
Remarks on measurability of operator-valued
functions.

O. Blasco∗, I. Garćıa-Bayona
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Abstract

The aim of this paper is to consider operator-valued functions that
can be approximated in the strong and weak operator topology by
countably valued functions. We relate these notions with the classical
formulations of measurability and provide conditions for their coinci-
dence. A number of examples and counterexamples are exhibited.
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1 Introduction and preliminaries

The concept of ”measurable” function when dealing with functions with val-
ues in Banach spaces, or more generally in locally convex topological vector
spaces, depends on the possible generalization from the scalar-valued notion
that is needed in each case. The notions of strongly measurable, weakly
measurable (sometimes called scalarly measurable), weak∗-measurable (in
the case of dual spaces) and others (see for instance [7, 9, 12]) appear in
the literature. However each of them generalize the scalar-valued case in
a different way. When dealing with operator-valued functions the situation
becomes even more complicated (see [6, 9, 12, 13, 16]) due to the possi-
bilities of considering not only the norm and weak topologies but also the
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strong-operator and weak-operator topologies. While the abstract concept
of (Σ1,Σ2)-measurability, meaning that f−1(A) ∈ Σ2 for any A ∈ Σ1 does
not require the measurable space (Ω,Σ1) to have an underlying measure µ,
in general measurability is not studied in its own right but usually is tied to
integrability in one or another sense, that is why negligible sets are consid-
ered in most definitions (see [10, 11]). However we would like to develop a
theory where only the σ-algebra plays a role. With this in mind we recall
that a function f : Ω → K is said to be measurable if f−1(G) ∈ Σ for any
open set G. This, can be easily seen to coincide with f−1(B(α, ε)) ∈ Σ for
any α ∈ K and ε > 0 where B(α, ε) = {α′ ∈ K; |α − α′| < ε}. Also this
turns out to be equivalent for the function f to be a pointwise limit of simple
(meaning finitely valued) functions. For functions with values in spaces of
operators we would like to analyze the differences existing when considering
any of these three considerations. The main interest is to find weaker as-
sumptions to handle some problems on operator-valued functions that has
appeared recently (see [1, 2, 3, 4]) and in particular to establish the basis to
consider new problems concerning measurability with respect to the strong
operator topology (see [5, 14]).

We would like to call the attention of the differences existing between
these possible definitions, and try to find two approaches that cover most of
the possible formulations. One point of view (used in the Bochner measur-
ability and integrability) is to consider pointwise limits of countably valued
functions and another possible approach (used when dealing with weakly or
scalarly measurable functions) is to assume that pre-images of elements in a
basis of the topology are measurable sets. According to these two approaches
we shall say, for a topological vector space (Y, τ) with a basis β ⊆ τ , that
f : Ω→ Y is β-measurable whenever f−1(A) ∈ Σ for any A ∈ β and we shall
say that f : Ω → Y is τ -approximable whenever f is a pointwise limit of
countably valued functions in the τ -topology. Of course, the first examples
of τ -measurable functions and τ -approximable functions are the countably
valued functions f =

∑∞
k=1 ykχAk

where yk ∈ Y and Ak ∈ Σ are pairwise
disjoint (we keep the name of simple function for those which are finitely
valued). Hence for Y = K we have that | · |-approximable is equivalent to
β-measurable where β = {B(α, ε);α ∈ K, ε > 0}. However functions taking
values in a Banach space E are called (strongly) measurable whenever they
are ‖ · ‖-approximable, while weakly measurable (or weak∗ measurable in the
case of dual spaces) usually refers to the condition w → 〈f(w), x∗〉 is measur-
able for any x∗ ∈ E∗ (respect. w → 〈f(w), x〉 is measurable for any x ∈ X),
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which corresponds to Nweak-measurable (respect. Nweak∗-measurable), for
the standard basis in the weak topology (respect. weak∗-topology).

For the space of operators L(E1, E2) endowed with different topologies
the notation is even more confusing (see [12, Chapter 3]). A function f : Ω→
L(E1, E2) is said to be uniformly measurable if it is ‖·‖-approximable, while
f is said to be strongly measurable if fx are ‖ · ‖-approximable in E2 for
any x ∈ E1 where fx(w) = f(w)(x), and f is said to be weakly measurable
if 〈fx, y∗〉 are measurable functions for any x ∈ E1 and y∗ ∈ E∗2 , which would
correspond to β-measurability for the standard basis in the WOT topology
L(E1, E2). In [16, 13] the name of strong operator measurable and weak
operator measurable is used for the last two notions and (Σ,B0(L(H,H))-
measurability is used for the NSOT -measurability in the case of a Hilbert
space E1 = E2 and the standard basis of the strong operator topology.

To avoid misunderstandings we shall use the terms ‖ · ‖-, weak-, weak∗-,
SOT - or WOT -approximable to mean that there exists a sequence of count-
ably valued functions such that sn(w) converges to f(w) for any w ∈ Ω,
in the norm, weak, weak∗, SOT or WOT topologies and we use the terms
W -measurable, W ∗-measurable, SOT -measurable and WOT -measurable for
the corresponding β-measurability with respect to the standard basis in each
of the corresponding topologies.

The basic results connecting all these concepts are the Pettis’s measurabil-
ity theorem (see [7, Chapter 2, Thm 2]) and its extension for operator-valued
functions due to Dunford (see [12, Thm 3.5.5]) which, in our notation, would
read as follows:

(a) f : Ω→ E is ‖ · ‖-approximable if and only if f is W -measurable and
f(Ω) is separable.

(b) f : Ω→ L(E1, E2) satisfies that fx is ‖·‖-approximable for any x ∈ E1

if and only if f is WOT -measurable and fx(Ω) is separable for any x ∈ E1.
(c) f : Ω → L(E1, E2) is ‖ · ‖-approximable if and only if f is WOT -

measurable and f(Ω) is separable in L(E1, E2).
Another basic result compares the strong operator measurability with the

(Σ,B0(L(H,H))-measurability (see [13, Theorem 2]), which in our terminol-
ogy reads: If (Ω,Σ, µ) is a finite complete measure space, and E1 = E2 = H
is a separable Hilbert space over C then f : Ω→ L(H,H) satisfies that fx is
‖ · ‖-approximable for any x ∈ H if and only if f is SOT -measurable.

In this paper we differentiate the measurability defined by means of pre-
images of elements belonging to the basis in the SOT and WOT topolo-
gies and the notion defined via approximation by countably valued func-
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tions in the mentioned topologies. We shall prove that separability and d-
approximability coincide for metric spaces and observe that ‖·‖-approximable
coincide with weak-approximable. We shall present a version of Pettis’ mea-
surability theorem for the class of SOT -approximable functions. We show
that some well known operator-valued functions actually get into this scope
and give several procedures to get examples satisfying our definitions.

Throughout the paper (Ω,Σ) stands for a measurable space (i.e. Σ is a σ-
algebra over Ω) and E,E1 and E2 are always Banach spaces over the field K
(R or C). We write BE for the unit ball, E∗ for the dual of E and L(E1, E2)
for the space of bounded linear operators between them. As usual, given

a sequence of operators (Tn) ∈ L(E1, E2) we write Tn → T (or Tn
‖·‖−→ T )

for the convergence in norm, Tn
SOT−−→ T for the convergence in the strong

operator topology, i.e. ‖Tnx− Tx‖ → 0, ∀x ∈ E1, and Tn
WOT−−−→ T for the

convergence in weak operator topology, i.e. 〈Tnx − Tx, y∗〉 → 0, ∀x ∈ E1

and y∗ ∈ E∗2 .

2 Measurability of operator-valued functions

Let us introduce some notation to be used in the sequel. Given a metric space
(Y, d) we denote by Nd the basis of the topology given by Nd = {B(x, ε) : x ∈
Y, ε > 0} where B(x, ε) = {y ∈ Y ; d(x, y) < ε}. In the case of normed spaces
we write N‖·‖. For a Banach space E, besides the norm topology, we shall
consider the weak topology and write Nweak the standard basis consisting in
neighborhoods

N(x; x∗, ε) = {y ∈ E : max
1≤j≤n

|〈y − x, x∗j〉| < ε}

where x∗ = (x∗1, x
∗
2, · · · , x∗n) ∈ (E∗)n and n ∈ N. For a dual Banach space

E = F ∗ we shall also consider the weak∗-topology and write Nweak∗ the
standard basis consisting of neighborhoods

N(x; z, ε) = {y ∈ E : max
1≤j≤n

|〈y − x, zj〉| < ε}

where z = (z1, z2, · · · , zn) ∈ F n and n ∈ N.
In this paper we deal with Banach spaces of bounded linear operators

X = L(E1, E2,). Here we have two more topologies to be considered, namely
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the strong operator topology (SOT ) and the weak operator topology (WOT ).
We denote by NSOT and NWOT the corresponding basis given by

N(T ; x, ε) = {S ∈ X : max
1≤j≤n

‖(S − T )(xj)‖ < ε}

and
N(T ; x,y∗, ε) = {S ∈ X : max

1≤j≤n
|〈(T − S)xj, y

∗
j 〉| < ε}

where x = (x1, x2, · · · , xn) ∈ (E1)n, y∗ = (y∗1, y
∗
2, · · · , y∗n) ∈ (E∗2)n and n ∈

N. Finally in the case that E2 is a dual space, taking into account the
identification (E⊗̂πF )∗ = L(E,F ∗) (see [7, Page 230]), we can also consider
NWOT ∗ the corresponding basis with respect to the weak∗-topology which is
given by

N(T ; x,y, ε) = {S ∈ X : max
1≤j≤n

|〈(S − T )xj, yj〉| < ε}.

where x = (x1, · · · , xn) ∈ (E1)n, y = (y1, · · · , yn) ∈ (E2)n and n ∈ N.

Definition 2.1 Let (Y, τ) be a topological vector space and β ⊆ τ be a ba-
sis of the topology. A function f : Ω → Y is said β-measurable whenever
f−1(A) ∈ Σ for any A ∈ β.

In particular if X is a Banach space and f : Ω → X we say that f is
‖ · ‖-measurable or W -measurable whenever f−1(A) ∈ Σ for any A ∈ N‖·‖
or A ∈ Nweak respectively, for dual spaces X = F ∗ we say that f is W ∗-
measurable whenever f−1(A) ∈ Σ for any A ∈ Nweak∗ , for X = L(E1, E2)
we say that f is SOT - and WOT -measurable referring to f−1(A) ∈ Σ for
any A ∈ NSOT and A ∈ NWOT respectively. We keep the notations τ‖·‖-
measurable, τSOT -measurable, τWOT -measurable for τ -measurable when τ is
given for the family of open sets with respect to the corresponding topologies.

Let us first establish some equivalent formulations of the above definitions.

Proposition 2.2 Let X = L(E1, E2), f : Ω → X and denote fx(w) =
f(w)(x) and fx,y∗(w) = 〈f(w)(x), y∗〉 for x ∈ E1 and y∗ ∈ E∗2 . Then

(i) f is ‖ · ‖-measurable ⇐⇒ ‖f(·)− T‖ is measurable for any T ∈ X.
(ii) f is W -measurable ⇐⇒ 〈f(·), T ∗〉 is measurable for any T ∗ ∈ X∗.
(iii) f is SOT -measurable ⇐⇒ fx is ‖ · ‖-measurable for any x ∈ E1.
(iv) f is WOT -measurable ⇐⇒ fx,y∗ is measurable for any x ∈ E1 and

y∗ ∈ E∗2 .
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Proof. (i) It follows from the definitions.
(ii) Assume that f is W -measurable and let T ∗ ∈ X∗. We have to check

that {ω ∈ Ω : |〈f(ω), T ∗〉 − α| < ε} ∈ Σ for any ε > 0 and α ∈ R. We
may assume that T ∗ 6= 0 and take any T0 ∈ X such that 〈T0, T

∗〉 = λ0 6= 0.
Define now T := T0

λ0
α and observe that

{ω ∈ Ω : |〈f(ω), T ∗〉 − α| < ε} = {ω ∈ Ω : f(ω) ∈ N(T ;T ∗, ε)} ∈ Σ.

The converse implication follows using that N(T ; T∗, ε) = ∩ni=1N(T ;T ∗i , ε)
where T∗ = (T ∗1 , · · · , T ∗n) and 〈f(·), T ∗i 〉 is measurable for i = 1, · · · , n.

(iii) Assume that f is SOT -measurable and let x ∈ E1. We have to see
that {ω ∈ Ω : ‖fx(ω) − y‖ < ε} ∈ Σ for any ε > 0, y ∈ E2. Select x∗ such
that 〈x, x∗〉 = ‖x‖ and define T := x∗

‖x‖ ⊗ y. With this choice

{ω ∈ Ω : ‖fx(ω)− y‖ < ε} = {ω ∈ Ω : f(ω) ∈ N(T ;x, ε)} ∈ Σ.

As above, the converse is immediate.
(iv) Assume that f is WOT -measurable and let x ∈ E1 and y∗ ∈ E∗2 .

We need to check that {ω ∈ Ω : |fx,y∗(ω)(x) − α| < ε} ∈ Σ for any ε > 0
and α ∈ R. We may assume that x 6= 0 and y∗ 6= 0. Then take x∗ such
that 〈x, x∗〉 = ‖x‖, and y0 with 〈y0, y

∗〉 = λ0 6= 0. Define y := y0
λ0
α and

T := x∗

‖x‖ ⊗
y0
λ0
α. Again we use that

{ω ∈ Ω : |〈f(ω)(x), y∗〉 − α| < ε} = {ω ∈ Ω : f(ω) ∈ N(T ;x, y∗, ε)} ∈ Σ.

The converse as above is immediate.
There are some trivial implications among these concepts. Of course the

topologies τWOT ⊂ τSOT ⊂ τ‖·‖ and τweak∗ ⊂ τweak ⊂ τ‖·‖. Also, taking into
account that for each x ∈ E1 and y∗ ∈ E∗2 the map T → 〈Tx, y∗〉 belongs to
X∗ one gets NWOT ⊂ Nweak. These inclusions give the following remark.

Remark 2.1 Any τ‖·‖-measurable function is also W -measurable and SOT -
measurable and also any W -measurable f : Ω → X = L(E1, E2) is also
WOT -measurable.

The converse is false in general as the following example shows.

Example 2.1 Let Ω = [0, 1], Σ = B the Borel σ-algebra y let A be a non-
Borel set. Take E1 = `2([0, 1]), E2 = K and f : [0, 1] → L(`2([0, 1]),K) =
`2([0, 1]) given by

t→ etχA(t)
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where (et)t stands for the canonical basis. Then f is W -measurable (and
SOT -measurable) but not ‖ · ‖-measurable (in particular is not τ‖·‖-measurable).

Proof. Due to Proposition 2.2 we first need to see that 〈f(·), T ∗〉 is mea-
surable Borel for any T ∗ ∈ X∗. Use that `2([0, 1]) = (`2([0, 1]))∗ and for
each x∗ ∈ `2([0, 1]) there exists (tn) ∈ [0, 1] such that x∗ =

∑
n∈N αnetn with∑

n |αn|2 <∞. Therefore t→ 〈f(t), x∗〉 =
∑

n:tn∈A αn〈etn , et〉 is measurable.
However, the set {t ∈ [0, 1] : ‖f(t)‖ < 1/2} = [0, 1] \A is not measurable.

Recall that in the case E2 = K the classical notions of weak and weak∗-
measurability correspond to W and WOT -measurability respectively. Hence
we have the following example at our disposal (see [7, Page 43 ]).

Example 2.2 Let Ω = [0, 1], Σ = B the Borel σ-algebra, E1 = `1, E2 =
K and f : [0, 1] → `∞ = L(`1,K) given by f(t) = (rn(t))n∈N where rn
stand for the Rademacher functions. Then f is WOT -measurable but not
W -measurable.

Let us now see the role of separability in the coincidence of different
notions. We start by mentioning that for separable metric spaces we can use
the basis of the topology to define measurability.

Proposition 2.3 Let (Y, d) be a separable metric space. Then f : Ω→ Y is
Nd-measurable if and only if f is τd-measurable.

In particular if f : Ω→ E is N‖·‖-measurable and E is a separable Banach
space then f is τ‖·‖-measurable.

Furthermore, if X = L(E1, E2) where E1 is separable then if f is SOT -
measurable then it is also ‖ · ‖-measurable.

Proof. Of course if f is τd-measurable then f is Nd-measurable. Assume
that f is Nd-measurable. Using that f is β-measurable if and only if f is
σ(β)-measurable where σ(β) stands for the smallest σ-algebra containing β
we shall see that σ(Nd) = σ(τd) in the case that Y is d-separable. It suffices
to see that any open set G belongs to σ(Nd).

Let A = (yn)∞n=1 be a dense set in Y and G ∈ τd. For each y ∈ G,
there exist ε > 0 and yk such that y ∈ B(yk, ε). Selecting εk such that
y ∈ B(yk, εk) ⊆ G, we conclude that G = ∪kB(yk, εk). This shows that
f−1(G) = ∪kf−1(B(yk, εk)) ∈ Σ.
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Assume now that f : Ω → L(E1, E2) and E1 is separable and let (xn)
be a dense set in the unit ball of E1. Due to Proposition 2.2 each map
‖fxn(·)− Txn‖ is measurable for each n ∈ N and T ∈ X. Since

‖f(w)− T‖ = sup
n
‖fxn(w)− Txn‖

we obtain that f is ‖ · ‖-measurable.
We know introduce another related notion based on approximation by

countably valued functions.

Definition 2.4 Let (X, τ) be a Haussdorff topological space. A function
f : Ω → X is said to be countably valued if there exist (xn)n ⊂ X and
(An)n ⊂ Σ such that f =

∑∞
n=1 xnχAn. In the case that xk = 0 for k ≥ n0 it

will be called a simple function.
A function f : Ω → X is said to be τ -approximable if there exists a

sequence of X-valued countably valued functions sn : Ω→ X such that

lim
n
sn(ω) = f(ω) ∀ω ∈ Ω.

In the case that (X, τ) be a Haussdorff topological vector space and f : Ω→
X, we denote Xf = span(f(Ω)) and f is called τ -approximable if f : Ω→ Xf

is τ -approximable, that is to say that we allow the countably valued functions
to take values in Xf and not only in f(Ω).

In particular, a function f : Ω → X = L(E1, E2) is said to be weak-,
SOT -, WOT - and weak∗-approximable (in the case E2 = E∗) if there exists
a sequence of operator-valued countably valued functions sn : Ω→ Xf such
that

〈sn(ω), T ∗〉 −−−→
n→∞

〈f(ω), T ∗〉, ∀T ∗ ∈ X∗, ∀ω ∈ Ω,

lim
n
‖sn(ω)(x)− f(ω)(x)‖ = 0 ∀x ∈ E1, ∀ω ∈ Ω,

〈sn(ω)(x), y∗〉 −−−→
n→∞

〈f(ω)(x), y∗〉, ∀x ∈ E1,∀y∗ ∈ E∗2 ,∀ω ∈ Ω

and
〈sn(ω)(x), y〉 −−−→

n→∞
〈f(ω)(x), y〉, ∀x ∈ E1, y ∈ E ∀ω ∈ Ω

respectively.
We shall see that for E1 = K the notions of ‖ · ‖-, SOT - and WOT -

approximable coincide. However, for E2 = K the notions SOT - and WOT -
approximable (which correspond to weak∗-approximable) differ from ‖ · ‖-
approximable as the following example shows.
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Example 2.3 Let Ω = [0, 1] with the Borel σ-algebra, E1 = `1 and E2 =
K. Let f(t) = (eint)n∈N. Then f is weak∗-approximable but not ‖ · ‖-
approximable.

Proposition 2.5 Let (X, τ) be a Haussdorff topological space. If f : Ω→ X
is τ -approximable then f is τ -measurable and f(Ω) is τ -separable.

Proof. Assume f = limn sn pointwise and sn =
∑∞

k=1 xn,kχAn,k for some
xn,k ∈ X and An,k ∈ τ . If G ∈ τ then s−1

n (G) ∈ Σ and

{w : f(w) ∈ G} = lim sup{w : sn(w) ∈ G} ∈ Σ.

Finally observe that f(Ω) ⊆ A where A = {sn(w) : n ∈ N, w ∈ Ω} is a
countable set in X.

Let us show that actually the converse holds true for metric spaces.

Lemma 2.6 Let (Y, d) be a metric space and Σ = B(Y ) the Borel σ-algebra.
The following are equivalent:

(i) Y is d-separable.
(ii) There exists a sequence φn : Y → Y of simple functions such that

limn→∞ d(φn(w), w) = 0 for any w ∈ Y .
(iii) id : Ω→ Y is d-approximable.

Proof. (i) =⇒ (ii) Choose {yn : n ∈ N} a countable dense subset of Y . For
each n ∈ N, and 1 ≤ k ≤ n, we define

B1,n = {y ∈ Y : d(y, y1) ≤ min
1≤m≤n

d(y, ym)},

and for each 1 < k ≤ n, define Bk,n as the set y ∈ Y satisfying

d(y, yk) < d(y, ym) 1 ≤ m < k, d(y, yk) ≤ d(y, ym) k ≤ m ≤ n.

Clearly Bk,n are pairwise disjoint Borel sets.
Now, let us define φn : Y → Y by φn(y) = yk for the first yk attaining

min1≤l≤n (.y, yl), that is to say

φn =
n∑
k=1

yk χBk,n
. (1)

Hence the functions φn are B(Y )-simple, and we have limn→∞ φn(y) = y
∀y ∈ Y.

(ii) =⇒ (iii) Obvious
(iii) =⇒ (i) It follows from Proposition 2.5.
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Theorem 2.7 Let (Y, d) be a metric space. Then f : Ω→ Y is d-approximable
if and only if f is Nd-measurable and f(Ω) is d-separable.

Proof. The direct implication follows from Proposition 2.5. Assume now
that f is Nd-measurable and f(Ω) is d-separable. We now use Lemma 2.6
to construct φn =

∑n
k=1 yk χBk,n

with φn(y) → y for any y ∈ f(Ω). Since
Bk,n ∈ σ(Nd) and f is Nd-measurable we obtain that An,k = f−1(Bn,k) ∈ Σ
and we have that sn(w)→ f(w) for each w ∈ Ω where sn(w) = φn(f(w)) =∑n

k=1 ykχAn,k
. Hence f is d-approximable.

For Banach spaces (X, ‖ · ‖) we can apply Theorem 2.7 for d(x, y) =
‖x− y‖, and since ‖ · ‖-approximable corresponds to the so-called (strongly)-
measurable (see [7, 9]) or uniformly measurable in the case X = L(E1, E2)
(see[12]) we recover Pettis (and Dunford generalization) measurability theo-
rem. From Theorem 2.7 and Proposition 2.2 we obtain the following corollary.

Corollary 2.8 A function f : Ω → L(E1, E2) satisfies that fx is ‖ · ‖-
approximable for any x ∈ E1 if and only if f is SOT -measurable and fx(Ω)
is ‖ · ‖-separable for any x ∈ E1.

Proposition 2.9 Let X be a Banach space and f : Ω → X. Then f is
‖ · ‖-approximable if and only if f is weak-approximable.

Proof. It suffices to use that if sn(w) → f(w) weakly then a convex com-
bination of sn, say s̃n(w) converges to f(w) in norm (see [12, Page 36]). Of
course if sn are countably valued, then also s̃n are, and the result follows.

Proposition 2.10 Let E be a separable Banach space, X = E∗ and let
f : Ω→ X be a bounded function. Then f is weak∗-approximable if and only
if f is W ∗-measurable.

Proof. We may assume that f(Ω) ⊆ BX . Since E is separable then the unit
ball of (BX , weak

∗) is metrizable (see [9, Page 426]) and weak∗-compact (see
[12, Page 37]). Hence BX is a metrizable separable space with the weak∗-
topology. Applying now Theorem 2.7 and Proposition 2.3 we have the desired
result.

Let us mention that Proposition 2.10 does not hold without the assump-
tion of separability.
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Example 2.4 Let Ω = [0, 1], E = `2[0, 1] and f : [0, 1] → `2[0, 1] = E∗

given by f(t) = et the corresponding element in the canonical basis. It is
W ∗-measurable, but not weak∗-approximable.

Proof. For each x = (αt)t ∈ `2([0, 1]) then t → αt is measurable. Let us
see that f([0, 1]) is not weak∗-separable. Assume that A is weak∗-dense in
f([0, 1]). For any two points from t, t′ ∈ [0, 1] and ε > 0 there exists g ∈ A
such that g ∈ N(et; et, et′ , ε). In other words

|〈g, et〉 − 〈et, et〉| < ε and |〈g, et′〉 − 〈et, et′〉| < ε.

so, we have
|g(t)− 1| < ε and |g(t′)| < ε.

This means that for each pair (t, t′) ∈ [0, 1]× [0, 1] with t 6= t′, we obtain
a function gt,t′ ∈ A which verifies gt,t′(t) ∼ 1 and gt,t′(t

′) ∼ 0. As there is a
non-countable amount of pairs (t, t′) ∈ [0, 1] × [0, 1] with t 6= t′, we get that
A would contain a non-countable amount of different functions. Therefore
f([0, 1]) is not weak∗-separable and then f cannot be weak∗-approximable.

Of course ‖ · ‖-approximable implies SOT -approximable and for dual
spaces weak-approximable implies weak∗-approximable. However the con-
verse is false as the following example shows.

Example 2.5 Let X be a separable Banach space such that X∗ is not sepa-
rable. Let Ω = BX∗ with the weak∗-topology and Σ the Borel σ-algebra. Then
id : Ω → L(X,K) is weak∗-approximable (SOT -approximable) but it is not
weak-approximable (‖ · ‖-approximable).

Proof. Since Ω is weak∗-separable but it is not ‖ · ‖-separable then from
Lemma 2.6 we obtain id : Ω → X∗ is weak∗-approximable. However it is
not ‖ · ‖-approximable, which by Proposition 2.9 gives that it is not weak-
approximable.

Let us now investigate some conditions on E1 and E2 for the WOT and
SOT measurability to coincide.

Proposition 2.11 Let E2 is separable. Then f : Ω → L(E1, E2) is WOT -
measurable if and only if f is SOT -measurable.
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Proof. Assume that f is WOT -measurable, Select (yn) ⊂ E2 and y∗n ⊂ E∗2
such that (yn) is dense in E2 and ‖yn‖ = 〈yn, y∗n〉 for each n ∈ N. Therefore
for each x ∈ E1 and T ∈ L(E1, E2) we have

‖f(w)x− Tx‖ = sup
n
|〈f(w)x, y∗n〉 − 〈Tx, y∗n〉|.

Therefore f is measurable due to the measurability of fx,y∗n for each n.
Assume that f is SOT -measurable. Applying Corollary 2.8 we conclude

that fx is ‖ · ‖-approximable and in particular fx is weak-approximable.
Hence f is WOT -measurable.

Theorem 2.12 Let f : Ω→ X = L(E1, E2) and Xf is ‖ · ‖-separable. Then
f is ‖ · ‖-approximable⇐⇒ f is τ‖·‖-measurable⇐⇒ f is ‖·‖-measurable⇐⇒
f is SOT -measurable ⇐⇒ f is WOT -measurable ⇐⇒ f is W -measurable.

Proof. Making use of Theorem 2.7, Proposition 2.3 and Remark 2.1, the only
implications that remain to be shown are that if f is either SOT -measurable
or WOT -measurable then it is ‖ · ‖-measurable. For such a purpose, let (Tn)
be a dense set in Xf and select xn ∈ E1 and y∗n ∈ E∗2 such that ‖Tn‖ <
‖Tn(xn)‖+ 1/n and ‖Tn(xn)‖ = |〈Tnxn, y∗n〉|. It is elementary to see that for
each w ∈ Ω and T ∈ L(E1, E2),

‖f(w)− T‖ = sup
n
‖f(w)xn − Txn‖ = sup

n
|〈(f(w)− T )xn, y

∗
n〉|.

Hence either SOT - or WOT -measurability implies ‖ · ‖-measurability.
As a consequence of Proposition 2.5 and Theorem 2.12 we can recover

the Pettis and Dunford measurability theorems at once.

Theorem 2.13 Let f : Ω → X = L(E1, E2). The following statements are
equivalent:

(i) f is ‖ · ‖-approximable.
(ii) f is τ‖·‖-measurable and Xf is separable in X.
(iii) f is WOT -measurable and Xf is separable in X.

Let us now analyze the version of Theorem 2.13 for the SOT topology.

Theorem 2.14 Let f : Ω → X = L(E1, E2) where E1 is separable. The
following statements are equivalent:

(i) f is SOT-approximable.
(ii) f is τSOT -measurable and Xf is SOT -separable.
(iii) f is WOT -measurable and Xf is SOT -separable.

12



Proof. The implication (i) =⇒ (ii) was shown in Proposition 2.5 and the
implication (ii) =⇒ (iii) is immediate.

(iii) =⇒ (i) Note that f = limm fχmBX
where X = L(E1, E2), and

due to the fact that pointwise limit of τ -approximable functions is also τ -
approximable we can assume that K0 = supw∈Ω ‖f(w)‖ < ∞. Assume f is
WOT -measurable and Xf is SOT -separable. Since Xf ∩ K0BX is SOT -
separable we select first {Tn} a countable set in Xf ∩ K0BX such that

f(Ω) ⊂ {Tn} and (xm) dense set in BE1 . Consider the separable subspace of
E2 given by Ẽ2 = span{Tn(xk) : n, k ∈ N}. Due to Proposition 2.11 we have
that f is SOT -measurable.

Denote Nk = N(0;x1, · · · , xk, 1
k
) and define for each n, k ∈ N the set

Ak,n = {w ∈ Ω : f(w)− Tn ∈ Nk}

which belongs to Σ since f is SOT -measurable. Now consider Bk,1 = Ak,1
and

Bk,n = Ak,n \ (∪1≤j<nBk,j)

which are pairwise disjoint sets in Σ and Ω = ∪nAk,n = ∪nBk,n for any k ∈ N.
We now define the countably valued function

fk =
∑
n

TnχBk,n
.

It remains to show that f(w) = SOT − limk fk(w), that is to say that for
each w ∈ Ω, x ∈ E1 and ε > 0 there exists k0 = k(x, ε) such that f(w) −
fk(w) ∈ N(0;x, ε) for any k ≥ k0. Select j ∈ N such that ‖x − xj‖ < ε

4K0
,

k ≥ max{j, 2
ε
} and n ∈ N such that w ∈ Bk,n. Therefore

‖f(w)(x)− fk(w)(x)‖ ≤ ‖f(w)(xj)− fk(w)(xj)‖+
ε(‖f(w)‖+ ‖fk(w)‖)

4K0

≤ ‖f(w)(xj)− Tn(xj)‖+ ε/2

≤ 1

k
+ ε/2 = ε.

This completes the proof.

Corollary 2.15 Let E1 be separable and f : Ω → L(E1, E2). Then f is
SOT -approximable if and only if f is WOT -approximable.

13



Proof. Assume that f isWOT -approximable. Since co(f(Ω))
WOT

= co(f(Ω))
SOT

we can use Theorem 2.14 to obtain that f is SOT -approximable. The con-
verse is obvious.

Let us finish this section with a couple of examples showing the impor-
tance of separability in the assumptions above.

Example 2.6 Let Ω = [0, 1] and Σ = B the Borel σ-algebra. Let E1 = E2 =
`∞. Define f(t) ∈ L(E1, E2) given by

f(t)((αn)) = (eintαn), (αn) ∈ `∞.

Then f is not WOT -approximable.

Proof. It suffices to see that {f(t) : t ∈ [0, 1]} is not WOT -separable.
Assume that this is the case, then selecting 1 = (αn) with αn = 1 for all
n we would have that {f(t)(1) : t ∈ [0, 1]} is weakly separable, which is
equivalent to norm-separability. However it is clear that {(eint)n : t ∈ [0, 1]}
is not norm separable.

Example 2.7 Let us consider f : [0, 1]→ L(`2([0, 1]), `2([0, 1])) given by

f(t)(
∑
s

ases) =
∑
s≤t

ases. (2)

Then f is SOT -measurable but not SOT -approximable.

Proof. Let
∑

s ases ∈ `2([0, 1]). Hence A = {s : as 6= 0} is countable.
Hence

t→ f(t)(
∑
s

ases) =
∑
s∈A

asesχ[s,1](t)

is countably valued, and then ‖ · ‖-approximable.
On the other hand f([0, 1]) is not SOT -separable. Assume that there

exists a set A of elements in span(f([0, 1]) such that f([0, 1]) ⊆ ASOT . We
shall see that A is non countable. For each t ∈ [0, 1] there exists g ∈ A such
that f(t) − g ∈ N(0; et, 1/2). We can choose g =

∑
j αjf(tj) for a given

sequence of scalars (αj) and tj ∈ [0, 1]. Hence

‖f(t)(et)− g(et)‖ = ‖et −
∑
j:t≤tj

αjetj‖ < 1/2.

This implies that t = tj and αj = 1 for some j. This shows that {f(t) : t ∈
[0, 1]} belongs to A and therefore A is non countable.
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3 Examples of SOT -approximable functions

In this section we show that standard functions which appear in different
areas are actually SOT -approximable functions but not ‖ · ‖-approximable.
Also some procedures to construct them are provided.

Proposition 3.1 Let Ω = [0, 1], Σ = B the Borel σ-algebra, E1 = L1([0, 1])
and E2 = C([0, 1]). For each K : [0, 1]× [0, 1]→ R+ measurable and bounded
we define fK : [0, 1]→ L(E1, E2) be given by

fK(t)(φ)(s) =

∫ s

0

K(t, u)φ(u)du, φ ∈ L1([0, 1]).

Then fK is SOT -approximable.
Moreover, if K̃ : [0, 1] → L∞([0, 1]) where K̃(t)(u) = K(t, u) is assumed

to be ‖ · ‖-approximable then fK is ‖ · ‖-approximable.

Proof. Note first that fK(t) is well defined.. Indeed, for each t and φ ∈
L1([0, 1]) we have that K(t, ·)φ(·) ∈ L1([0, 1]) and then

∫ s
0
K(t, u)φ(u)du

is continuous. Invoking Corollary 2.15 we shall show that fK is WOT -
approximable.

We know from the scalar-valued measurability ofK thatK(s, t) = limnKn(s, t)
where

Kn =
∞∑
k=1

αk,nχAn,k×Bn,k
, αk,n ∈ R+, An,k, Bn,k ∈ Σ

Define

fn(t) =
∞∑
k=1

αk,nΦn,kχAn,k
(t)

where Φn,k(φ)(s) =
∫

[0,s]∩Bn,k
φ(u)du ∈ L(E1, E2). Therefore for each φ ∈

L1([0, 1]) and µ ∈M([0, 1]) = E∗2 we have

t→ 〈f(t)(φ), µ〉 = lim
n
〈fn(t)(φ), µ〉

and fn are countably-valued functions.
Assume that K̃ = limn K̃n in the ‖·‖ topology where K̃n =

∑∞
k=1 ψk,nχAn,k

for some ψk,n ∈ L∞ and An,k ∈ Σ. Denote

fn(t)(φ)(s) =
∞∑
k=1

(∫ s

0

ψk,n(u)φ(u)du

)
χAn,k

(t), φ ∈ L1([0, 1]).
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The result follows using that

‖fK(t)−fn(t)‖ ≤ sup
‖φ‖1=1

∫ 1

0

|K(t, u)φ(u)−Kn(t, u)φ(u)|du ≤ ‖K̃(t)−K̃n(t)‖.

Corollary 3.2 Let t→ f(t) ∈ L(L1([0, 1]), C([0, 1])) given by

f(t)(φ)(s) =

∫ min{t,s}

0

φ(u)du

is SOT -approximable but not ‖ · ‖-approximable.

Proof. Apply Proposition 3.1 for K̃(t) = χ[0,t](u). Note that f([0, 1]) is not
‖ · ‖-separable because for t < t′

‖f(t)− f(t′)‖ = sup
φ≥0,‖φ‖1=1

∫ t′

t

φ(u)du ≥ 1.

This gives that f is not ‖ · ‖-approximable.
Given x∗ ∈ E∗1 and y ∈ E2 we denote x∗ ⊗ y the operator in L(E1, E2)

given by x → 〈x∗, x〉y. Let us now construct functions with values in the
space of operators between general Banach spaces using special sequences of
elementary operators.

Proposition 3.3 Let E1 and E∗2 be Banach spaces. Let φn : [0, 1]→ C be a
sequence of measurable functions such that

M = sup
n
|φn(t)| <∞.

Let (y∗n) ∈ BE∗2
and (x∗n) ∈ BE∗1

be such that∑
n

|〈x∗n, x〉〈y∗n, y〉| <∞, x ∈ E1, y ∈ E2.

If f : [0, 1]→ L(E1, E
∗
2) given by

f(t) =
∑
n

φn(t)x∗n ⊗ y∗n. (3)

then f is weak∗-approximable.
Furthermore, (i) f is SOT -approximable whenever

∑
n |〈x∗n, x〉| <∞ for

all x ∈ E1.
(ii) f is ‖ · ‖-approximable whenever

∑
n ‖x∗n‖‖y∗n‖ <∞.
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Proof. Using the assumption we have that f(t) is well defined, because

〈f(t)(x), y〉 =
∑
n

φn(t)〈x∗n, x〉〈y∗n, y〉

defines an absolutely convergent series for each t ∈ [0, 1].
Consider fN(t) =

∑N
n=1 φn(t)x∗n⊗y∗n which is a ‖·‖-approximable function

with values in L(E1, E
∗
2). Hence can be approximated by simple functions

in the norm topology. Of course fN(t) → f(t) in the WOT ∗ topology be-
cause for each ε > 0 and x ∈ E1 and y ∈ E2 there exists N such that∑∞

n=N |〈x∗n, x〉||〈y∗n, y〉| < ε/M . Hence

|〈fN(t)(x)− f(t)(x), y〉| ≤M

∞∑
n=N+1

|〈x∗n, x〉||〈y∗n, y〉| < ε.

Under the assumptions in (i) and (ii) the convergence fN(t)→ f(t) is in
the SOT and ‖ · ‖ topologies due to the estimates

‖fN(t)(x)− f(t)(x)‖ ≤M
∞∑

n=N+1

|〈x∗n, x〉|‖y∗n‖

and

‖fN(t)− f(t)‖ ≤M
∞∑

n=N+1

‖x∗n‖‖y∗n‖.

Corollary 3.4 Let 1 < p < ∞ and (en) the canonical basis of `p. Then
f(t) =

∑
n(en ⊗ en)eint is SOT -approximable but not ‖ · ‖-approximable.

Proof. Using Proposition 3.3, together with the fact that weak∗-approximable
becomes WOT -approximable since `p is reflexive we obtain that f is WOT -
approximable, and using that `p is separable we also get, invoking Corollary
2.15, that f is SOT -approximable.

However the range is not separable, what follows from the estimate ‖f(t)−
f(s)‖ = supn |eint − eins| ≥ 1 whenever t 6= s. This gives that is not ‖ · ‖-
approximable.

Other natural examples of SOT -approximable functions which are not
‖ · ‖-approximable appear often in different areas.
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Example 3.1 Let 1 ≤ p ≤ ∞. Denote the translation operator on R by
τt ∈ L(Lp(R), Lp(R)), that is

τt(φ)(s) = φ(s+ t)

and the dilation operator on R+ by Dδ ∈ L(Lp(R), Lp(R)), that is

Dδ(φ)(s) = δ1/pφ(δs).

Then the functions f(t) = τt and g(δ) = Dδ are SOT-approximable but not
‖ · ‖-approximable for 1 ≤ p <∞.

Proof. Using Theorem 2.14 and Proposition 2.5 it suffices to see that f
and g are WOT -measurable, f(R) and g(R+) are SOT -separable but not
‖ · ‖-separable. Note that for φ ∈ Lp(R) and ψ ∈ Lp′(R) we have

t→ 〈τt(φ), ψ〉 =

∫
R
φ(t+ s)ψ(s)ds

and

δ → 〈Dδ(φ), ψ〉 = δ−1/p

∫
R
φ(δs)ψ(s)ds

are continuous and hence measurable. Indeed the first case follows using that
τt(φ) − τt0(φ) = τt−t0(τt0(φ)) − τt0(φ) and ‖τε(φ) − φ‖p → 0 as ε → 0. For
the second one, use that Dδ(φ) −Dδ0(φ) = Dδ/δ0(Dδ0(φ)) −Dδ0(φ) and the
fact ‖Dδ(φ)− φ‖p → 0 as δ → 1.

Consider {f(q) : q ∈ Q} and {g(q) : q ∈ Q, q > 0}. The above arguments
show that are SOT -dense in f(R) and g(R+).

Of course, for each t > t′, select φ(s) = 1
(b−a)1/p

χ[a,b] for which b−a < t−t′.
Hence

‖τt − τt′‖ ≥
(∫

R

|φ(s+ t)− φ(s+ t′)|pds
)1/p

= 2.

Similarly for δ′ < δ < 2δ′, select φ = χ[0,1]. Hence, since (1− a)1/p ≥ 1− a1/p

for 0 < a < 1, we have

‖Dδ −Dδ′‖ ≥ (δ1/p − δ′1/p)δ−1/p + δ′
1/p

(δ′
−1 − δ−1)1/p

≥ 2(1− (δ′/δ)1/p) ≥ 2(1− 2−1/p).
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Example 3.2 Let Ω = [0, 1] and Σ = B the Borel σ-algebra. Let E1 =
C([0, 1] × [0, 1]) and E2 = C([0, 1]) the spaces of continuous functions. Let
f : [0, 1]→ L(E1, E2) be given by

f(t)(φ) = φt, φt(s) = φ(t, s), φ ∈ C([0, 1]× [0, 1]).

Then f is SOT -approximable but not ‖ · ‖-approximable.

Proof. As above it suffices to see that f is WOT -measurable, f([0, 1]) is
SOT -separable but not ‖ · ‖-separable.

Let φ ∈ C([0, 1]× [0, 1]) and µ ∈M([0, 1]) = E∗2 we have

t→ 〈f(t)(φ), µ〉 =

∫ 1

0

φ(t, s)dµ(s)

which is continuous (and hence Borel measurable).
On the other hand {f(q) : q ∈ Q ∩ [0, 1]} is SOT -dense in f([0, 1]).

Indeed for any φ ∈ C([0, 1]× [0, 1]) = C([0, 1], C[0, 1]) and 0 ≤ t ≤ 1 we have
‖φt − φqn‖ → 0 for any sequence (qn) ⊂ Q ∩ [0, 1] converging to t.

Finally note that for t 6= t′ select ψ ∈ C([0, 1]) such that ‖ψ‖∞ = 1,
ψ(0) = 0 and ψ(t− t′) = 1. For φ(t, s) = ψ(t− s) we have

‖f(t)− f(t′)‖ ≥ ‖φt − φt′‖ ≥ 1

what shows that f([0, 1]) is not separable.
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