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1 Introduction

S. Iwasaki [3] proposed to study the structure of a finite group G according to
its number of real valued irreducible characters. Being groups of odd order
the groups with exactly one irreducible real character, in [3] he characterized
the finite groups with two real valued characters. In particular, he proved
that they have a normal Sylow 2-subgroup that is either homocyclic or a
Suzuki 2-group of type A (see Definition VIII.7.1 of [1] for a definition). The
goal of this note is to extend these results to groups with at most three real
valued characters.

Theorem A. Let G be a finite group with at most three irreducible real
valued characters. Then G has a cyclic Sylow 2-subgroup or a normal Sylow
2-subgroup which is homocyclic, quaternion of order 8 or an iterated central
extension of a Suzuki 2-group whose center is an elementary abelian 2-group.

In other words, we cannot get the same situation as in Iwasaki’s theorem,
but we show that the structure of our groups is pretty similar. Now it is not
possible to assure that G has a normal Sylow 2-subgroup, as the symmetric
group S3 shows. Also, we cannot rule out the quaternion group of order 8
as a possible Sylow 2-subgroup, as SL(2, 3) shows. In Section 3 we will also
give examples that show that there are groups with 3 real valued irreducible
characters whose Sylow 2-subgroup is a Suzuki group which is not of type A
and also groups whose Sylow 2-subgroup is a central extension of a Suzuki
2-group.

It is worth mentioning that if we allow 4 real valued characters then the
group G does not need to be solvable any more: the group PSL(2, 7) is a
nonsolvable group with exactly 4 real valued characters.

We thank E. O’Brien and the referee for helpful comments.

2 Proof of Theorem A

We begin by stating several recent results on real and rational valued char-
acters that we will use. Recall that o(θ) is the determinantal order of the
character θ. In general, we use the notation in [2].

Lemma 2.1. Let N be a normal subgroup of a group G and let θ ∈ Irr(N)
be G-invariant, real of odd degree. Suppose that o(θ) = 1. Then θ has a real
extension to G.

Proof. See Theorem 2.3 of [5]
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Lemma 2.2. Let S be a nonabelian simple group. Then S has at least 4
real elements of pairwise different orders.

Proof. This follows from Theorem 3.1 of [4], for instance.

The proof of this result relies on the classification of finite simple groups.
We will, however, apply it only to simple groups S with just one orbit
of involutions under the action of Aut(S), so this is the only part of the
classification of simple groups that we will be using.

Recall that an element x ∈ G is real if x and x−1 are G-conjugate. By
Brauer’s lemma on character tables (Theorem 6.32 of [2]), we know that
the number of irreducible real characters of G is the number of conjugacy
classes of G consisting of real elements.

We need the following elementary but useful lemma.

Lemma 2.3. Let G be a group with three real valued irreducible characters.
Then G has at most two conjugacy classes of involutions. Furthermore, if
G has two conjugacy classes of involutions then, together with the identity,
they form a normal subgroup of G.

Proof. First, we note that any class of involutions is a real conjugacy class.
Also, the class of the identity is a real conjugacy class. Hence, the first part
of the lemma easily follows.

Now assume that G has two conjugacy classes of involutions K1 and K2.
Let x, y ∈ G be two involutions. Then

(xy)y = yx = (xy)−1 ,

so xy belongs to a real class. But we know that all the real elements belong
to {1} ∪K1 ∪K2. We have proved that this subset of G is a subgroup and
the lemma follows

Observe also that this normal subgroup is an elementary abelian 2-group.

Finally, we need the following elementary result.

Lemma 2.4. Assume that an odd order group X acts on an elementary
abelian 2-group V . Then the number of orbits of X on V is even. In
particular, X cannot act on V with two orbits of nonidentity elements.

Proof. It suffices to observe that any orbit of X on V has odd size and that
|V | is even.
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In the next result we already find strong restrictions for the structure of
groups with at most three real valued characters.

Theorem 2.5. Let G be a group with at most three real valued irreducible
characters. Then G is a solvable group of 2-length one whose Sylow 2-
subgroup is homocyclic, quaternion of order 8 or an iterated central extension
of a Suzuki 2-group whose center is an elementary abelian 2-group.

Proof. We start by proving that a group G with at most three real valued
irreducible characters is solvable. We argue by induction on |G|. If N is
any minimal normal subgroup of G, then G/N is solvable by the inductive
hypothesis. Thus we may assume that N a direct product of copies of a
nonabelian simple group. If G has one or two real irreducible characters,
we already know that G is solvable. So we may assume that G has exactly
three real valued irreducible characters. Now, it follows from Lemma 2.3
that G has exactly one conjugacy class of involutions. This implies that N
is a nonabelian simple group. Since Z(N) = 1, we deduce that CG(N) = 1,
again by applying induction in the group G/CG(N). Thus G is an almost
simple group with exactly one conjugacy class of involutions. It follows from
Lemma 2.2 that G has at least 4 real conjugacy classes and by Brauer’s
lemma on character tables, 4 irreducible real valued characters. This proves
that G is solvable.

Next, we prove that the 2-length of G is at most one. (That is to say:
we prove that G has an odd order normal subgroup R such that G/R has
a normal Sylow 2-subgroup.) We argue by induction on |G|. We certainly
may assume that O2′(G) = 1. Now, let N be a minimal normal subgroup
of G, which is an elementary abelian 2-group. By the inductive hypothesis,
G/N has two length at most one. Let L and M be the normal subgroups
of G such that L/N = O2′

(G/N) and M/N = O2(L/N). Now we have that
M/N is a 2’-group and we claim that we may assume that O2(M) = M .
Otherwise, since N is a minimal normal subgroup of G, we would have that
O2(M) is a 2’-group and M = O2(M) × N . But since O2′(G) = 1, this
implies that M = N and G has 2-length one.

Now take λ ∈ Irr(N) nonprincipal and let T be the inertia group of λ in
M . Since M/N is a 2’-group, there exists a canonical extension λ̂ of λ to T
(see Corollary 8.16 of [2]). In particular, λ̂ is real valued by the uniqueness
of canonical extensions. Now θ = λ̂M ∈ Irr(M) is a real valued character
of odd degree. Recall that for a real valued character θ, o(θ) ≤ 2. (See
[5].) Since O2(M) = M , we have that o(θ) = 1. Now, we can apply Lemma
2.1 to deduce that θ has a real valued extension θ̃ to its inertia group in
G. Now θ̃G ∈ Irr(G) is a real valued character. We deduce that G/N has
at most two real valued characters. If G/N has odd order, then G has a
normal Sylow 2-subgroup and we are done. Otherwise, G/N has exactly
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two irreducible real valued characters and by Iwasaki’s theorem, we have
that G/N has a normal Sylow 2-subgroup. Thus G has a normal Sylow
2-subgroup, as desired.

Finally, we want to prove that the Sylow 2-subgroup of G is homocyclic,
quaternion of order 8, or an iterated central extension of a Suzuki 2-group
whose center is an elementary abelian 2-group. As before, we may assume
that O2′(G) = 1, so that G has a normal Sylow 2-subgroup P . Also, we
may assume that G has exactly three real valued irreducible characters by
Iwasaki’s theorem.

Now, let X be a Hall 2-complement of G. Assume first that the Sylow 2-
subgroup P of G has exactly one involution. Then it is cyclic or generalized
quaternion. If it is a generalized quaternion group of order bigger than 8,
then it does not have any nontrivial odd order automorphism, and we deduce
that G is a quaternion group. But then it has at least 4 rational characters.
This contradiction means that if P is generalized quaternion, then it has
order 8.

Now we may assume that P has more than one involution. If G has
exactly one class of involutions then the result follows from a deep theorem
of Thompson (see Theorem IX.8.6 of [1]). Hence, by Lemma 2.3 we may
assume that G has exactly two conjugacy classes of involutions and that
together with the identity, they form a normal subgroup V of G. Assume
first that V is central in P . Then a Hall 2-complement of G acts on V with
two orbits of nonidentity elements. This contradicts Lemma 2.4.

Let W = V ∩ Z(P ). We deduce that 1 < W < V is a normal subgroup
of G. By induction, the Sylow 2-subgroup P/W of G/W is quaternion of
order 8, homocyclic or an iterated central extension of a Suzuki 2-group
whose center is an elementary abelian 2-group.

Assume first that P/W is an iterated central extension of a Suzuki 2-
group whose center Z/W is an elementary abelian 2-group. The group G/W
has at most two conjugacy classes of involutions, and we deduce that the
Hall 2-complement of G/W acts on Z/W with only one nontrivial orbit.
Since Z ∩ V > W , we deduce that Z = V . It is also clear that if P/W is a
quaternion group, then Z(P/W ) = V/W .

In both cases we have that Z(P ) ≤ V so that Z(P ) = W . Now if P/W
is an iterated central extension of a Suzuki 2-group, then the same happens
with P . It is well-known that the quaternion group of order 8 is not capable,
so P/W cannot be isomorphic to Q8.

Assume now that P/W is homocyclic. Remember also that V/W =
Ω1(P/W ) (the number of conjugacy classes of involutions of G/W cannot be
bigger than one by the previous lemma and our hypothesis) and Ω1(P ) = V
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is an elementary abelian 2-group. Observe also that P ′ ≤ W = V ∩ Z(P ).

Then for any element x in P −W there exists some power of x in V −W .
It follows that x does not belong to the center of P , so again Z(P ) = W . In
particular, P has class 2.

If P/W is elementary abelian, then P = V and Z(P ) = V > W . This
is a contradiction. Hence, there exists x ∈ P such that x2 ∈ V − W . Now,
[x2, y] = [x, y]2 = 1 for every y ∈ G. (The second equality follows from the
fact that P ′ ≤ W .) This shows that x2 ∈ Z(P ) = W . This contradiction
shows that P/W cannot be homocyclic.

Finally, the next result completes the proof of Theorem A.

Theorem 2.6. Suppose that G is a finite group with exactly three real valued
irreducible characters. Let P ∈ Syl2(G). Then P is cyclic or normal in G.

Proof. We argue by induction on |G|. We already know that G is solvable
with 2-length 1. In particular, we may assume that O2′(G) > 1. Let V be a
minimal normal subgroup of G of odd order. Either by induction or by the
two real characters case, we have that PV / G. If [P, V ] = 1, then P / G,
and we are done. Thus CP (V ) < P . Let tCP (V ) ∈ P/CP (V ) of order 2, and
let v ∈ V such that 1 6= v−1vt = w. Then w is inverted by t, and the class
of w is real. Hence, the unique non-trivial real classes of G are the class of
involutions and the class of w. Suppose that N = O2(G) > 1. Hence N ⊆ P
and thus N ∩ Z(P ) > 1. Let s ∈ N ∩ Z(P ) of order 2. Then

(sw)t = sw−1 = w−1s = (sw)−1

and this is impossible.

Now, if x ∈ P is an involution, we have that

V = [V, x]× CV (x)

and x inverts [V, x] > 1. Hence, G has odd order real elements, and hence,
the real classes are this class of odd real elements, the (unique) class of
involutions of G and the identity.

Since x inverts some element in V , there exists λ ∈ Irr(V ) such that
λx = λ. Let T be the inertia subgroup of λ in PV and θ the canonical
extension of λ to T . By uniqueness, θx = θ. Hence

η = θPV = (θx)PV = θ
PV = θPV

is a real valued irreducible character of PV . By Corollary 2.2 of [5], we
conclude that G has an irreducible real character not having V in its kernel.
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Thus G/V has exactly two real characters. Hence P is homocyclic or Suzuki.
Also, if K/V is the set of elements of G/V with x2 = 1, then K/V is a normal
abelian subgroup of G/V . Also, K = IV , where I = Ω1(Z(P )).

Now, G/V acts on V . Among all involutions x in I we choose x such
that [V, x] is as large as possible. Write V = W×CV (x), where W = [V, x] is
inverted by x. Now, let y ∈ I be any other involution of G. Hence xy = yx.
In particular, W is normalized by y. Suppose that 1 6= w ∈ W is centralized
by y. Then

(wy)x = w−1y = yw−1 = (wy)−1 ,

is a real element, and this is impossible. Hence CW (y) = 1. In particular,
W = [W, y] ⊆ [V, y]. We conclude that W = [V, x] = [V, y] for all y ∈ I.

Now, if g ∈ G, we have that xg = vz for some z ∈ I and v ∈ V . Hence

W g = [V, xg] = [V, vz] = [V, z] = [V, x] = W ,

and we conclude that W / G. Hence W = V and CV (x) = 1 and all elements
of V are inverted by any involution of G.

Suppose that x, y ∈ P are different involutions of P . Then xy 6= 1 is an
involution of G. If v ∈ V , then

v−1 = vxy = (vx)y = v

and this is a contradiction. Hence, P has a unique involution. Thus P is
cyclic or generalized quaternion. So it is cyclic.

3 Examples

As we have mentioned in the introduction, there are examples of groups
with three real valued characters whose Sylow 2-subgroup is a Suzuki group
which is not of type A. Let P be the Sylow 2-subgroup of PSU(3, 4). This
is a Suzuki 2-group of order 64 with P ′ = Z(P ) of order 4. This group
has an automorphism τ of order 15. Consider the semidirect product G =
P 〈τ〉. Observe that 〈τ〉 acts faithfully and transitively on the nontrivial
elements of P/P ′ and transitively on P ′−{1}. It is easy to see that the only
real characters of G are the principal character, λG, where λ is any linear
character of P and θ̂G, where θ̂ is the canonical extension of any nonlinear
character θ of P to a subgroup of G of index 3.

Next, we construct an example of a group G with three real valued
characters whose Sylow 2-subgroup is a central extension of a Suzuki 2-
group. The Suzuki 2-group of type A and size 26 has a central extension
P of order 27 and exponent 4. This group has an automorphism τ of order
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7 that acts transitively on both the nontrivial elements of P/Z2(P ) and
the nontrivial elements of Z2(P )/Z(P ). Also, any character of P whose
kernel does not contain Z(P ) has degree 8 (in particular, there is a unique
such character and hence it is rational valued) and, of course, the nonlinear
characters of P/Z(P ) have degree 2. Let G = P o 〈τ〉. The group G/Z(P )
is one of the groups with two real valued characters that Iwasaki considered.
The group G has exactly one more real valued irreducible character: the
canonical extension of the irreducible character of P of degree 8.

Finally, we remark that we do not know whether or not it is possible to
erase the word “iterated” in the statement of Theorem A.
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