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1. Introduction.
Throughout this note G will be a finite group. We focus on Irr(G), the irreducible

characters of G, and cd(G) = {χ(1)|χ ∈ Irr(G)}, the character degrees of G. Several
recent papers have studied the influence of cd(G) on the structure of G (see [4], [10], [12],
and [14] for a few examples). The basic results on the relationship between cd(G) and
the structure of G can be found in [2], [3], [5], and [9]. In this note, we are particularly
interested in the question of which sets of values for cd(G) force G to be nonsolvable. For
example, we know that cd(A5) = {1, 3, 4, 5} has a character degree set that cannot occur
for a solvable group. We know this by looking at the graph Γ(G) whose vertex set is ρ(G),
the set of primes that divide degrees in cd(G). There is an edge between p and q if pq
divides some degree a ∈ cd(G). It is well-known that if G is solvable then Γ(G) has at
most two connected components. (One proof of this is in [9].) When we look at Γ(A5), we
see that it has three connected components, so its character degree set cannot occur for a
solvable group.

It is easy to find a group P with cd(P ) = {1, 7}. We see that cd(P × A5) =
{1, 3, 4, 5, 7, 21, 28, 35}. One can ask: does there exist a solvable group with this char-
acter degree set? We see that Γ(P × A5) is connected, so our earlier result about graphs
does not apply. On the other hand, Pálfy has shown in [11] that if G is solvable and π is
a set of primes that divide degrees in cd(G) with |π| ≥ 3, then there exist distinct primes
p, q ∈ π so that pq divides some degree a ∈ cd(G). It is easy to see that cd(P ×A5) violates
this condition when π = {2, 3, 5}. Suppose that we have a group Q with cd(Q) = {1, 14}.
(For example, let Q be the semidirect product of a cyclic group of order 29 acted on by an
automorphism of order 14.) In this case, we obtain cd(Q×A5) = {1, 3, 4, 5, 14, 42, 56, 70},
and it is natural to ask whether this can be the character degree set of a solvable group.
Notice that neither the graph result nor Pálfy’s result applies in this case, but we will show
in this paper that this also cannot be the character degree set of a solvable group.

The idea is to fix a set of primes π and to look at the set cdπ(G) of character degrees
that are divisible only by primes in π. A priori, it seems unlikely that cdπ(G) should share
any property with cd(G). In fact, we will show that cdπ(G) has at least one property in
common with cd(G). To see this, we look at the graph Γπ(G) whose vertex set is ρπ(G),
the set of primes dividing degrees in cdπ(G). There is an edge between p and q if pq
divides a degree a ∈ cdπ(G). We will show when G is π-solvable that Γπ(G) has at most
two connected components.

Main Theorem: Let π be a set of primes, and let G be a π-solvable group, then Γπ(G)
has at most 2 connected components.

We note that ρπ(G) ⊆ ρ(G) ∩ π. It is possible that some prime p ∈ ρ(G) ∩ π divides
no character degree in cdπ(G), so it may happen that ρπ(G) < ρ(G) ∩ π. Notice in our
earlier example that cd7′

(Q× A5) = {1, 3, 4, 5}, and so, Γ7′
(Q× A5) has three connected

components. We conclude that if cd(G) = cd(Q×A5), then G is not solvable.
Our result extends a theorem of Beltrán. Suppose that a group A acts coprimely on

a group G via automorphisms. We define IrrA(G) to be the set of irreducible characters of
G that are fixed by A, and cdA(G) = {χ(1)|χ ∈ IrrA(G)}. Let ρA(G) be the primes that
divide degrees in cdA(G). We define the graph ΓA(G) to be the graph with vertices ρA(G).
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There is an edge between p and q if pq divides some degree a ∈ cdA(G). In Theorem A of
[1], Beltrán proved when G is solvable that ΓA(G) has at most two connected components.
Let π = ρ(G), and let H be the semi-direct product of A acting on G. It is not difficult
to show that cdπ(H) = cdA(G), and thus, Γπ(H) = ΓA(G). Note that H is π-solvable, so
our result implies that ΓA(G) has at most two connected components, which was Theorem
A of [1].

We would like to thank Marty Isaacs for his careful reading of this paper and for the
helpful suggestions in writing the paper.

2. Results.

We begin with several preliminary lemmas. This first lemma allows us to take a given
character and replace it by a character with more desirable properties. In particular, we
gain control over the kernel of the new character.

Lemma 1: Let N be a normal subgroup of a π-separable group G. Suppose that the
character χ ∈ Irr(G) is nonlinear and has π-degree. Also, assume that the irreducible
constituents of χN are linear. Then there exists a character ψ ∈ Irr(G) that is also
nonlinear of π-degree, and there exists a normal subgroup K in G with K ⊆ ker(ψ), where
N ′ ⊆ K ⊆ N and N/K is either a π′-group or a q-group for some prime q ∈ π.

Proof: It suffices to find a nonlinear character ψ ∈ Irr(G) with π-degree such that the
irreducible constituents of ψN are linear and either have π′-order or else have q-power
order where q ∈ π. Let ν be an irreducible constituent of χN , and note that the stabilizer
of ν in G has π-index. Suppose first that the there is a prime q ∈ π such that the q-part
µ of ν is not extendible to G. The stabilizer of µ in G contains the stabilizer of ν, and
thus, the stabilizer of µ has π-index in G. We now use Lemma 2.4 of [6] to see that some
character ψ ∈ Irr(G|µ) has π-degree. Since we are assuming that µ does not extend to G,
the character ψ is not linear, and the result holds in this case.

We may now assume that the full π-part of the linear character ν extends to a linear
character λ ∈ Irr(G). Then the character ψ = λχ is irreducible. Also, ψ is nonlinear and
has π-degree. Finally, the irreducible constituents of ψN are linear with π′-order.

This next lemma deals with a special case of the Main Theorem. We will later give
an estimate on the upper bound for the diameter when our graph is connected, and the
diameters of each connected component when the graph is disconnected. In the special
case addressed by this lemma, we obtain better bounds for these diameters.

Lemma 2: Let π be a set of primes. Suppose that N ⊆ M are normal subgroups of a
group G so that G/M is a π′-group and M/N is a chief factor that is a p-group for some
prime p ∈ π. Assume that cdπ(G/N ′) \ {1} is nonempty. If there exists a prime in ρπ(G)
that is not adjacent to p in Γπ(G), then there exists a prime q ∈ ρπ(G) so that every
prime not adjacent to p in Γπ(G) is adjacent to q. In particular, Γπ(G) has at most two
connected components. If Γπ(G) is disconnected, then each connected component has
diameter at most 2. If Γπ(G) is connected, then its diameter is at most 4.

Proof: By assumption, there exists a nonlinear character χ ∈ Irr(G) with π-degree such
that N ′ ⊆ ker(χ). Using Lemma 1, we may replace χ by another character, if necessary,
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and we may assume that there is a normal subgroup K in G so that N ′ ⊆ K ⊆ N so that
K ⊆ ker(χ) and either N/K is a π′-group or N/K is a q-group for some prime q ∈ π. By
Itô’s theorem, all degrees in cd(G/N ′) divide |G:N |, so χ(1) divides |G:N |π = |M :N |,
and it follows that χ(1) is a power of p.

Suppose that r is a vertex in Γπ(G) that is not adjacent to p, and let ψ ∈ Irr(G)
have π-degree divisible by r. If ψK is irreducible, then we may use Gallagher’s theorem
to see that ψχ is irreducible, but ψχ has π-degree divisible by pr. Since p and r are not
adjacent in Γπ(G), it follows that ψK is not irreducible. Thus, |G:K| is not coprime to
ψ(1), and hence, |N :K| has common prime divisor with ψ(1). This can only occur if N/K
is a q-group for some prime q ∈ π, and q is adjacent to r, as desired.

Consider a character γ ∈ Irr(G) with γ(1) ∈ cdπ(G). If (γ(1), pq) = 1, then we use
Corollary 11.29 of [5] to see that γK is irreducible. By Gallagher’s theorem, we obtain
γχ ∈ Irr(G). We have γ(1)χ(1) ∈ cdπ(G). If there exists a prime r ∈ ρπ(G) that is not
adjacent to p, then there is a character ξ ∈ Irr(G) where ξ(1) ∈ cdπ(G), r divides ξ(1), p
does not divide ξ(1), and ξ(1)χ(1) 6∈ cdπ(G). This forces q to divide ξ(1), and we conclude
that q ∈ ρπ(G), and every prime in ρπ(G) that is not adjacent to p is adjacent to q. It
follows that Γπ(G) has at most two connected components, and if Γπ(G) is disconnected
then each component has diameter at most 2.

We now assume that Γπ(G) is connected. When all the primes in ρπ(G) are adjacent
to p, the diameter of Γπ(G) is at most 2. Suppose that there is some prime that is not
adjacent to p, so that q ∈ ρπ(G). If p and q are adjacent, then the diameter of Γπ(G) is
at most 3. Suppose that p and q are not adjacent. If p and q have a common neighbor,
then the diameter of Γπ(G) is at most 4. Suppose that p and q do not have a common
neighbor. Since Γπ(G) is connected we can find an edge between primes r and s where
r is a neighbor of p and s is a neighbor of q. Thus, there is a character γ ∈ Irr(G) with
γ(1) ∈ cdπ(G) and rs dividing γ(1). Since s is not a neighbor of p and r is not a neighbor
of q, we have (γ(1), pq) = 1. By the previous paragraph, we obtain γ(1)χ(1) ∈ cdπ(G)
which makes p and s neighbors, and thus is a contradiction. This proves the lemma.

The next lemma deals with fully ramified characters. A definition for fully ramified
characters can be found in Problem 6.3 of [5].

Lemma 3: Let N ⊆ M be normal subgroups of G. Assume that M/N is a π-group and
that G/M is a π′-group. Let H/N be a complement for M/N in G/N . Suppose that
θ ∈ Irr(M) and ϕ ∈ Irr(N) are G-invariant and fully ramified with respect to each other.
Assume that θ and ϕ both have π-degree. Then θ extends to G if and only if ϕ extends
to H.

Proof: Let R/M be a Sylow r-subgroup of G/M for some prime r. By Corollary 11.31 of
[5], it suffices to prove that θ extends to R if and only if ϕ extends to S = R ∩H.

Suppose that θ̂ is an extension of θ to R. Since θ̂(1) is not divisible by r, some
irreducible constituent α of (θ̂)S has degree not divisible by r. Thus, αN is irreducible.
But (θ̂)N is a multiple of ϕ, and so αN = ϕ. We conclude that ϕ extends to S.

Conversely, assume that ϕ̂ is an extension of ϕ to S. Then r does not divide (ϕ̂)R(1) =
|R:S|ϕ(1). Therefore, (ϕ̂)R has an irreducible constituent β where r does not divide β(1).
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It follows that βM is irreducible, and ((ϕ̂)R)M = ϕM is a multiple of θ. We conclude that
βM = θ.

To state the next lemma cleanly, it is convenient to make the following definition.
Let N ⊆ H ⊆ G and let p be a prime. Then the characters ψ ∈ Irr(H) and χ ∈ Irr(G)
are p-related with respect to N if χ(1) = paψ(1) for some nonnegative integer a and the
restrictions χN and ψN have a common irreducible constituent.

Lemma 4: Let π be a set of primes. Let M/N be a p-chief factor for G, where p ∈ π, and
let G/M be a π′-group. Suppose that H/N is a complement for M/N in G/N . Then for
each character ψ ∈ Irr(H) having π-degree, there exists a character χ ∈ Irr(G) so that ψ
and χ are p-related with respect to N . Conversely, for every character χ ∈ Irr(G) having
π-degree, there exists a character ψ ∈ Irr(H) so that χ and ψ are p-related with respect
to N .

Proof: Let ψ ∈ Irr(H) have π-degree, and let ϕ = ψN . Observe that ϕ is irreducible
and H-invariant. Using Problem 6.12 of [5], there are three possibilities, and we define
a character χ ∈ Irr(G) in each case. If ϕM is irreducible, then χ = ψG is irreducible. If
ϕ extends to M , then ϕ has an extension χ ∈ Irr(G) via Corollary 11.31 of [5](since ϕ
extends to H and (|H:N |, |M :N |) = 1. In the remaining case, ϕ is fully ramified with
respect to θ ∈ Irr(M), and we may apply Lemma 3 to obtain an extension of θ to G,
written χ ∈ Irr(G). In all three cases, it is not difficult to see that ψ is p-related to χ with
respect to N .

Conversely, consider a character χ ∈ Irr(G) having π-degree, and let θ = χM . It is not
difficult to see that θ is irreducible and G-invariant. By Theorem 6.18 of [5], there are three
cases to consider. If θN is irreducible, then χN is irreducible, so we take ψ = χH ∈ Irr(H).
If θ = ϕM for some character ϕ ∈ Irr(N), then the stabilizer of ϕ in G must be conjugate
to H. Replacing ϕ by some conjugate, we may assume H is the stabilizer of ϕ in G.
We take ψ to be the Clifford correspondent for χ with respect to ϕ. Finally, if θ is fully
ramified with respect to ϕ ∈ Irr(N), then we may apply Lemma 3, and we find an extension
ψ ∈ Irr(H) of ϕ. In all three cases, it is not difficult to see that ψ is p-related to χ with
respect to N .

With our preliminary lemmas proved, we now move to the Main theorem.

Proof of Main Theorem: We work by induction on |G|. Take M = Oπ′
(G), and note

that we may assume M > 1. (If M = 1, then G is a π′-group, and the result is clear.)
Choose N to be a normal subgroup of G contained in M so that M/N is a chief factor for
G. We know that M/N is a p-group for some prime p ∈ π. Let H/N be a complement for
M/N in G/N , and note that H < G. By the inductive hypothesis, we see that Γπ(H) has
at most two connected components. Using Lemma 4, we see that the irreducible π-degrees
of H divide the irreducible π-degrees of G. This implies that Γπ(H) is a subgraph of Γπ.
In fact, we see that ρπ(G) ⊆ ρπ(H) ∪ {p} ⊆ ρπ(G) ∪ {p}.

When ρπ(G) = ρπ(H), the result is immediate. In the remaining case, we have
ρπ(H) = ρπ(G) − {p}. If p is joined to some other vertex in Γπ(G), then Γπ(G) cannot
have more connected components than Γπ(H), and we are done in this case also. Therefore,
we may assume that p is an isolated vertex in Γπ(G), and there is a character χ ∈ Irr(G)
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so that χ(1) is a power of p. By Lemma 4, there exists a character ψ ∈ Irr(H) that is
p-related to χ with respect to N . Since p does not occur in ρπ(H), we deduce that ψ is
linear, and thus, the irreducible constituents of χN are linear. We now apply Lemma 2 to
see that Γπ(G) has at most two connected components.

We now find an upper estimate on the diameter of Γπ(G) when Γπ(G) is connected and
G is π-solvable. We also obtain bounds on the diameters of both connected components
when Γπ(G) is disconnected. We believe that our estimates are higher than the actual
bounds. The largest diameter that we know actually occurs when the graph is connected
is 3. To see this example look at [8]. That paper exhibits a group G where Γ(G) has
diameter 3. Taking π = ρ(G), we have Γπ(G) = Γ(G). To make this example less trivial,
we consider a solvable group H where ρ(H) ∩ π is empty. Then cdπ(G×H) = cd(G) and
Γπ(G × H) = Γ(G). When the graph is disconnected, we do not know of any examples
where the connected components are not complete graphs. Lemma 2 also gives us an
indication that our estimates of the diameters can be improved.

Lemma 5: Let π be a set of primes, and let G be a π-solvable group. If Γπ(G) is
connected, then its diameter is at most 6. If Γπ(G) is disconnected, then each connected
component has diameter at most 3.

Proof: Suppose that Γπ(G) is connected with diameter at least 7. Thus, we can find
primes p1 and p8 whose shortest path connecting them in Γπ(G) is p1 ↔ p2 ↔ · · · ↔ p8.
Thus, we can find characters χ1, χ2, χ3 ∈ Irr(G) where χi(1) ∈ cdπ(G) for i ∈ {1, 2, 3} and
p1p2 divides χ1(1), p4p5 divides χ2(1), and p7p8 divides χ3(1). Observe that the primes
dividing χ1(1) cannot divide a degree in cdπ(G) that is divisible by a prime dividing χ2(1),
or we would have a shorter path between p1 and p8. Similarly, the primes dividing χ1(1)
or χ2(1) cannot divide a degree in cdπ(G) that is divisible by any prime dividing χ3(1). If
τ is the set of primes that divide χi(1) for i ∈ {1, 2, 3}, then it follows that Γτ (G) has three
connected components. Since τ ⊆ π, we see that G is τ -solvable, so the Main theorem
applies, and we have a contradiction. A similar proof works when Γπ(G) is disconnected
to show that each component has diameter at most 3.

Let G be a group, and let p be a prime. In Section 20 of [9], Manz and Wolf define a
graph Γp(G) whose vertices are the primes dividing the degrees of the irreducible p-Brauer
characters, and the edges occur when two primes divide the degree of the same irreducible
p-Brauer character. They show when G is solvable that Γp(G) has at most two connected
components. We can obtain an analog of this result in our case. As always, let π be a
set of primes, and suppose that G is a π-solvable group. We let ρπ

p (G) be the set of all
primes that divide the degrees of irreducible p-Brauer characters of G of π-degree. We can
define Γπ

p (G) to be the graph whose vertex set is ρπ
p (G) and edges occur when two primes

divide the degree of some irreducible p-Brauer character of π-degree. Using a proof similar
to the proof of the Main theorem one can show that Γπ

p (G) has at most two connected
components. Since the concepts of this proof are identical to those of the main theorem, we
do not feel the need to include the proof here. (A similar result occurs for the irreducible
Isaacs δ-partial characters when δ is a set of primes and G is a δ-separable group. Define
the graph Γπ

δ (G) in the usual fashion. We can show that Γπ
δ (G) has at most two connected

components.)
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3. Further Questions.

We would like to close with some questions. We have shown that cdπ(G) shares at
least one property in common with cd(G). Accordingly, it seems likely that these two
sets should share other properties, as well. For example, it may be possible to prove a
generalization of Pálfy’s. In particular, if G is solvable and δ is a set of primes dividing
degrees in cdπ(G) with |δ| ≥ 3, then must there exist distinct primes r, s ∈ δ so that rs
divides some degree in cdπ(G)?

We know that if G is solvable and Γ(G) is disconnected, then G has Fitting height of
at most 4. Does a similar result hold when Γπ(G) is disconnected? Do we have a bound
on the Fitting height of a Hall π-subgroup of G in this situation? The following example
shows that there is no bound on the Fitting height of a Hall π-subgroup of G when G is
solvable and Γπ is disconnected.

Theorem 6: Let n be any integer. There is a solvable group G and a set of primes π so
that the Fitting height of a Hall π-complement of G is at least n and Γπ(G) is disconnected.

Proof: Let H be a solvable group where Γ(H) is disconnected. Take π = ρ(H), and fix
distinct primes r, s ∈ π. Choose a prime p 6∈ π, and find a p-group P of order pn. By
Theorem B of [13], there is a solvable {r, s}-group Q of Fitting height n so that P acts
coprimely on Q and CQ(P ) = 1. Let K be the semi-direct product of P acting on Q.
Observe that p divides every nontrivial degree in cd(K). Let G = H×K. Since cdπ(K) =
{1} and cd(H) = cdπ(H), we deduce that cdπ(G) = cd(H). Therefore, Γπ(G) = Γ(H) is
disconnected. Now, HQ is the Hall π-subgroup of G, and its Fitting height is at least the
Fitting height of Q which is n. This proves the theorem.

We look for other invariants that might be bounded when G is π-solvable and Γπ(G)
is disconnected. The one that appears to most closely mimic the Fitting height is the
π-length. Thus, we ask: is it possible to get a bound on the π-length of G when G is
π-solvable and Γπ(G) is disconnected?

We now return to the question of comparing cd(G) and cdπ(G). One consequence of
the Main theorem is that if the distinct degrees in cdπ(G) are relatively prime and G is
π-solvable, then |cdπ(G)| ≤ 3. A similar condition is true for |cd(G)| when G is solvable.
In [7], the first author generalized this condition by studying cd(G) when G was a solvable
group satisfying the one-prime hypothesis. (A group G satisfies the one-prime hypothesis
if whenever a and b are distinct degrees in cd(G) their greatest common divisor is either
1 or a prime.) It was shown there that |cd(G)| ≤ 14. We can now ask: suppose that G is
a π-solvable group and that cdπ(G) satisfies the one-prime hypothesis. Can we obtain a
bound on the size of |cdπ(G)|? In some sense all these questions would be answered if we
could prove the following statement: if G is a π-solvable group for some set of primes π,
then there exists a solvable group H so that cdπ(G) = cd(H). This seems unlikely to be
true, but we do not know of any examples where the statement is not true. It would be
interesting to find a set of primes π and a π-solvable group G where there is no (solvable)
group H with cd(H) = cdπ(G).

Finally, it makes sense to ask what happens when one does not assume that G is
π-solvable. We know that Γ(G) has at most three connected components, and it may be
true that Γπ(G) has at most three connected components.
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