
The tables show that there always exist at least 8 different degrees (exactly
five of which belong to unipotent characters) if q 6= 2. The case q = 2 leads
to S4(2) ∼= S6.

For G an even-dimensional orthogonal group O+
2n(q), of type Dn, n ≥ 4,

we consider the unipotent characters parametrized by the symbols(
0 n− 1
1 2

)
,

(
1 n− 1
0 2

)
,

(
2 n− 1
0 1

)
,

(
0 1 2 n− 1

−

)
,

of degrees
q3

2
(qn − 1)(qn−1 − 1)(qn−2 + 1)(qn−3 + 1)

(q2 − 1)2
,

q3

2
(qn − 1)(qn−1 + 1)(qn−2 − 1)(qn−3 + 1)

(q2 + 1)(q − 1)2
,

q3

2
(qn − 1)(qn−1 + 1)(qn−2 + 1)(qn−3 − 1)

(q2 − 1)2
,

q3

2
(qn − 1)(qn−1 − 1)(qn−2 − 1)(qn−3 − 1)

(q2 + 1)(q + 1)2
.

Together with the trivial and the Steinberg character, this yields six distinct
character degrees. For n > 4, the Alvis-Curtis duals of the above four
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characters add another four degrees, while for n = 4 the character labelled
by (

3
1

)
of degree q(q2 + 1)2 and its Alvis-Curtis dual of degree q7(q2 + 1)2 provide
two further unipotent character degrees.

For G a non-split even-dimensional orthogonal group O−
2n(q), of type

2Dn, n ≥ 5, we consider the unipotent characters parametrized by(
1 2 n− 1

0

)
,

(
0 2 n− 1

1

)
,

(
0 1 n− 1

2

)
,

(
0 1 2

n− 1

)
,

of degrees
q3

2
(qn + 1)(qn−1 + 1)(qn−2 − 1)(qn−3 − 1)

(q2 − 1)2
,

q3

2
(qn + 1)(qn−1 − 1)(qn−2 + 1)(qn−3 − 1)

(q2 + 1)(q − 1)2
,

q3

2
(qn + 1)(qn−1 − 1)(qn−2 − 1)(qn−3 + 1)

(q2 − 1)2
,

q3

2
(qn + 1)(qn−1 + 1)(qn−2 + 1)(qn−3 + 1)

(q2 + 1)(q + 1)2
.

Together with their Alvis-Curtis duals, the trivial and the Steinberg char-
acter this gives ten distinct character degrees. For n = 4 the formulae in [3,
13.8] show that there exist unipotent characters of degrees

1, q(q4 + 1), q2(q4 + q2 + 1),
1
2
q3(q2 − q + 1)(q4 + 1),

1
2
q3(q2 + q + 1)(q4 + 1), q6(q4 + q2 + 1), q7(q4 + 1), q12.

For G = L2(q), q ≥ 4, the 2-dimensional projective special linear group,
the well-known character table shows that the occurring character degrees
are 1, q, q− 1, q+ 1 (if q 6= 5), (q− 1)/2 (if q ≡ 3 (mod 4)) and (q+ 1)/2 (if
q ≡ 1 (mod 4)). This leads to cases (a) and (b) and deals with the groups
L2(q).

The characters of L3(q) and U3(q) were worked out by Simpson and
Frame [26]. It turns out that L3(q) has at least 8 different degrees unless
q ≤ 4, U3(q) has at least 8 different degrees unless q = 2. The tables of
L3(2) ∼= L2(7), L3(3) and L3(4) are to be found in the Atlas, and U3(2)
is solvable. By the results of Steinberg [28] and Nozawa [23] there are no
examples for L4(q) or U4(q). The groups L5(q) and U5(q) already have 7
unipotent characters of different degrees, all but the trivial one divisible by
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q. But both L5(q) and U5(q) are reductive, so they contain at least one non-
trivial semisimple element. The corresponding semisimple character (see [3,
8.4]) is non-linear and has degree prime to q, hence is different from the
unipotent degrees.

The groups Ln(q), Un(q), for n ≥ 6, have at least 11 unipotent characters,
and it is easy to find 8 among them with different degrees. Indeed, given
a partition λ = (λ1 ≥ λ2 ≥ . . . ≥ λr) of n the q-part of the degree of the
corresponding unipotent character indexed by λ is given by qa(λ) where

a(λ) =
∑

1≤j≤r

(j − 1)λj

(see [3, 13.8]). Taking hook-partitions for n ≥ 8 and further suitable par-
titions for n = 6, 7 we find that there exist degrees with different q-parts
already.

Note that the alternating groups A5 and A6 occur as the linear groups
L2(4) respectively L2(9) with 4 respectively 5 character degrees, as does
L3(2) as L2(7).

It would be similarly easy to extend the above result to slightly larger
bounds on | cd(G)|.

We begin work toward a proof of Theorem A, which classifies the non-
solvable groups with 4 character degrees. The next result considers the
almost simple groups with 4 character degrees.

Theorem 1. Let G be a finite almost simple group, that is S ≤ G ≤ Aut(S)
for some non-abelian simple group S. Then | cd(G)| ≥ 5, or | cd(G)| = 4
and G = PGL2(q), q > 3, G = L2(2f ), f > 1, or G = M10.

Proof. Let G be almost simple with generalized Fitting subgroup F ∗(G) =
S. We treat the different possibilities for S according to the classification.
Again, sporadic groups and 2F4(2)′ can be ruled out from the Atlas. For
small alternating groups, the same remark applies. For n ≥ 7 the full
automorphism group of S = An is the symmetric group Sn, and it follows
from the argument given in the previous proof that no case (other than
A5

∼= L2(4) and S5
∼= PGL2(5)) arises.

For G of type 2B2 or 2G2 the explicit results of Suzuki [29] and Ward
[30] allow to conclude.

For the remaining groups of Lie type we use some facts on unipotent
characters. First assume that S is not of type Dn for n even. Let H be the
extension of S by the group of diagonal automorphisms. ThusH is the group
of fixed points under a Frobenius map of a connected reductive algebraic
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group of adjoint type. Then restriction defines a natural bijection between
unipotent characters of H and of S, by [20]. In particular, any unipotent
character of S has a canonical extension to a unipotent character of H. Let
K be the extension of H by the group of graph automorphisms. Then by
[4] restriction defines a natural bijection between unipotent characters of
K and of H. In particular, any unipotent character of H has a canonical
extension to a unipotent character of K. Finally, all unipotent characters
of K are invariant under field automorphisms, thus we find an extension to
Aut(S) of any unipotent character of S. Now if S is of type Dn with n > 4
even, then the above statements remain true for all unipotent characters not
parametrized by a degenerate symbol. (The latter are not invariant under
graph automorphisms.) For n = 4 there are two more unipotent characters
not invariant under triality.

Now for groups of exceptional Lie type, the eight different unipotent
character degrees exhibited in the previous proof do the job. More generally,
this argument applies to all families of classical groups of Lie type where
five unipotent characters with distinct degrees and not parametrized by
degenerate symbols were found. It hence remains to consider L2(q), L3(q),
U3(q).

We stated already that | cd(L2(q))| = 4 when q is even. The only outer
automorphisms are field automorphisms, and these leave the characters of
degree 1, q invariant, as well as at least one character of degree q− 1. More-
over, if q > 4 (so q ≥ 8) there exist characters of degree q− 1 which are not
invariant under field automorphisms. Hence we get at least five degrees un-
less q = 4. But Aut(L2(4)) ∼= PGL2(5). For q odd we have | cd(L2(q))| = 5,
with degrees 1, q, (q + ε)/2, q − 1, q + 1, where q ≡ ε (mod 4). The diagonal
automorphism of order 2 only fuses the two characters of degree (q + ε)/2,
while the field automorphisms leave these and the characters of degrees 1, q
invariant. For q ≥ 25, for any non-trivial field automorphism γ there exist
characters of degrees q ± 1 fixed by γ as well as characters not fixed by
γ. Hence | cd(PGL2(q))| = 4, while all extensions by field automorphisms
have at least five character degrees (for q = 9 this can be checked from the
Atlas). Also, products of diagonal and field automorphisms lead to at least
five character degrees for q ≥ 25. For q = 9 the corresponding extension is
the group M10, the stabilizer of a point in M11 in its natural permutation
representation. Here the Atlas shows that | cd(M10)| = 4.

For the groups L3(q) and U3(q) the tables in [26] show that we always
get at least five character degrees.
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3 Nonsolvable groups with four character degrees

We will use several times the following result.

Lemma 2. Let S be a nonabelian finite simple group. Then there exists
1S 6= ϕ ∈ Irr(S) that extends to Aut(S).

Proof. This is Lemma 4.2 of [21]

In the next lemma, we consider the case when G has a unique minimal
normal subgroup which is nonsolvable. As usual, given a normal subgroup
N of a group G, we write

cd(G|N) = {χ(1) | χ ∈ Irr(G|N)},

where
Irr(G|N) = {χ ∈ Irr(G) | N 6≤ Kerχ}.

Lemma 3. Let G be a finite group with a unique minimal normal subgroup
N , which is nonabelian. If | cd(G)| = 4, then G is almost simple.

Proof. We know that N = S1 × · · · × Sm is a direct product of m copies of
a nonabelian simple group S, for some integer m. We have to prove that
m = 1.

By way of contradiction, assume that m > 1. Since N is the unique
minimal normal subgroup of G, we have that G/N is isomorphic to a
subgroup of Out(N) ∼= Out(S) o Sm. We may view G as a subgroup of
Aut(N) ∼= Aut(S) oSm = Γ. Let B = Aut(S)m ∩G. By the definition of N ,
G/B is a permutation group on Ω = {1, . . . ,m}.

Assume first that m > 2. Consider the character

ψ1 = ϕ× 1S × · · · × 1S ∈ Irr(N),

where ϕ ∈ Irr(S) extends to Aut(S) (such a character exists by Lemma 2).
It follows from the character theory of wreath products (see Theorem 4.3.34
of [15], for instance) that ψ1 extends to its inertia group in Γ. Similarly, the
character

ψ2 = 1S × ϕ× · · · × ϕ ∈ Irr(N)

also extends to its inertia group in Γ and it is clear that both characters
have the same inertia group T . Then T ∩G is the inertia group of both ψ1

and ψ2 in G. It follows from Clifford’s correspondence (Theorem 6.11 of [9])
that

|G : T ∩G|ϕ(1) < |G : T ∩G|ϕ(1)m−1
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belong to the set of character degrees of G.

Now, we will find a third member of cd(G) that is a multiple of ϕ(1).
Consider the character

ψ3 = ψ × ϕ× · · · × ϕ ∈ Irr(N),

where ψ ∈ Irr(S) and ϕ(1) 6= ψ(1) > 1. If we take θ ∈ Irr(B) lying over ψ3,
it is clear that IG(θ) ≤ T ∩G, so for any χ ∈ Irr(G) lying over ψ3, χ(1) is a
multiple of |G : T ∩G|ψ(1)ϕ(1)m−1.

Since | cd(G)| = 4, we conclude that ϕ(1) divides the degree of any non-
linear character of G. Now, if we take a prime divisor p of ϕ(1), we have
that G has a normal p-complement (by Thompson’s theorem [9, Corollary
12.2]). In particular, S has a normal p-complement. This is a contradiction.

Now, we have that m = 2 and |G/B| = 2. By Theorem B of [10]
(or the proof of Theorem 1), there exist γ1, γ2, γ3 ∈ Irr(B/S1|N/S1) of
pairwise different degrees. These three characters induce irreducibly to G
and in this way we obtain 3 different character degrees of G. Therefore,
cd(G) = {1, 2γ1(1), 2γ2(1), 2γ3(1)}. In particular, 2 divides χ(1) for every
non-linear χ ∈ Irr(G). It follows from Thompson’s theorem again that G
has a normal 2-complement and, in particular, G is solvable. This is the
final contradiction.

In the proof of Theorem A, we will use the classification of nonsolvable
groups G with disconnected character degree graph. Recall that the vertices
of this graph are the prime divisors of the character degrees and two vertices
p and q are joined by an edge if pq divides the degree of some irreducible
character of G. We will write ∆(G) to denote this graph. The nonsolvable
groups for which ∆(G) is disconnected were classified in [19]. In our clas-
sification of nonsolvable groups with 4 character degrees, we will use the
following.

Theorem 4. Let G be a nonsolvable group with ∆(G) disconnected. Then
either G ∼= L2(2n) × A for some abelian A and some integer n ≥ 2 (in
this case ∆(G) has 3 connected components) or ∆(G) has two connected
components and G has normal subgroups V ≤ U such that

(i) U/V ∼= L2(q) where q ≥ 4 is a power of a prime p.

(ii) If C/V = CG/V (U/V ) then C/V ≤ Z(G/V ) and G/U is abelian.

(iii) If V > 1, then either U ∼= SL2(q) or there is a normal subgroup L of
G so that U/L ∼= SL2(q), L is elementary abelian of order q2 and U/L
acts transitively on the nonprincipal characters of Irr(L).

9



Proof. This follows from [19].

Finally, we are ready to complete the proof of Theorem A and Corollary
B.

Proof of Theorem A. We begin with the proof of the last assertion. If (i)
holds, then cd(G) = {1, 2n − 1, 2n, 2n + 1}. If (iii) holds, then it is well-
known that cd(G) = {1, 9, 10, 16}. If (ii) holds, then we have that cd(UC) =
{1, q − 1, q, q + 1} ∪ S, where S ⊆ {(q − 1)/2, (q + 1)/2} is not empty. We
have that |G/UC| = 2. Furthermore, it is well-known that the characters of
UC whose degree lies in S are not G-invariant, while all the other characters
are G-invariant. We conclude that cd(G) = {1, q − 1, q, q + 1}.

Assume that | cd(G)| = 4 for some nonsolvable G. We want to see that
(i), (ii) or (iii) holds. Let M be a normal subgroup of G maximal such that
G/M is not solvable. Let N/M be a chief factor of G/M . Then N/M is
the unique minimal normal subgroup of G/M . Also, N/M is not solvable.
By Lemma 3, G/M is an almost simple group. By Theorem 1 and the
hypothesis | cd(G)| = 4, we know that G/M is isomorphic to PGL2(q) for
q > 3 odd, L2(2f ) for some f ≥ 2 or to M10. By inspection we have that
∆(G/M) = ∆(G) is disconnected. If G/M = L2(2f ) then ∆(G) has 3
connected components and it follows from Theorem 4 that G ∼= L2(2f )×A,
for an abelian group A.

Finally, we may assume that G/M ∼= PGL2(q) for some odd q ≥ 5 or
M10. It follows from Theorem 4 and the hypothesis | cd(G)| = 4 that G has a
normal subgroup U such that U ∼= SL2(q) or L2(q). We have that V = Z(U),
where V is the group in the statement of Theorem 4. Since |V | ≤ 2, V is
central in G. Write C/V = CG/V (U/V ). Since Aut(SL2(q)) = Aut(L2(q))
and G/U is abelian (by Theorem 4) we have that C = CG(U) is central in
G. It is clear that G/C is an almost simple group. Now, it follows from
Theorem 1 that G/C ∼= M10 or PGL2(q) for some q > 3. In the second case,
we have that (ii) holds, so we may assume that G/C ∼= M10.

In this case, U/V ∼= UC/C ∼= L2(9). If V = 1, then we have that G has
a normal subgroup of index 2 isomorphic to the direct product of L2(9) and
a central subgroup C such that G/C ∼= M10, so (iii) holds. Now, we have
to see that if |V | = 2, then G has at least five character degrees. This is
because in this case, UC has an irreducible character of degree 10 that is not
invariant, so the set of character degrees of G contains 1, 9, 10, 16 (these are
the degrees of M10) and 20. This completes the proof of the theorem.

Proof of Corollary B. This follows immediately from Theorem A (and its
proof).
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