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Abstract. We consider (p, q)-multi-norms and standard t-multi-norms
based on Banach spaces of the form Lr(Ω), and resolve some question
about the mutual equivalence of two such multi-norms. We introduce
a new multi-norm, called the [p, q]-concave multi-norm, and relate it to
the standard t-multi-norm.

1. Introduction

1.1. Definitions. A theory of multi-norms based on a normed space E was

first introduced by Dales and Polyakov in [8]. We recall the basic definitions

of the theory.

We write N for the set of natural numbers, and set Nn = {1, . . . , n} for

n ∈ N; the collection of permutations of the set Nn is denoted by Sn.

Definition 1.1. Let (E, ‖ · ‖) be a complex normed space. A multi-norm

on the family {E n : n ∈ N} is a sequence (‖ · ‖n : n ∈ N) such that ‖ · ‖n is

a norm on E n for each n ∈ N, such that ‖x‖1 = ‖x‖ for each x ∈ E, and

such that the following Axioms (A1)–(A4) are satisfied for each n ∈ N and

x = (x1, . . . , xn) ∈ E n:

(A1)
∥∥(xσ(1), . . . , xσ(n))

∥∥
n

= ‖x‖n (σ ∈ Sn);

(A2) ‖(α1x1, . . . , αnxn)‖n ≤ (maxi∈Nn |αi|) ‖x‖n (α1, . . . , αn ∈ C);

(A3) ‖(x1, . . . , xn, 0)‖n+1 = ‖x‖n;

(A4) ‖(x1, . . . , xn−1, xn, xn)‖n+1 = ‖x‖n.

In this case, ((E n, ‖ · ‖n) : n ∈ N) is a multi-normed space.

We shall sometimes say that (‖ · ‖n : n ∈ N) is a multi-norm based on E;

we write EE for the family of all multi-norms based on E.

In the case where (E, ‖ · ‖) is a Banach space, each space (E n, ‖ · ‖n) is

a Banach space, and ((E n, ‖ · ‖n) : n ∈ N) is termed a multi-Banach space.

2010 Mathematics Subject Classification. Primary 46B15; Secondary 46B28, 46B42,
47L10.

Key words and phrases. multi-norms, equivalences, absolutely summing operators,
tensor products.

1



2 O. BLASCO, H. G. DALES, AND H. L. PHAM

In fact, Axiom (A3) is a consequence of Axioms (A1), (A2), and (A4)

[8, Proposition 2.7]; to establish (A4), it suffices to show that

‖(x1, . . . , xn−1, xn, xn)‖n+1 ≤ ‖x‖n
for each element x = (x1, . . . , xn) ∈ E n.

Many properties of multi-norms were described in [8]; these properties

included some strong connections with the theory of absolutely summing

operators and with the theory of tensor norms. A study of multi-norms was

continued in [9] and [10].

In [9], we explained how multi-norms correspond to certain tensor norms.

We recall this briefly; details are given in [9, §3]. We write δi for the sequence

(δi,j : j ∈ N) for i ∈ N; c 0 is the Banach space of all complex-valued null

sequences.

Definition 1.2. Let E be a normed space. Then a norm ‖ · ‖ on c 0⊗E is a

c 0-norm if ‖δ1 ⊗ x‖ = ‖x‖ for each x ∈ E and if the linear operator T ⊗ IE
is bounded on (c 0 ⊗ E, ‖ · ‖), with norm at most ‖T‖, for each compact

operator T on E.

We note that a c 0-norm on c 0 ⊗ E is a ‘reasonable cross-norm’ in the

sense of [21, §6.1]; see [9, Lemma 3.3].

Suppose that ‖ · ‖ is a c 0-norm on c 0 ⊗ E, and set

‖(x1, . . . , xn)‖n =
n∑
i=1

δi ⊗ xi (x1, . . . , xn ∈ E, n ∈ N) .

Then (‖ · ‖n : n ∈ N) is a multi-norm based on E.

A more general and detailed version of the following theorem is given as

[9, Theorem 3.4].

Theorem 1.3. Let E be a normed space. Then the above construction de-

fines a bijection from the family of c 0-norms on c 0 ⊗ E onto EE. �

The notion of the equivalence of two multi-norms was given in [8, §2.2.4],

as follows.

Definition 1.4. Let (E, ‖ · ‖) be a normed space. Suppose that the two

multi-norms (‖ · ‖1
n : n ∈ N) and (‖ · ‖2

n : n ∈ N) belong to EE. Then

(‖ · ‖1
n) ≤ (‖ · ‖2

n) if ‖x‖1
n ≤ ‖x‖

2
n (x ∈ E n, n ∈ N) ,

and (‖ · ‖2
n : n ∈ N) dominates (‖ · ‖1

n : n ∈ N), written (‖ · ‖1
n) 4 (‖ · ‖2

n), if

there is a constant C > 0 such that

(1.1) ‖x‖1
n ≤ C ‖x‖2

n (x ∈ E n, n ∈ N) ;
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the two multi-norms are equivalent , written

(‖ · ‖1
n : n ∈ N) ∼= (‖ · ‖2

n : n ∈ N) or (‖ · ‖1
n) ∼= (‖ · ‖2

n) ,

if each dominates the other.

A main theme of [10] was to determine when two multi-norms based on

the same normed space are mutually equivalent. In particular, we discussed

in [10] the ‘(p, q)-multi-norms based on a normed space E’, and tried to

determine when these multi-norms are mutually equivalent, especially on

the Banach spaces of the form Lr(Ω). The question was resolved for most,

but not all, cases. Here we resolves some of the remaining cases, and give

simpler proofs of some results already established in [10]. We also consider

the question whether a ‘standard multi-norm’ is ever equivalent to a (p, q)-

multi-norm on a space Lr(Ω). For this, we introduce a new ‘[p, q]-concave

multi-norm’, and use some theorems of Maurey to show that ‘usually’ a

standard t-multi-norm is not equivalent to any (p, q)-multi-norm on Lr(Ω).

However there are special combinations of p, q, and r when this equivalence

does hold, thereby refuting a conjecture of [10].

1.2. Notation. Let E be a normed space. The closed unit ball of E is

denoted by E[1], and the dual space of E is E ′; the action of λ ∈ E ′ on

x ∈ E with respect to the duality gives the complex number denoted by

〈x, λ〉. Let E and F be Banach spaces. Then B(E,F ) denotes the Banach

space of all bounded linear operators from E to F , with the operator norm.

The standard Banach spaces of all complex-valued sequences on N that

are bounded and r−summable (for r ≥ 1) are denoted by `∞ and ` r, respec-

tively; the norms on `∞ and ` r are denoted by ‖ · ‖∞ and ‖ · ‖r, respectively,

so that c 0 is a closed subspace of `∞. For n ∈ N and r ∈ [1,∞], the space Cn

with the ` r-norm is denoted by ` rn; it is regarded as a subspace of c 0 and ` r

by identifying (x1, . . . , xn) ∈ Cn with (x1, . . . , xn, 0, . . . ) ∈ CN. The Banach

space of all complex-valued, continuous functions on a compact space K,

taken with the uniform norm, is denoted by C(K).

Let Ω be a measure space, and take r ≥ 1. Then we denote by Lr(Ω) or

Lr(Ω, µ) the usual Banach space of complex-valued, r-integrable functions

with respect to a positive measure µ on Ω ; here

‖f‖r =

(∫
Ω

|f(t)|r dµ(t)

)1/r

(f ∈ Lr(Ω)) ,

and we identify functions which are equal almost everywhere. For each r

with 1 ≤ r < ∞, the conjugate index to r is denoted by r′, so that we
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have 1/r + 1/r′ = 1, and we regard 1 and ∞ as conjugates; throughout we

interpret (
n∑
i=1

|ζi|r
′

)1/r′

as max{|ζ1| , . . . , |ζn|}

when r = 1. The dual space of Lr(Ω) is identified with Lr
′
(Ω) in the usual

manner.

It is standard [1, Proposition 6.4.1] that, in the case where Lr(Ω) is an

infinite-dimensional space, we can regard ` r as a closed, 1-complemented

subspace of Lr(Ω).

Finally in this section, we recall that the generalized Hölder inequality

implies the following. Take q, s, u > 1 such that s < q and 1/u = 1/s− 1/q.

Then

(1.2)

‖(β1, . . . , βn)‖q = sup

{
‖(ζ1β1, . . . , ζnβn)‖s : ζ1, . . . , ζn ∈ C,

n∑
j=1

|ζj|u ≤ 1

}
whenever n ∈ N and β1, . . . , βn ∈ C. Indeed, 1/(u/s) + 1/(q/s) = 1, and so

‖(β1, . . . , βn)‖q = ‖(|β1|s , . . . , |βn|s)‖1/s
q/s

= sup


∣∣∣∣∣
n∑
j=1

ηj |βj|s
∣∣∣∣∣
1/s

:
n∑
j=1

|ηj|u/s ≤ 1


= sup


(

n∑
j=1

|ζj|s |βj|s
)1/s

:
n∑
j=1

|ζj|u ≤ 1

 ,

= sup

{
‖(ζ1β1, . . . , ζnβn)‖s :

∞∑
j=1

|ζj|u ≤ 1

}
,

giving (1.2).

1.3. The weak p−summing norm. We recall the definition of the weak

p –summing norms on a normed space; the following standard definition

was given in [8, Definition 4.1.1] and [10, §2.3]. For further discussion, see

[11, 13, 14].

Let E be a normed space, and take p ≥ 1 and n ∈ N. Following the

notation of [8, 9, 14], we define µp,n(x) for x = (x1, . . . , xn) ∈ E n by

µp,n(x) = sup


(

n∑
i=1

|〈xi, λ〉|p
)1/p

: λ ∈ E ′[1]


= sup

{
‖(〈x1, λ〉, . . . , 〈xn, λ〉)‖p : λ ∈ E ′[1]

}
.
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Then µp,n is the weak p –summing norm (at dimension n).

Note that, for all p ≥ 1, n ∈ N, and x = (x1, . . . , xn) ∈ En, we have

(1.3) µp,n(x) = sup

{∥∥∥∥∥
n∑
j=1

ζjxj

∥∥∥∥∥ : ζ1, . . . , ζn ∈ C,
n∑
j=1

|ζj|p
′ ≤ 1

}
.

Let E be a normed space. Take n ∈ N and x = (x1, . . . , xn) ∈ En, and

define

Tx : (ζ1, . . . , ζn) 7→
n∑
j=1

ζjxj , Cn → E .

It follows from (1.3) that

(1.4) µp,n(x) =
∥∥∥Tx : ` p

′

n → E
∥∥∥

for p ≥ 1; the map x 7→ Tx, (En, µp,n) → B(` p
′

n , E), is an isometric linear

isomorphism.

1.4. (q, p)−summing operators. Let E and F be Banach spaces, and

suppose that 1 ≤ p ≤ q < ∞. We recall that an operator T ∈ B(E,F ) is

(q, p)−summing if there exists a constant C such that(
n∑
i=1

‖Txi‖q
)1/q

≤ C µp,n(x1, . . . , xn) (x1, . . . , xn ∈ E, n ∈ N) .

The smallest such constant C is denoted by πq,p(T ). The set of these (q, p)–

summing operators is denoted by Πq,p(E,F ); it is a linear subspace of

B(E,F ), and (Πq,p(E,F ), πq,p) is a Banach space; we write (Πp(E,F ), πp)

for (Πp,p(E,F ), πp,p). The latter space of all p –summing operators has been

studied by many authors; see [11, 13, 14, 16, 21], for example.

1.5. The maximum and minimum multi-norm. As in [8] and [9], there

are a maximum multi-norm and minimum multi-norm based on a normed

space E; they are denoted by (‖ · ‖max
n : n ∈ N) and (‖ · ‖min

n : n ∈ N),

respectively, and they are defined by the property that

‖x‖min
n ≤ ‖x‖n ≤ ‖x‖

max
n (x ∈ E n, n ∈ N)

for every multi-norm (‖ · ‖n : n ∈ N) based on E. The formula for ‖ · ‖min
n is

‖x‖min
n = max

i∈Nn

‖xi‖ (x = (x1, . . . , xn) ∈ E n, n ∈ N) .

The dual of ‖ · ‖max
n is the weak 1−summing norm µ1,n [8, Theorem 3.33],

and hence

‖x‖max
n = sup

{∣∣∣∣∣
n∑
j=1

〈xj, λj〉
∣∣∣∣∣ : µ1,n(λ) ≤ 1

}
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for each x = (x1, . . . , xn) ∈ E n and n ∈ N, where the supremum is taken

over all λ = (λ1, . . . , λn) ∈ (E ′)n.

1.6. The (p, q)-multi-norm. The following definition was first given in [8,

§4.1].

Definition 1.5. Let E be a normed space, and suppose that 1 ≤ p ≤ q <∞.

For each n ∈ N and x = (x1, . . . , xn) ∈ E n, define

‖x‖(p,q)
n = sup


(

n∑
j=1

|〈xj, λj〉|q
)1/q

: µp,n(λ) ≤ 1


= sup

{
‖(〈x1, λ1〉, . . . , 〈xn, λn〉)‖q : µp,n(λ) ≤ 1

}
,

where the supremum is take over all λ = (λ1, . . . , λn) ∈ (E ′)n.

As noted in [8, Theorem 4.1], (‖ · ‖(p,q)
n : n ∈ N) is a multi-norm based

on E; it is called the (p, q)-multi-norm.

Clearly, we have (‖ · ‖(p,q1)
n ) ≤ (‖ · ‖(p,q2)

n ) whenever 1 ≤ p ≤ q2 ≤ q1 and

(‖ · ‖(p1,q)
n ) ≤ (‖ · ‖(p2,q)

n ) whenever 1 ≤ p1 ≤ p2 ≤ q.

Lemma 1.6. Let E be a normed space, and take p, q1, q2 such that

1 ≤ p ≤ q1 < q2 <∞ .

Then

‖x‖(p,q2)
n = sup

{
‖(ζ1x1, . . . , ζnxn)‖(p,q1)

n :
n∑
j=1

|ζj|u ≤ 1

}
for all x = (x1, . . . , xn) ∈ En and n ∈ N, where u is defined by the equation

1/u = 1/q1 − 1/q2.

Proof. The result follows by applying the generalized Hölder’s inequality

(1.2) with q = q2 and s = q1 and with βi taken to be the value 〈xi, λi〉 for

i ∈ Nn from the definition of the multi-norms. �

A key result from [10, Theorem 2.6] relates (p, q)-multi-norms to the

known theory of absolutely summing operators.

Theorem 1.7. Let E be a normed space, and suppose that 1 ≤ p ≤ q <∞.

Then the (p, q)-multi-norm induces the norm on c 0⊗E given by embedding

c 0 ⊗ E into Πq,p(E
′, c 0). �
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Indeed, for n ∈ N and x = (x1, . . . , xn) ∈ E n, we have

(1.5) ‖x‖(p,q)
n = πq,p(T

′
x : E ′ → c 0) .

Further, it is shown in [10, Corollary 2.9] that, for 1 ≤ p1 ≤ q1 < ∞
and 1 ≤ p2 ≤ q2 < ∞, we have (‖ · ‖(p1,q1)

n ) ∼= (‖ · ‖(p2,q2)
n ) if and only if

Πq1,p1(E
′, c 0) = Πq2,p2(E

′, c 0) as subsets of B(E ′, c 0).

Let F be a 1-complemented subspace of a Banach space E, and suppose

that 1 ≤ p ≤ q < ∞ and that n ∈ N. Then it follows from [8, Proposition

4.3] that the restriction of the norm ‖ · ‖(p,q)
n on En to F n is exactly ‖ · ‖(p,q)

n

defined on F n. In particular, to show that two (p, q)-multi-norms based on

an infinite-dimensional space Lr(Ω) are not equivalent, it suffices to prove

this for the corresponding (p, q)-multi-norms based on ` r.

1.7. The standard t-multi-norm. Let (Ω, µ) be a measure space, take

r ≥ 1, and suppose that r ≤ t < ∞. In [8, §4.2] and [9, §6], there is a

definition and discussion of the standard t -multi-norm on the Banach space

Lr(Ω). We recall the definition.

Take n ∈ N. For each ordered partition X = (X1, . . . , Xn) of Ω into

measurable subsets and each f1, . . . , fn ∈ Lr(Ω), we define

rX((f1, . . . , fn)) =
( n∑
i=1

‖PXi
fi‖t
)1/t

.

Here PXi
: f 7→ f | Xi is the projection of Lr(Ω) onto Lr(Xi), and ‖ · ‖ is

the Lr-norm. Then we define

‖(f1, . . . , fn)‖[t]
n = sup

X
rX((f1, . . . , fn)) ,

where the supremum is taken over all such measurable ordered partitions

X. As in [8, §4.2.1], we see that (‖ · ‖[t]
n : n ∈ N) is a multi-norm based on

Lr(Ω); it is the standard t -multi-norm on Lr(Ω).

Clearly the norms ‖ · ‖[t]
n decrease as a function of t ∈ [r,∞), and so the

maximum among these norms is ‖ · ‖[r]
n .

For example, by [8, (4.9)], we have

‖(f1, . . . , fn)‖[t]
n =

(
‖f1‖t + · · ·+ ‖fn‖t

)1/t
(n ∈ N)

whenever f1, . . . , fn in Lr(Ω) have pairwise-disjoint supports, and, in par-

ticular,

(1.6) ‖(δ1, . . . , δn)‖[t]
n = n1/t (n ∈ N) ,

where we regard δi as an element of ` r. Further,

(1.7) ‖(f1, . . . , fn)‖[r]
n = ‖ |f1| ∨ · · · ∨ |fn| ‖ (f1, . . . , fn ∈ Lr(Ω), n ∈ N) ;
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this is equation (4.13) in [8]. Thus (‖ · ‖[r]
n ) is the lattice multi-norm on

Lr(Ω); see [8, §4.3].

Let Ω be a measure space, and take t ≥ 1. By [8, Theorem 4.26], we have

‖ · ‖[t]
n = ‖ · ‖(1,t)

n on L1(Ω).

Lemma 1.8. Let Ω be a measure space, and take r, t1, t2 such that

1 ≤ r ≤ t1 < t2 <∞ .

Then

‖(f1, . . . , fn)‖[t2]
n = sup

{
‖(ζ1f1, . . . , ζnfn)‖[t1]

n :
n∑
j=1

|ζj|v ≤ 1

}
for each f1, . . . , fn ∈ Lr(Ω) and n ∈ N, where v satisfies 1/v = 1/t1 − 1/t2.

Proof. Let X = (X1, . . . , Xn) be an ordered partition of Ω into measurable

subsets. Now the generalized Hölder’s inequality (1.2) with q = t2 and s = t1

and with βi taken to be the value ‖PXi
fi‖ for i ∈ Nn shows that

rX((f1, . . . , fn)) = sup

{
rX((ζ1f1, . . . , ζ1fn)) :

n∑
j=1

|ζj|v ≤ 1

}
for each f1, . . . , fn ∈ Lr(Ω) and n ∈ N. Taking the supremum over all such

ordered partitions X gives the result. �

It was conjectured in [10, §3.8] that, whenever t ≥ r > 1, the standard

t -multi-norm on an infinite-dimensional space Lr(Ω) is never equivalent to

a (p, q)-multi-norm based on the same space. In §4, we shall extend the

cases for which this is true, but, in §4.3, we shall give a counter-example to

this conjecture.

1.8. Earlier results. The basic questions that we are concerned with in

this paper are to determine, for a given normed space, when two (p, q)-

multi-norms based on that space are mutually equivalent and when a (p, q)-

multi-norm is equivalent to a standard t-multi-norm on the space.

Some elementary relations were given in [8]. For example, the following

is [8, Theorem 4.6].

Theorem 1.9. Let E be a normed space. Then ‖x‖(1,1)
n = ‖x‖max

n for each

x ∈ En and n ∈ N, and so (‖ · ‖(1,1)
n : n ∈ N) is the maximum multi-norm

based on E. �

The mutual equivalence of different (p, q)-multi-norms is discussed more

seriously in [10, §3]. The first general result is [10, Theorem 2.11]; it follows
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immediately from [13, Theorem 10.4] by using the connection between (p, q)-

multi-norms and absolutely summing operators given in Theorem 1.7.

Theorem 1.10. Let E be a normed space, and suppose that

1 ≤ p1 ≤ q1 <∞ and 1 ≤ p2 ≤ q2 <∞ .

Then (‖ · ‖(p2,q2)
n ) ≤ (‖ · ‖(p1,q1)

n ) on E when both 1/p1 − 1/q1 ≤ 1/p2 − 1/q2

and q1 ≤ q2. �

Given a (p̄, q̄)-multi-norm, the following figure illustrates the regions

where the (p, q)-multi-norms are definitely smaller and larger than this par-

ticular (p̄, q̄)-multi-norm on each space Lr(Ω). We have not at this stage

excluded the possibility that the shaded regions are larger; indeed, we shall

show in §4 that the upper area can be larger for certain values of r.

p

q

(1, 1)

≤

≥

(p̄, q̄)

Figure 1. Regions where the (p, q)-multi-norms are smaller
and are larger than a particular (p̄, q̄)-multi-norm.

To explain the main classification result obtained in [10], we refer to

some curves Cc contained in the ‘triangle’

T = {(p, q) : 1 ≤ p ≤ q <∞} .

For c ∈ [0, 1), the curve Cc is

Cc =

{
(p, q) ∈ T :

1

p
− 1

q
= c

}
,

so that T is the union of these curves. Note that, for r > 1, the curve C1/r

meets the line p = 1 at the point (1, r′).

Following [10, §3.2], we say that two points P1 = (p1, q1) and P2 = (p2, q2)

in T are equivalent for a normed space E if the corresponding multi-norms

(‖ · ‖(p1,q1)
n ) and (‖ · ‖(p2,q2)

n ) based on E are equivalent.
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The results in [10] on the equivalence of two such points in T for the

Banach space Lr(Ω) are given in the following cases; here Ω is a measure

space, r ≥ 1, and we suppose that Lr(Ω) is infinite dimensional.

(I) The case where r = 1 is fully resolved in [10, Theorem 3.3].

Indeed, suppose that P1 = (p1, q1) and P2 = (p2, q2) are in T . In the

case where q1 ≤ q2, we have (‖ · ‖(p2,q2)
n ) 4 (‖ · ‖(p1,q1)

n ). Thus a necessary

condition for the equivalence of P1 and P2 on L1(Ω) is that q1 = q2; in this

latter case, the points P1 = (p1, q) and P2 = (p2, q) are equivalent whenever

1 ≤ p1 ≤ p2 < q, but (p, q) is not equivalent to (q, q) when 1 ≤ p < q.

(II) The case where r ∈ (1, 2) is considered in [10, Theorem 3.16].

(III) The case where r ≥ 2 is considered in [10, Theorem 3.18].

The above two cases will be fully described below.

Now take r > 1, and set r = min{r, 2}. We define the set

Ar :=

{
(p, q) ∈ T :

1

p
− 1

q
≥ 1

r

}
=
⋃
{Cc : c ∈ [1/r, 1)} .

Note that it follows from Theorem 1.10 that (‖ · ‖(p,q)
n ) ≤ (‖ · ‖(1,r′)

n ) for

each (p, q) ∈ Ar.
The following is [10, Theorem 3.9]. The proof uses Orlicz’s theorem and

some strong results on tensor norms; we shall give a direct proof of a some-

what more general result in Theorem 2.1, below.

Theorem 1.11. Let Ω be a measure space, and take r > 1 and (p, q) ∈ Ar.
Then (‖ · ‖(p,q)

n ) ∼= (‖ · ‖min) on Lr(Ω). �

Next, the theorems in [10] show that the two points P1 and P2 in T
are not equivalent for Lr(Ω) (when Lr(Ω) is an infinite-dimensional space)

when at least one point lies outside the region Ar, except perhaps in the

following three cases, (A), (B), and (C).

(A) : Both of the points P1 = (p1, q1) and P2 = (p2, q2) lie on the same

curve Cc, where c ∈ [0, 1/r) and, further, p1, p2 ∈ [1, r) when r < 2 and

p1, p2 ∈ [1, 2] when r ≥ 2.

The question whether two such points P1 and P2 are indeed equivalent

was already resolved in [10, Theorem 3.8] in the special case where c = 0 :

here, P1 = (p1, p1) and P2 = (p2, p2) are equivalent, and the correspond-

ing multi-norms were shown to be equivalent to the maximum multi-norm

whenever p1, p2 ∈ [1, r). Further, in the case where 1 < r < 2, so that r = r,

the point (r, r) is not equivalent to any point P = (p, p) when p ∈ [1, r) (this

is a result of Kwapień [15, Theorem 7]; see also [3]), and, in the case where
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r ≥ 2, so that r = 2, the point (2, 2) is equivalent to each point P = (p, p) for

p ∈ [1, 2), and hence is equivalent to the maximum multi-norm for Lr(Ω).

We shall prove in Theorem 2.5 that the above two points P1 and P2

specified in case (A) are indeed equivalent whenever r > 1. (The case (A)

does not arise when r = 1.)

The second and third cases that were left open in [10] arise only when

r < 2 (so that r = r). Suppose that c ∈ [1/2, 1/r) and the curve Cc meets

the vertical line {(p, q) : p = r} at the point (r, uc), so that uc = r/(1− cr),
and consider the horizontal line {(p, q) : q = uc}. This line meets the curve

C1/2 at the point (xc, uc), say, where xc = 2uc/(2 + uc) = 2r/(2(1− cr) + r),

as in [10, §3.5]. Let us denote by Lc the horizontal line segment

Lc = {(p, uc) : r ≤ p ≤ xc} .

(See Figure 3.) Then the following case was also left open in [10].

(B) : Both of the points P1 = (p1, uc) and P2 = (p2, uc) lie on the line

segment Lc.

Further, the following case was left open.

(C) : P1 = (p1, q1) lies on a curve Cc, where c ∈ (0, 1/r) and 1 ≤ p1 < r

and P2 is the point (r, r/(1− cr)).

We regret that we have not been able to resolve whether P1 and P2 are

equivalent in the case (B); we shall show that we do have equivalence in case

(C) whenever c ∈ (1/2, 1/r), but leave open the case where 0 < c ≤ 1/2.

Two points P1 = (p1, q1) and P2 = (p2, q2) in T are mutually equivalent

for a Banach space E if and only if Πq1,p1(E
′, F ) = Πq2,p2(E

′, F ) for every

Banach space F [10, Theorem 2.8]. Thus one method of showing that two

such points P1 = (p1, q1) and P2 = (p2, q2) are not equivalent for ` r is to

show that there is no constant C > 0 such that

πq1,p1(In : ` r
′

n → ` rn) ≤ Cπq2,p2(In : ` r
′

n → ` rn) (n ∈ N) ,

where In is the identity operator on Cn. For example, it is shown in [3] that

πp,p(In : ` r
′

n → ` rn) ∼ (n log n)1/r as n→∞

for 1 ≤ p < r < 2, whereas πr,r(In : ` r
′
n → ` rn) ∼ n1/r as n → ∞, and so

(p, p) is not equivalent to (r, r) whenever 1 ≤ p < r < 2. There are several

calculations related to these constants πq,p(In : ` r
′
n → ` rn) in [5, 12, 19], but

it appears that none of them resolve the points that we have left open.

The strongest earlier result about the equivalence of the standard t -

multi-norm and a (p, q)-multi-norm on an infinite-dimensional space Lr(Ω)
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is given in [10, Theorem 3.22]. It shows that it is only possible for a multi-

norm (‖ · ‖(p,q)
n ) to be equivalent to (‖ · ‖[t]

n ) on an infinite-dimensional space

Lr(Ω) when 1 < r < 2. Further, if 1 < r < 2 and (‖ · ‖(p,q)
n ) ∼= (‖ · ‖[t]

n ) on

Lr(Ω), then necessarily t ≥ 2r/(2 − r), 1/p − 1/q ≥ 1/2, and (p, q) lies on

the same curve Dc (as defined in [10, §3.5]) as (r, t) with p ≤ 2t/(2 + t).

Stronger results will be given in §4.

2. Equivalences of (p, q)-multi-norms

2.1. Rademacher functions and Khintchine’s inequality. We denote

the Rademacher functions defined on [0, 1] by rk for k ∈ N; see [1, 6.2.1] or

[13, p. 10], for example. Then |rk(t)| = 1 (t ∈ [0, 1], k ∈ N) and∫ 1

0

ri(t)rj(t) dt = 0 (i, j ∈ N, i 6= j) .

We shall also use a form of Khintchine’s inequality (see [1, Theorem 6.2.3]

or [22, §I.B.8]): for each u > 0, there exist constants Au and Bu such that

(2.1)

Au

(
n∑
j=1

|αj|2
)1/2

≤
(∫ 1

0

∣∣∣∣∣
n∑
j=1

αjrj(t)

∣∣∣∣∣
u

dt

)1/u

≤ Bu

(
n∑
j=1

|αj|2
)1/2

for all α1, . . . , αn ∈ C and all n ∈ N.

A normed space E has type u for 1 ≤ u ≤ 2 if there is a constant K ≥ 0

such that

(2.2)

∫ 1

0

∥∥∥∥∥
n∑
j=1

rj(t)xj

∥∥∥∥∥
2

dt

1/2

≤ K

(
n∑
j=1

‖xj‖u
)1/u

for each x1, . . . , xn ∈ E and n ∈ N.

Theorem 2.1. Let E be a Banach space with type u ∈ [1, 2], and take

s ∈ [1, u]. Then there is a constant K > 0 such that

‖x‖(1,s′)
n ≤ K ‖x‖min

n (x ∈ En, n ∈ N) .

Proof. The constant K is defined by equation (2.2).

Take n ∈ N and x = (x1, . . . , xn) ∈ En, and suppose that µ1,n(λ) ≤ 1,

where λ = (λ1, . . . , λn) ∈ (E ′)n. Then the following estimates hold: through-

out the suprema are taken over all ζ1, . . . , ζn ∈ C such that
∑n

j=1 |ζj|
s ≤ 1.
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Indeed, we have(
n∑
j=1

|〈xj, λj〉|s
′

)1/s′

= sup

{∣∣∣∣∣
n∑
j=1

〈ζjxj, λj〉
∣∣∣∣∣
}

= sup

{∣∣∣∣∣
∫ 1

0

〈
n∑
i=1

ζiri(t)xi,
n∑
j=1

rj(t)λj

〉
dt

∣∣∣∣∣
}

≤ sup

{∫ 1

0

∥∥∥∥∥
n∑
j=1

ζjrj(t)xj

∥∥∥∥∥ dt

}

because
∥∥∥∑n

j=1 rj(t)λj

∥∥∥ ≤ µ1,n(λ) by (1.3) (in the case where p = 1), and

so (
n∑
j=1

|〈xj, λj〉|s
′

)1/s′

≤ sup


∫ 1

0

∥∥∥∥∥
n∑
j=1

ζjrj(t)xj

∥∥∥∥∥
2

dt

1/2


≤ K sup


(

n∑
j=1

‖ζjxj‖u
)1/u

 by (2.2)

≤ K max
j∈Nn

‖xj‖ sup


(

n∑
j=1

|ζj|u
)1/u


= K max

j∈Nn

‖xj‖

because s ≤ u.

The result follows. �

2.2. Calculations for the spaces Lr(Ω). We now make some calculations

that are specific to the Banach space Lr(Ω). Again, we set r = min{r, 2}
for r ≥ 1.

The first result is a reprise of Theorem 1.11 with a more elementary

proof; it follows immediately from Theorem 2.1 because a space Lr(Ω), for

r ≥ 1, has type min{r, 2} [13, Corollary 11.7(a)].

Theorem 2.2. Let Ω be a measure space, and take r > 1 (p, q) ∈ Ar. Then

(‖ · ‖(p,q)
n ) ∼= (‖ · ‖min) on Lr(Ω). �

We shall use the following elementary calculation, given in [10, (2.5)],

concerning (p, q)-multi-norms based on ` r, where r ≥ 1. Recall that, for

each k ∈ N, we write δk for the sequence (δj,k : j ∈ N). Indeed, for each

(p, q) ∈ T and each n ∈ N, we have
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(2.3) ∆n(p, q) =


n1/r+1/q−1/p when p < r and 1/p− 1/q ≤ 1/r,

1 when 1/p− 1/q > 1/r,

n1/q when p ≥ r ,

where ∆n(p, q) = ‖(δ1, . . . , δn)‖(p,q)
n for (p, q) ∈ T .

The next result is a simple part of [10, Theorem 3.11]; it follows by

inspecting the proof of that theorem.

Proposition 2.3. Let Ω be a measure space such that Lr(Ω) is infinite

dimensional, where r > 1. Suppose that P1 = (p1, q1) and P2 = (p2, q2) lie on

curves Cc1 and Cc2, respectively, where c2 < min{c1, 1/r} and p1, p2 ∈ [1, r].

Then it is not the case that (‖ · ‖(p2,q2)
n ) 4 (‖ · ‖(p1,q1)

n ), and so P1 and P2 are

not equivalent for Lr(Ω). �

The next lemma is essentially the ‘factorization theorem’ given as [13,

Lemma 2.23], combined with results related to Grothendieck’s constant,

KG.

Lemma 2.4. Let F = Ls(Ω), where Ω is a measure space and s ≥ 1. Take

u > s and u = 2 in the cases where s > 2 and s ∈ [1, 2], respectively.

Then there is a constant Ku > 0 such that, for each n ∈ N and each

λ = (λ1, . . . , λn) ∈ F n with µ1,n(λ) = 1, there exist ζ1, . . . , ζn ∈ C and

ν = (ν1, . . . , νn) ∈ F n such that:

(i) λj = ζjνj (j ∈ Nn) ;

(ii)
∑n

j=1 |ζj|
u ≤ 1 ;

(iii) µu′,n(ν) ≤ Ku .

In the case where s ∈ [1, 2], we can take Ku = KG.

Proof. First, suppose that s ∈ [1, 2]. By [13, Theorem 3.7], each operator

T ∈ B(`∞, F ) is 2-summing, with π2(T ) ≤ KG ‖T‖ (T ∈ B(`∞, F )). Sec-

ond, suppose that s > 2, and take u > s. By [13, Corollary 10.10], each

operator T ∈ B(`∞, F ) is u-summing, and so there is a constant Ku (de-

pending on u) such that πu(T ) ≤ Ku ‖T‖ (T ∈ B(`∞, F )).

Now take n ∈ N and λ = (λ1, . . . , λn) ∈ F n with µ1,n(λ) = 1, and define

an operator Tλ ∈ B(`∞, F ) by requiring that Tλ(δj) = λj (j ∈ Nn) and

Tλ(δj) = 0 (j > n). We note that ‖Tλ‖ = µ1,n(λ) = 1 by (1.4), and so, in

each case, T is u-summing, with πu(Tλ) ≤ Ku.

We now use [13, Lemma 2.23] (taking r = 1 in that result) to see that

there exist ζ1, . . . , ζn ∈ C and ν ∈ F n with the required properties. �
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2.3. The open case (A). The following result resolves the first open case,

(A), specified on page 10.

Theorem 2.5. Let Ω be a measure space, and take r > 1. Consider two

points P1 = (p1, q1) and P2 = (p2, q2) in T lying on the same curve Cc with

0 ≤ c < 1. Suppose, further, that p1, p2 ∈ [1, r) in the case where 1 < r < 2

and p1, p2 ∈ [1, 2] in the case where r ≥ 2. Then P1 and P2 are equivalent

for Lr(Ω).

Proof. We set E = Lr(Ω), s = r′, and F = E ′ = Ls(Ω).

Take p < r in the case where 1 < r < 2 and p = 2 when r ≥ 2. We shall

first show that there is a constant Kp > 0 such that

(2.4) ‖x‖(1,1)
n ≤ Kp ‖x‖(p,p)

n (x ∈ En, n ∈ N) .

Indeed, take u = p′ > s when 1 < r < 2 and u = 2 when r ≥ 2.

Let Kp be the constant Ku specified in Lemma 2.4, and take n ∈ N and

λ = (λ1, . . . , λn) ∈ F n with µ1,n(λ) = 1; we adopt the notation of the

factorization in Lemma 2.4. Take x = (x1, . . . , xn) ∈ En. Then

n∑
j=1

|〈xj, λj〉| =
n∑
j=1

|〈xj, ζjνj〉| =
n∑
j=1

|ζj| |〈xj, νj〉| ≤
(

n∑
j=1

|〈xj, νj〉|u
′

)1/u′

by Hölder’s inequality, noting that
∑n

j=1 |ζj|
u ≤ 1, and so

n∑
j=1

|〈xj, λj〉| ≤
(

n∑
j=1

|〈xj, νj〉|p
)1/p

≤ ‖x‖(p,p)
n µp,n(ν) ≤ Kp ‖x‖(p,p)

n ,

giving (2.4). This covers the case where c = 0.

For the case where c > 0, consider a point P = (p0, q0) which lies on

a curve C1/v, where v > 1, and is such that p0 ∈ [1, r) in the case where

1 < r < 2 and p0 ∈ [1, 2] in the case where r ≥ 2; we recall that (1, v′) is

a point of C1/v. It follows from Theorem 1.10 that it suffices to prove that

(‖ · ‖(1,v′)
n ) 4 (‖ · ‖(p0,q0

n ). Again take n ∈ N and x = (x1, . . . , xn) ∈ En.

By Lemma 1.6 with p = s = 1 and q = v′, we have

‖x‖(1,v′)
n = sup

{
‖(ζ1x1, . . . , ζnxn)‖(1,1)

n :
n∑
j=1

|ζj|v ≤ 1

}
.

By (2.4),

‖x‖(1,v′)
n ≤ Kp0 sup

{
‖(ζ1x1, . . . , ζnxn)‖(p0,p0)

n :
n∑
j=1

|ζj|v ≤ 1

}
.
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However, again by Lemma 1.6, now with s = p0 and q = q0, we have

‖x‖(p0,q0)
n = sup

{
‖(ζ1x1, . . . , ζnxn)‖(p0,p0)

n :
n∑
j=1

|ζj|v ≤ 1

}

because 1/v = 1/p0 − 1/q0. Thus (‖ · ‖(1,v′)
n ) 4 (‖ · ‖(p0,q0)

n ), as required. �

It remains to be decided whether P = (r, r/(1 − cr)) = (r, uc) is equiv-

alent to (1, 1/(1− c)) when 1 < r < 2; we shall discuss this further later.

We summarize the situation in the case where r ≥ 2, where we have a full

solution to the question concerning the equivalence of (p, q)-multi-norms.

Theorem 2.6. Let Ω be a measure space such that E := Lr(Ω) is an infinite-

dimensional space, where r ≥ 2. Then the triangle T is decomposed into the

following (mutually disjoint) equivalence classes:

(i) the region Tmin := Ar = {(p, q) ∈ T : 1/p− 1/q ≥ 1/2};
(ii) the curves Tc := {(p, q) ∈ Cc : 1 ≤ p ≤ 2}, for c ∈ (0, 1/2);

(iii) the line segment Tmax := {(p, p) : 1 ≤ p ≤ 2};
(iv) the singletons T(p,q) := {(p, q)} for (p, q) ∈ T with p > 2.

Moreover:

(v) there is a constant K > 0 such that

‖ · ‖min
n ≤ ‖ · ‖(p,q)

n ≤ ‖ · ‖(1,2)
n ≤ K ‖ · ‖min

n (n ∈ N) ,

and so the (p, q)-multi-norm is equivalent to the minimum multi-

norm for E, for each (p, q) ∈ Tmin ;

(vi) for each c ∈ (0, 1/2) and each (p, q) ∈ Tc, we have

‖ · ‖(2,2/(1−2c))
n ≤ ‖ · ‖(p,q)

n ≤ ‖ · ‖(1,1/(1−c))
n ≤ KG ‖ · ‖(2,2/(1−2c))

n (n ∈ N) ;

(vii) for each (p, p) ∈ Tmax, the (p, p)-multi-norm is equivalent to the

maximum multi-norm for E, and the (1, 1)-multi-norm is equal to

the maximum multi-norm.

Proof. It follows from Theorem 2.2 that Tmin is an equivalence class and that

clause (v) holds. By Theorems 1.9 and 2.5, Tc is an equivalence class for each

c ∈ [0, 1/2) and clause (vi) holds, noting that the constant in equation (2.4)

can be taken to be KG because s = r′ ∈ [1, 2].

It remains to show that there are no other equivalences than those speci-

fied above. Again it is sufficient to prove the result for the space ` r. This was

established in [10, Theorem 3.18] with the help of Khintchine’s inequalities

and classical results about Schatten classes. �
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p

q

(1, 1)

b

b

b

2

2

Tc

Tmax1
1−c

T(p,q)

Tmin

Figure 2. The various mutually disjoint equivalence classes
of (p, q)-multi-norms on Lr(Ω) for r ≥ 2.

We now summarize the situation in the case where 1 < r < 2. Most of

the result is contained in [10, Theorem 3.16]; this is combined with the new

information given Theorem 2.5. Clause (vii) will be extended in Proposition

4.10.

Theorem 2.7. Let Ω be a measure space such that E := Lr(Ω) is an infinite-

dimensional space, where 1 < r < 2. Then the triangle T is decomposed into

the following (mutually disjoint) sets. Further, two points in distinct sets are

not equivalent, and each specified set is an equivalence class, except possibly

as noted:

(i) the region Tmin := Ar = {(p, q) ∈ T : 1/p− 1/q ≥ 1/r};
(ii) the curves Tc := {(p, q) ∈ Cc : 1 ≤ p ≤ r} ∪ {(p, uc) : r ≤ p ≤ xc},

where 1/r−1/uc = c and 1/xc−1/uc = 1/2 for some c ∈ (1/2, 1/r);

(iii) the curves Tc := {(p, q) ∈ Cc : 1 ≤ p ≤ r}, for some c ∈ (0, 1/2];

(iv) the line segment Tmax := {(p, p) : 1 ≤ p < r};
(v) the singletons T(p,q) := {(p, q)} for (p, q) ∈ T with either p = q = r

or both p > r and 1/p− 1/q < 1/2.

Moreover:

(vi) there is a constant K > 0 such that

‖ · ‖min
n ≤ ‖ · ‖(p,q)

n ≤ ‖ · ‖(1,r′)
n ≤ K ‖ · ‖min

n (n ∈ N) ,

and so the (p, q)-multi-norm is equivalent to the minimum multi-

norm for E, for each (p, q) ∈ Tmin ;
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(vii) in Tc for c ∈ (0, 1/r), the (p, q)-multi-norms with 1 ≤ p < r are

all equivalent to the (1, 1/(1 − c))-multi-norm, but we cannot say

whether any two (p, q)-multi-norms on the horizontal segment Lc

(when c > 1/2) are mutually equivalent, or whether the (r, uc)-

multi-norm is equivalent to the (1, 1/(1− c))-multi-norm;

(viii) for each (p, p) ∈ Tmax, the (p, p)-multi-norm is equivalent to the

maximum multi-norm for E, and the (1, 1)-multi-norm is equal to

the maximum multi-norm. �

p

q

(1, 1) r

Tc when c ∈ (0, 1/2]Tmax

T(p,q)
Tmin

2 Tc when c ∈ (1/2, 1/r)

xc

uc

Lc ⊂ Tc

r′

2

Figure 3. The various mutually inequivalent sets of (p, q)-
multi-norms on Lr(Ω) for 1 < r < 2.

3. The [p, q]-concave multi-norms on Banach lattices

In this section, we shall introduce a new class of multi-norms on general

Banach lattices, and relate some of them to standard t-multi-norms: these

multi-norms are of interest in their own right, and also will help us to settle

at least one of the above questions about the equivalence of the (p, q)-

multi-norms and to resolve the conjecture on the equivalence of (p, q)- and

standard t-multi-norms on ` r.

Let (L, ‖ · ‖) be a (complex) Banach lattice. A summary of all necessary

background in Banach lattice theory is given in [8, §1.3].

Throughout, L′ denotes the dual Banach lattice to L. We write |x| for the

modulus of an element x ∈ L. Take n ∈ N and an n-tuple (x1, . . . , xn) in Ln.

Recall that, for each p ≥ 1, we can define the element
(∑n

j=1 |xj|
p
)1/p

∈ L
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by the Krivine calculus, and that(
n∑
j=1

|xj|p
)1/p

= sup

{∣∣∣∣∣
n∑
j=1

ζjxj

∣∣∣∣∣ : ζ1, . . . , ζn ∈ C,
n∑
j=1

|ζj|p
′ ≤ 1

}
,

where the supremum is taken in the Banach lattice sense; for more details,

see [8] and [17, II.1.d], although only real Banach lattices were considered

in the latter source. In fact, it can be seen that(
n∑
j=1

|xj|p
)1/p

= sup

{
<
(

n∑
j=1

ζjxj

)
: ζ1, . . . , ζn ∈ C,

n∑
j=1

|ζj|p
′ ≤ 1

}

= sup

{
n∑
j=1

|ζjxj| : ζ1, . . . , ζn ∈ C,
n∑
j=1

|ζj|p
′ ≤ 1

}
.

It is also obvious that

µp,n(x1, . . . , xn) ≤

∥∥∥∥∥∥
(

n∑
j=1

|xj|p
)1/p

∥∥∥∥∥∥ ,(3.1)

with equality whenever L is a C(K)-space.

Definition 3.1. Let (L, ‖ · ‖) be a Banach lattice, and take p, q ≥ 1 and

n ∈ N. For each x ∈ Ln, define

‖x‖[p,q]
n = sup


(

n∑
j=1

|〈xj, λj〉|q
)1/q

:

∥∥∥∥∥∥
(

n∑
j=1

|λj|p
)1/p

∥∥∥∥∥∥ ≤ 1

 ,

where λ1, . . . , λn ∈ L′. Then ‖ · ‖[p,q]
n is the nth [p, q]-concave norm on Ln.

Clearly, we have (‖ · ‖[p,q1]
n ) ≤ (‖ · ‖[p,q2]

n ) when 1 ≤ p ≤ q2 ≤ q1 and

(‖ · ‖[p1,q]
n ) ≤ (‖ · ‖[p2,q]

n ) when 1 ≤ p1 ≤ p2 ≤ q.

We shall prove that (‖ · ‖[p,q]
n : n ∈ N) is a multi-norm on L whenever

1 ≤ p ≤ q < ∞, and then we shall call the sequence (‖ · ‖[p,q]
n : n ∈ N)

the [p, q]-concave multi-norm on L. For the remainder of this section, we

suppose that L = (L, ‖ · ‖) is a Banach lattice.

Lemma 3.2. Suppose that 1 ≤ p ≤ q1 < q2 <∞. Then

‖x‖[p,q2]
n = sup

{
‖(ζ1x1, . . . , ζnxn)‖[p,q1]

n :
n∑
j=1

|ζj|u ≤ 1

}
for each x = (x1, . . . , xn) ∈ En and n ∈ N, where u satisfies the equation

1/u = 1/q1 − 1/q2.

Proof. This is essentially the same as the proof of Lemma 1.6. �
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Following the argument in [2, Proposition 3], we obtain the following

basic result.

Proposition 3.3. Suppose that 1 ≤ p ≤ q < ∞, and let σ : Nn → Nn be

any map. Denote by i1, . . . , im the distinct elements of σ(Nn). Then∥∥(xσ(1), . . . , xσ(n))
∥∥[p,q]

n
≤ ‖(xi1 , . . . , xim)‖[p,q]

m (x1, . . . , xn ∈ L) .

Proof. Let λ1, . . . , λn ∈ L′ with

∥∥∥∥(∑n
j=1 |λj|

p
)1/p

∥∥∥∥ ≤ 1. Then

n∑
j=1

∣∣〈xσ(j), λj〉
∣∣q =

m∑
k=1

∑
σ(j)=ik

∣∣〈xσ(j), λj〉
∣∣q ≤ m∑

k=1

 ∑
σ(j)=ik

∣∣〈xσ(j), λj〉
∣∣pq/p

=
m∑
k=1

∣∣∣∣∣∣
∑

σ(j)=ik

〈xσ(j), λj〉ζj

∣∣∣∣∣∣
q

for some ζj ∈ C with
∑

σ(j)=ik
|ζj|p

′ ≤ 1, and so

n∑
j=1

∣∣〈xσ(j), λj〉
∣∣q =

m∑
k=1

|〈xik , µk〉|q ,

where µk =
∑

σ(j)=ik
ζjλj ∈ L′.

We see that, for every α1, . . . , αm ∈ C with
∑n

k=1 |αk|
p′ ≤ 1, we have∣∣∣∣∣

m∑
k=1

αkµk

∣∣∣∣∣ =

∣∣∣∣∣∣
m∑
k=1

∑
σ(j)=ik

αkζjλj

∣∣∣∣∣∣ ≤
(

n∑
j=1

|λj|p
)1/p

because
∑m

k=1

∑
σ(j)=ik

|αkζj|p
′ ≤∑n

k=1 |αk|
p′ ≤ 1. It follows that(

m∑
k=1

|µk|p
)1/p

≤
(

n∑
j=1

|λj|p
)1/p

,

and so
∥∥∥(
∑m

k=1 |µk|
p)

1/p
∥∥∥ ≤ 1.

The result now follows. �

Theorem 3.4. Let (L, ‖ · ‖) be a Banach lattice. Then the sequence

(‖ · ‖[p,q]
n : n ∈ N)

is a multi-norm based on L whenever 1 ≤ p ≤ q <∞.

Proof. The multi-norm axioms follows easily, using Proposition 3.3. �
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Let E be a Banach space, and suppose that 1 ≤ p ≤ q <∞. Recall from

[13, page 330] that a bounded linear operator T : L → E is (q, p)-concave

if there is a constant C > 0 such that(
n∑
j=1

‖Txj‖q
)1/q

≤ C

∥∥∥∥∥∥
(

n∑
j=1

|xj|p
)1/p

∥∥∥∥∥∥ (x1, . . . , xn ∈ L, n ∈ N) ;

the least such constant C is denoted by Kq,p(T ). We write Cq,p(L,E) for the

space of (q, p)-concave operators; Cq,p(L,E) is a Banach space with respect

to the norm Kq,p( · ). The Banach lattice L is (q, p)-concave if the identity

operator IL : L→ L is (q, p)-concave.

Proposition 3.5. Let L be a Banach lattice, and and take p, q such that

1 ≤ p ≤ q <∞. Then L′ is (q, p)-concave if and only if the [p, q]-concave

multi-norm is equivalent to the minimum multi-norm on L.

Proof. Suppose first that L′ is (q, p)-concave, so that C := Kq,p(IL) < ∞.

Then, for each n ∈ N, x1, . . . , xn ∈ L, and λ1, . . . , λn ∈ L′, we have(
n∑
j=1

|〈xj, λj〉|q
)1/q

≤ max
j∈Nn

‖xj‖ ·
(

n∑
j=1

‖λj‖q
)1/q

≤ C max
j∈Nn

‖xj‖ ·

∥∥∥∥∥∥
(

n∑
j=1

|λj|p
)1/p

∥∥∥∥∥∥ .
Hence ‖(x1, . . . , xn)‖[p,q]

n ≤ C maxj∈Nn ‖xj‖ = C ‖(x1, . . . , xn)‖min
n .

Conversely, suppose that the [p, q]-concave multi-norm is equivalent to

the minimum multi-norm on L, so that there is a constant C > 0 such that

‖(x1, . . . , xn)‖[p,q]
n ≤ C ‖(x1, . . . , xn)‖min

n (x1, . . . , xn ∈ L, n ∈ N) .

Let λ1, . . . , λn ∈ L′. Take η > 1 and j ∈ Nn, and choose xj ∈ L with

‖xj‖ = 1 and such that ‖λj‖ ≤ η |〈xj, λj〉|. Then(
n∑
j=1

‖λj‖q
)1/q

≤ η

(
n∑
j=1

|〈xj, λj〉|q
)1/q

≤ η ‖(x1, . . . , xn)‖[p,q]
n ·

∥∥∥∥∥∥
(

n∑
j=1

|λj|p
)1/p

∥∥∥∥∥∥
≤ Cη

∥∥∥∥∥∥
(

n∑
j=1

|λj|p
)1/p

∥∥∥∥∥∥ .
Thus L′ is (q, p)-concave, with Kq,p(L) ≤ C. �
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Note that we simply say ‘p-concave’ for ‘(p, p)-concave’; in the case where

p = 1, ‘(q, 1)-concave’ is also called ‘having a lower q-estimate’ in [17, II.1.f].

Let E be a Banach space. By theorems of Maurey (see [18] and [13,

Corollaries 16.6 and 16.7]), we have

Cq,p(L,E) = Cq,1(L,E) ⊂ Cr,r(L,E)

whenever 1 ≤ p < q < r <∞, and

Cq,1(L,E) = Πq,1(L,E) whenever q > 2 .

The proof of [13, Corollary 16.7] also gives the inclusion

C2,2(L,E) ⊂ Π2,1(L,E) .

We also have the following more elementary inclusion, which follows

immediately from the definitions and inequality (3.1):

Πq,p(L,E) ⊂ Cq,p(L,E) with Kq,p(T ) ≤ πq,p(T ) (T ∈ Πq,p(L,E))

whenever 1 ≤ p < q < ∞; moreover, Πq,p(C(K), E) = Cq,p(C(K), E) with

Kq,p(T ) = πq,p(T ) (T ∈ Πq,p(C(K), E)) for a compact space K.

We remark also that, by [13, Theorems 10.4 and 16.5], the inclusion

Cq1,p1(L,E) ⊂ Cq2,p2(L,E)

holds, with Kp2,q2(T ) ≤ Kp1,q1(T ) (T ∈ Cq1,p1(L,E)) whenever we have

1 ≤ p1 ≤ q1 < ∞, 1 ≤ p2 ≤ q2 <∞, and both 1/p1 − 1/q1 ≤ 1/p2 − 1/q2

and q1 ≤ q2.

The following result is similar to equation (1.5).

Theorem 3.6. Let L be a Banach lattice, and suppose that 1 ≤ p ≤ q <∞.

Then

‖x‖[p,q]
n = Kq,p(T

′
x : L′ → `∞n ) (x ∈ Ln, n ∈ N) .

Proof. Set x = (x1, . . . , xn) and Kq,p = Kq,p(T
′
x : L′ → `∞n ).

We see that

Kq,p = sup


(

n∑
j=1

‖T ′xλj‖q`∞n

)1/q

:

∥∥∥∥∥∥
(

n∑
j=1

|λj|p
)1/p

∥∥∥∥∥∥ ≤ 1


= sup


(

n∑
j=1

sup
k∈Nn

|〈xk, λj〉|q
)1/q

:

∥∥∥∥∥∥
(

n∑
j=1

|λj|p
)1/p

∥∥∥∥∥∥ ≤ 1


≥ sup


(

n∑
j=1

|〈xj, λj〉|q
)1/q

:

∥∥∥∥∥∥
(

n∑
j=1

|λj|p
)1/p

∥∥∥∥∥∥ ≤ 1


= ‖(x1, . . . , xn)‖[p,q]

n ,
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where λ1, . . . , λn ∈ L′. In particular, this gives ‖x‖[p,q]
n ≤ Kq,p.

On the other hand, take λ1, . . . , λn ∈ L′ with

∥∥∥∥(∑n
j=1 |λj|

p
)1/p

∥∥∥∥ ≤ 1.

For each j ∈ Nn, let kj ∈ Nn be such that supk∈Nn
|〈xk, λj〉| =

∣∣〈xkj , λj〉∣∣,
and set σ(j) = kj. Then we see that(

n∑
j=1

sup
k∈Nn

|〈xk, λj〉|q
)1/q

≤
∥∥(xσ(1), . . . , xσ(n))

∥∥[p,q]

n
≤ ‖x‖[p,q]

n .

Hence Kq,p ≤ ‖x‖[p,q]
n . �

Consequently, we have the following conclusions.

Corollary 3.7. Let L be a Banach lattice, and consider multi-norms based

on L. Then:

(i) (‖ · ‖[p2,q2]
n ) ≤ (‖ · ‖[p1,q1]

n ) whenever we have 1 ≤ p1 ≤ q1 < ∞ and

1 ≤ p2 ≤ q2 <∞ and both 1/p1 − 1/q1 ≤ 1/p2 − 1/q2 and q1 ≤ q2;

(ii) (‖ · ‖[p,q]
n ) ≤ (‖ · ‖(p,q)

n ) whenever 1 ≤ p ≤ q <∞;

(iii) (‖ · ‖[p,q]
n ) ∼= (‖ · ‖[1,q]

n ) < (‖ · ‖[r,r]
n ) whenever 1 ≤ p < q < r <∞;

(iv) (‖ · ‖[1,q]
n ) ∼= (‖ · ‖(1,q)

n ) in the case where q > 2;

(v) (‖ · ‖(1,2)
n ) 4 (‖ · ‖[2,2]

n ). �

Proposition 3.8. Let E be a Banach space, and take r ≥ 1. Then the map

T 7→ (T (δj)) , C1,1(`r
′
, E)→ ` r(E) ,

is an isometric isomorphism.

Proof. Take T ∈ C1,1(`r
′
, E). Then, for each n ∈ N, there are α1, . . . , αn ∈ C

with

n∑
j=1

|αj|r
′ ≤ 1 and

(
n∑
j=1

‖T (δj)‖r
)1/r

=
n∑
j=1

‖T (αjδj)‖ .

Therefore(
n∑
j=1

‖T (δj)‖r
)1/r

≤ K1,1(T )

∥∥∥∥∥
n∑
j=1

|αjδj|
∥∥∥∥∥
`r′

= K1,1(T ) .

Conversely, take x = (xj) ∈ ` r(E), and set T (δj) = xj (j ∈ N); extend

T to be a linear map from c 00 into E. Then, for each n ∈ N and each
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f1, . . . , fn ∈ c 00, we see that
n∑
k=1

‖T (fk)‖ ≤
n∑
k=1

∞∑
j=1

|fk(j)| ‖T (δj)‖ =
∞∑
j=1

n∑
k=1

|fk(j)| ‖xj‖

≤

 ∞∑
j=1

(
n∑
k=1

|fk(j)|
)r′
1/r′ (

∞∑
j=1

‖xj‖r
)1/r

=

∥∥∥∥∥
n∑
k=1

|fk|
∥∥∥∥∥
`r′

‖x‖`r(E) .

Thus T extends uniquely to an operator in C1,1(`r
′
, E) with the 1-concave

norm at most ‖x‖`r(E). �

We can now give a key relationship between a standard t-multi-norm

and certain concave multi-norms.

Theorem 3.9. Suppose that 1 ≤ r ≤ t <∞, and set 1/v = 1/r−1/t. Then

the standard t-multi-norm is equal to the [1, v′]-concave multi-norm on ` r.

Proof. By Lemmas 1.8 and 3.2, it is sufficient to consider only the case

where r = t, so that v′ = 1. Thus we need to show that

‖x‖[1,1]
n = ‖x‖[r]

n (x = (x1, . . . , xn) ∈ (` r)n, n ∈ N) .

However, we have seen that

‖x‖[1,1]
n = K1,1(T ′x : ` r

′ → `∞n ) =

(
n∑
j=1

‖T ′x(δj)‖r
)1/r

= ‖|x1| ∨ · · · ∨ |xn|‖` r ,
and this gives the result. �

4. Equivalence of the standard t -multi-norm and a

(p, q)-multi-norm

4.1. Notation. We now consider when a standard t -multi-norm is equiva-

lent to a (p, q)-multi-norm on an infinite-dimensional space Lr(Ω). In fact,

this problem clearly divides into two separate questions: determine when

(‖ · ‖[t]
n ) 4 (‖ · ‖(p,q)

n ) and when (‖ · ‖(p,q)
n ) 4 (‖ · ‖[t]

n ).

We define two new subsets of the triangle T : for 1 ≤ r ≤ t, we set

Br,t = {(p, q) ∈ T : 1/p− 1/q ≤ 1/r − 1/t, q ≤ t}
and

Cr,t = {(p, q) ∈ T : 1/p− 1/q ≥ 1/r − 1/t} ∪ {(p, q) ∈ T : q ≥ t} ,
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so that Br,t and Cr,t intersect in the curve

Lr,t := {(p, q) ∈ T : 1/p−1/q = 1/r−1/t, p ≤ r}∪{(p, t) ∈ T : r ≤ p ≤ t} .

Further, we set Br = Br,r = {(p, p) : 1 ≤ p ≤ r} and Cr = Cr,r = T . Note

that

B1,t = {(p, q) ∈ T : q ≤ t} and C1,t = {(p, q) ∈ T : q ≥ t} .

The answer to the first question is easy.

Theorem 4.1. Let Ω be a measure space such that Lr(Ω) is infinite di-

mensional, where r ≥ 1. Then (‖ · ‖[t]
n ) 4 (‖ · ‖(p,q)

n ) for Lr(Ω) if and only if

(p, q) ∈ Br,t.

Proof. Let S be the set of points (p, q) ∈ T with (‖ · ‖[t]
n ) 4 (‖ · ‖(p,q)

n ).

By [8, Theorem 4.22], (‖ · ‖[t]
n ) ≤ (‖ · ‖(r,t)

n ), and so (r, t) ∈ S. By Theorem

1.10, we increase (‖ · ‖(p,q)
n ) when we move from (r, t) to any point (p, q) ∈ T

with 1/p− 1/q ≤ 1/r − 1/t and q ≤ t, and so Br,t ⊂ S.

Conversely, let (p, q) ∈ S. In the case where p ≥ r, we have seen that

∆n(p, q) = n1/q (n ∈ N), and so, by (1.6), we also have q ≤ t In the case

where p ∈ [1, r), by (2.3) and (1.6) again, we must have 1/p−1/q ≤ 1/r−1/t,

which implies also that q ≤ t. Thus in both case (p, q) ∈ Br,t, and so

S ⊂ Br,t. �

We now consider the second question.

Definition 4.2. Let Ω be a measure space, set E = Lr(Ω), where r ≥ 1,

and take t ≥ r. Then

Dr,t = {(p, q) ∈ T : (‖ · ‖(p,q)
n ) 4 (‖ · ‖[t]

n ) on E} ,

with Dr = Dr,r.

Note that Dr,t2 ⊂ Dr,t1 whenever r ≤ t1 ≤ t2, and hence, in particular,

Dr,t ⊂ Dr whenever t ≥ r. It is clear that Ar ⊂ Dr,t for t ≥ r ≥ 1 because

(‖ · ‖(p,q)
n ) ∼= (‖ · ‖min

n ) when (p, q) ∈ Ar by Theorem 2.2. By comparing the

values of ‖(δ1, . . . , δn)‖(p,q)
n and ‖(δ1, . . . , δn)‖[t]

n given in equations (2.3) and

(1.6), we see that Dr,t ⊂ Cr,t for t ≥ r.

We now work on the spaces ` r, where r ≥ 1.

4.2. The case where r = 1. We first give a full solution to our questions in

the case where r = 1. Recall that we have (‖ · ‖[1]
n ) = (‖ · ‖(1,1)

n ) = (‖ · ‖max
n )

on ` 1, and so D1,1 = T .
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Proposition 4.3. Take t > 1. Then

D1,t = {(p, q) : q ≥ max{t, p}} \ {(t, t)} = C1,t \ {(t, t)} .

Proof. We know that

D1,t ⊂ C1,t = {(p, q) : q ≥ max{t, p}} .

Also, it is proved in [8, Theorem 4.26] that (‖ · ‖[q]
n ) = (‖ · ‖(1,q)

n ) on ` 1 for

each q ≥ 1, and so (1, t) ∈ D1,t. By [9, Theorem 5.6] (which depends on [20,

Corollary 2.5], cf. [13, Theorem 10.9]), we have (‖ · ‖(p,q)
n ) ∼= (‖ · ‖(1,q)

n ) for

1 ≤ p < q, and so (p, t) ∈ D1,t for 1 ≤ p < t.

Take (p, q) ∈ T . It follows from the previous paragraph and Theorem

1.10 that (p, q) ∈ D1,t whenever q ≥ t and q > p. It remains to consider the

case where q = p. If q = p > t, then, by [9, Theorem 5.6] again, we have

(‖ · ‖(p,p)
n ) 4 (‖ · ‖(1,t)

n ) = (‖ · ‖[t]
n ) ,

and so (p, p) ∈ D1,t. On the other hand, in the case where p = q = t,

we certainly have (‖ · ‖(1,t)
n ) ≤ (‖ · ‖(t,t)

n ). However, by [10, Theorem 3.2],

(‖ · ‖(1,t)
n ) 6∼= (‖ · ‖(t,t)

n ), and so it follows that (‖ · ‖(t,t)
n ) 64 (‖ · ‖(1,t)

n ) = (‖ · ‖[t]
n ).

Thus (t, t) 6∈ D1,t. �

Theorem 4.4. Suppose that t ≥ 1 and 1 ≤ p ≤ q <∞. Then

(‖ · ‖(p,q)
n ) ∼= (‖ · ‖[t]

n )

on the space ` 1 if and only if p = q = t = 1 or p < q = t.

Proof. This follows from Theorem 4.1 and Proposition 4.3. �

4.3. The case where r > 1. We now turn to the case where r > 1.

Lemma 4.5. Take t ≥ r > 1 and 1 ≤ p ≤ q < ∞, and consider the space

` r . Then

Ar ⊂ Dr,t ⊂
{

(p, q) ∈ Cr,t :
1

p
− 1

q
≥ 1

2

}
( Cr,t .

Proof. Let n ∈ N. As shown in the proof of [10, Theorem 3.22], there exists

an element g = (g1, . . . , gn) ∈ (` r)n such that ‖g‖[t]
n ≤ 1 and

‖g‖(p,q)
n ∼ ‖(δ1, . . . , δn)‖(p,q)

n as n→∞ ,

where we are now regarding δ1, . . . , δn as elements of ` 2. Now suppose that

1/p − 1/q < 1/2. Then it follows from (2.3) that ‖(δ1, . . . , δn)‖(p,q)
n ≥ nα,

where α = min{1/2 + 1/q − 1/p, 1/q} > 0. Hence (p, q) 6∈ Dr,t. �
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The following theorem, which is essentially [10, Theorem 3.22], deter-

mines fully the relation between the multi-norms (‖ · ‖(p,q)
n ) and (‖ · ‖[t]

n ) on

the space ` r in the case where r ≥ 2.

Theorem 4.6. Suppose that t ≥ r ≥ 2 and 1 ≤ p ≤ q < ∞, and consider

the space ` r. Then (‖ · ‖(p,q)) 4 (‖ · ‖[t]) if and only if 1/p− 1/q ≥ 1/2, and

(‖ · ‖[t]) 4 (‖ · ‖(p,q)) if and only if (p, q) ∈ Br,t. In particular, (‖ · ‖(p,q)
n ) and

(‖ · ‖[t]
n ) are not equivalent on ` r for any (p, q) ∈ T and any t ≥ r.

Proof. Since r ≥ 2, the set Ar is equal to {(p, q) ∈ T : 1/p − 1/q ≥ 1/2},
giving the first clause. The second clause is Theorem 4.1. �

p

q

(1, 1)

Br,t

t

r

Dr,t

2

Figure 4. The sets Br,t and Dr,t for r ≥ 2

It remains to consider the case where 1 < r < 2, and again it is this case

that is the more difficult. Throughout we fix t ≥ r and define v by

1

v
=

1

r
− 1

t
,

taking v =∞ when t = r.

Proposition 4.7. Suppose that r ∈ (1, 2), t ≥ r, and 1 ≤ p ≤ q <∞. Then:

(i) (p, q) ∈ Dr,t whenever 1/p− 1/q ≥ 1/v and v < 2;

(ii) (p, q) ∈ Dr,t whenever 1/p− 1/q > 1/2 and 2 ≤ v <∞;

(iii) (p, q) ∈ Dr,t whenever 1/p− 1/q ≥ 1/2 and v =∞.

Proof. (i) By Theorem 1.10, it suffices to show that (‖ · ‖(1,v′)
n ) 4 (‖ · ‖[t]

n ).

By Theorem 3.9, (‖ · ‖[t]
n ) = (‖ · ‖[1,v′]

n ). Also it follows from Corollary 3.7(iv)

that (‖ · ‖(1,v′)
n ) ∼= (‖ · ‖[1,v′]

n ), where we note that v′ > 2.

(ii) By Theorem 1.10, it suffices to show that (‖ · ‖(1,u)
n ) 4 (‖ · ‖[t]

n ) when-

ever u > 2. But now

(‖ · ‖[t]
n ) = (‖ · ‖[1,v′]

n ) ≥ (‖ · ‖[1,u]
n ) ∼= (‖ · ‖(1,u)

n ) on ` r ,
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as required.

(iii) By Corollary 3.7(v), we have (‖ · ‖(1,2)
n ) 4 (‖ · ‖[2,2]

n ); by Corollary

3.7(i), we have (‖ · ‖[2,2]
n ) ≤ (‖ · ‖[1,1]

n ); by Theorem 3.9, (‖ · ‖[1,1]
n ) = (‖ · ‖[t]

n ).

This gives the stated result. �

We interpret the above proposition in Figures 5 and 6, below.

p

q

(1, 1)

Br,t

2

(r, t)

Dr,t

v′

Figure 5. The set Br,t and (the possible range for) the set
Dr,t when 1 < r < 2, t ≥ r, and 1/r−1/t ≤ 1/2. When r ≥ 2,
the set Dr,t contains the dotted line.

It follows from Figure 5 that, in the case where 1 ≤ r ≤ t and v > 2,

the multi-norms (‖ · ‖(p,q)
n ) are never equivalent to the multi-norm (‖ · ‖[t]

n ),

as remarked on page 12.

p

q

(1, 1)

Br,t

2

v′

(r, t)

Dr,t

Figure 6. The set Br,t and (the possible range for) the set
Dr,t when 1 < r < 2, t ≥ r, and 1/r − 1/t > 1/2

Corollary 4.8. Suppose that r > 1 and that 1 ≤ p ≤ q < ∞. Then

(‖ · ‖(p,q)
n ) 4 (‖ · ‖[r]

n ) on ` r if and only if 1/p− 1/q ≥ 1/2.
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Proof. Suppose that (p, q) ∈ Dr. Then 1/p− 1/q ≥ 1/2 by Lemma 4.5.

Suppose that 1/p− 1/q ≥ 1/2. Then (p, q) ∈ Dr on ` r: this follows from

Theorem 4.6 when r ≥ 2 and from Proposition 4.7(iii) when r ∈ (1, 2). �

Thus Ar ⊂ Dr,t ⊂ Dr = A2 and Dr,t ⊂ Cr,t.

We now have the following counter to the conjecture in [10, §3.8] on the

equivalence of (p, q)-multi-norms and standard t-multi-norms.

Theorem 4.9. Suppose that 1 < r < 2, that t ≥ r, and that 1 ≤ p ≤ q <∞,

and consider the space ` r . Suppose further that 1/r − 1/t > 1/2. Then

(‖ · ‖(p,q)
n ) ∼= (‖ · ‖[t]

n ) whenever

1

p
− 1

q
=

1

r
− 1

t
and 1 ≤ p ≤ r .

Proof. Take v as above, so that v < 2, and suppose that 1/p−1/q = 1/v. By

Proposition 4.7(i), (p, q) ∈ Dr,t, and, by Theorem 4.1, (p, q) ∈ Br,t whenever

1 ≤ p ≤ r. �

In fact, in the case specified in the above theorem, we know that{
(p, q) ∈ T :

1

p
− 1

q
≥ 1

r
− 1

t

}
⊂ Dr,t ⊂

{
(p, q) ∈ Cr,t :

1

p
− 1

q
≥ 1

2

}
,

but this is all that we know; if we could resolve Case (B), above, positively,

we would know that

Dr,t =

{
(p, q) ∈ Cr,t :

1

p
− 1

q
≥ 1

2

}
.

The above theory does allow us to improve clause (vii) of Theorem 2.7.

We recall that uc = r/(1− cr).

Proposition 4.10. Suppose that 1 < r < 2, and consider the space ` r .

Suppose further that 1/2 < c < 1/r. Then the points (1, 1/(1 − c)) and

(r, uc) are equivalent, and there is a constant K such that

‖ · ‖(r,uc)
n ≤ ‖ · ‖(p,q)

n ≤ ‖ · ‖(1,1/(1−c))
n ≤ K ‖ · ‖(r,uc)

n (n ∈ N)

whenever (p, q) ∈ Cc and 1 ≤ p ≤ r.

Proof. The new information is that (‖ · ‖(r,uc)
n ) ∼= (‖ · ‖[uc]

n ) ∼= (‖ · ‖(1,1/(1−c))
n )

by Theorem 4.9. �
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5. Regular operators

The above results actually have the following interesting consequence con-

cerning the regularity of operators from ` r into ` q.

For a sequence α = (αj) ∈ CN, we set |α| to be the sequence (|αj|); we say

that α ≥ 0 whenever αj ≥ 0 (j ∈ N). Take r, q ≥ 1 and T ∈ B(` r, ` q). Then

T specifies an infinite matrix (Ti,j : i, j ∈ N), where Ti,j = (Tδj)i (i, j ∈ N).

The matrix (|Ti,j|) then specifies a linear map |T | from ` r to CN. Another

way to define |T | is as follows. A map T ∈ B(` r, ` q) is positive if Tα ≥ 0

in ` q whenever α ≥ 0 in ` r, and T is regular if it is a linear combination

of positive operators; the collection of regular operators from ` r to ` q is

denoted by Br(` r, ` q). Thus T ∈ Br(` r, ` q) if and only if |T | ∈ B(` r, ` q). In

fact, T is regular if and only if it is order-bounded [8, Theorem 1.31]. For

T ∈ Br(` r, ` q), we define |T | by

|T | (u) = sup{|Tz| : |z| ≤ u} (u ≥ 0) ,

and extend T linearly. For a summary of properties of the space Br(` r, ` q)
and its connections with ‘multi-bounded operators’, see [8, §§1.3.4, 6.4.1].

It is well-known that Br(` r, ` q) ( B(` r, ` q) when 1 < r, q < ∞ (cf. [6],

where more general results are proved).

Theorem 5.1. Take r ≥ 1. Then the following conditions on (p, q) ∈ T are

equivalent:

(a) (‖ · ‖(p,q)
n ) 4 (‖ · ‖[r]

n ) on ` r ;

(b) there exists a constant C > 0 such that

‖ |A| : ` rm → ` qn‖ ≤ C ‖A : ` rm → ` pn‖

for every m,n ∈ N and every n×m matrix A ;

(c) T ∈ Br(` r, ` q) whenever T ∈ B(` r, ` p).

Proof. We set s = r′.

(a) ⇐⇒ (b) From the definition, we see that (‖ · ‖(p,q)
n ) 4 (‖ · ‖[r]

n ) on ` r

if and only if there is a constant C > 0 such that, for every n ∈ N, every

f1, . . . , fn ∈ ` r, and every λ1, . . . , λn ∈ ` s, we have(
n∑
j=1

|〈fj, λj〉|q
)1/q

≤ Cµp,n(λ1, . . . , λn) ‖(f1, . . . , fn)‖[r]
n .

Set f = |f1| ∨ · · · ∨ |fn|. Then f ∈ (` r)+ and ‖(f1, . . . , fn)‖[r]
n = ‖f‖. So the

statement above is equivalent to the condition that there is a constant C > 0
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such that, for every n ∈ N, every f ∈ (` r)+, and every λ1, . . . , λn ∈ ` s, we

have

sup


(

n∑
j=1

|〈fj, λj〉|q
)1/q

: f1, . . . , fn ∈ ` r with |f1| ∨ · · · ∨ |fn| = f


≤ Cµp,n(λ1, . . . , λn) ‖f‖ .

Since the supremum above is attained when |f1| = · · · = |fn| = f and when

each fjλj is a positive sequence, this inequality can be rewritten as(
n∑
j=1

〈f, |λj|〉q
)1/q

≤ Cµp,n(λ1, . . . , λn) ‖f‖

for every n ∈ N, every f ∈ (` r)+, and every λ1, . . . , λn ∈ ` s.
By a standard approximation argument, we can reduce the above further

by requiring that the preceding inequality hold for every m,n ∈ N, every

f ∈ (` rm)+, and every λ1, . . . , λn ∈ ` sm.

In the latter case, we set λj = (λ1,j, λ2,j, . . . , λm,j) for j ∈ Nn and set

f = (α1, α2, . . . , αm). Then the preceding inequality becomes(
n∑
j=1

(
m∑
i=1

αi |λi,j|
)q)1/q

≤ Cµp,n(λ1, . . . , λn) ‖(αi)‖` r

for every m,n ∈ N, every (αi) ∈ (` rm)+ and every λ1, . . . , λn ∈ ` sm.

As usual, (λi,j : i ∈ Nm, j ∈ Nn) forms an m × n matrix, say Λ,

whose columns are the vectors λ1, . . . , λn. The above argument shows that

(‖ · ‖(p,q)
n ) 4 (‖ · ‖[r]

n ) on ` r if and only if there is a constant C > 0 such that,

for every m× n matrix Λ, we have∥∥ |Λ|t : ` rm → ` qn
∥∥ ≤ C

∥∥∥Λ : ` p
′

n → ` sm

∥∥∥ ,
where Mt is the transpose of a matrix M and we are using equation (1.4). In

other words, the condition in (a) is equivalent to the existence of a constant

C > 0 such that,

‖ |A| : ` rm → ` qn‖ ≤ C ‖A : ` rm → ` pn‖

for every m,n ∈ N and every n×m matrix A.

This establishes the equivalence of (a) and (b).

(b)⇒ (c) Clearly, (b) implies that |A| ∈ B(` r, ` q) wheneverA ∈ B(` r, ` p),

and hence that A ∈ Br(` r, ` q) whenever A ∈ B(` r, ` p).

(c) ⇒ (b) Assume that (b) does not hold. Then there exists a sequence

(An) of finite-dimensional matrices such that ‖ |An| : ` r∗ → ` q∗‖ ≥ n whereas
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‖An : ` r∗ → ` p∗ ‖ ≤ 1, where ∗ represents suitable indices. Now set

A := A1 ⊕ A2 ⊕ · · · ,

so that A is the block-diagonal matrix where the blocks are the finite-

dimensional matrices An. Then A ∈ B(` r, ` p), but |A| /∈ B(` r, ` q). Hence

(c) fails, a contradiction. �

The discussion above leads to the following result, possibly new, about

matrices.

Corollary 5.2. Take r > 1 and 1 ≤ p ≤ q < ∞. Then there exists a

constant C > 0 such that

(5.1) ‖ |A| : ` rm → ` qn‖ ≤ C ‖A : ` rm → ` pn‖

for every m,n ∈ N and every n×m matrix A if and only if 1/p−1/q ≥ 1/2.

Proof. This follows from the equivalence of (a) and (b) in the above prop-

osition and Corollary 4.8 . �

In terms of operators, we similarly have:

Corollary 5.3. Take r > 1 and 1 ≤ p ≤ q < ∞. Then T ∈ Br(` r, ` q) for

every operator T ∈ B(` r, ` p) if and only if 1/p− 1/q ≥ 1/2. �

One implication of Corollary 5.2 was already known (in a stronger form)

by a result of G. Bennett. Indeed, by [4, Proposition 3.2], there exist a

constant K and, for each m,n ∈ N, an n ×m matrix A whose entries are

all ±1 such that

‖A : ` rm → ` pn‖ ≤ K max{n1/pm(1/2−1/r)+ ,m1/r′n(1/p−1/2)+} .

It is easy to see that

‖|A| : ` rm → ` qn‖ = n1/qm1/r′ ,

and so

‖A : ` rm → ` qn‖
‖|A| : ` rm → ` pn‖

≤ K max{n1/p−1/q/m1/r′−(1/2−1/r)+ , n(1/p−1/2)+−1/q} .

Now suppose that 1/p − 1/q < 1/2. Then (1/p − 1/2)+ − 1/q < 0 and

1/r′ − (1/2− 1/r)+ > 0, and so the right-hand side of the above inequality

is K max{n1/p−1/qm−α, n−β} for some α, β > 0 which depend on only p,

q, and r, and this expression can be made arbitrarily small by making a

suitable choice of first n ∈ N and then m ∈ N. Thus, for a matrix A of

restricted form, there is no constant C > 0 such that equation (5.1) holds.
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