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Abstract

Let E; be Banach spaces and let X, be Banach spaces continu-
ously contained in the spaces of E;-valued sequences (2(j)); € EL, for
i = 1,2,3 . Given a bounded bilinear map B : Fi x Ey — Ej3, we
define (Xg,, X, )p the space of B-multipliers between Xpg, and Xg,
to be the set of sequences ()\;); € EY such that (B()\;,2(j))); € Xg,
for all (2(j)); € Xg, and the Hadamard projective tensor product
Xp, ®p Xg,, consisting of those elements in E§ that can be repre-
sented as >, > B(#4(4), n(4)), where (2n)n € Xpgy, (Yn)n € Xp,
and 3, 7, Il i, < o0
We will analyze some properties of these two spaces, relate them and
compute the Hadamard tensor products and the spaces of vector-
valued multipliers in several cases, getting applications in the par-
ticular case F = L(F1, E9) and B(T,z) = T(x).

1 Introduction and preliminaries

One of the classic problems in Fourier Analysis is the description of the space
of coefficient multipliers between function spaces. Several papers show the
interest of mathematicians to determine this space in particular cases (see the
recent monograph [JVA] or see the historical situation for Hardy spaces in
(O], and [B3, JJ, JP] for several techniques and results regarding mixed-norm
and Bergman spaces.)

The study of operator-valued multipliers (X (E}),Y (E2)) corresponding
to sequences of operators (7}); € L(Ey, E) for which (T(z;)); € Y(E»)



for all (x;) € X(E;) where X(E;) and Y (E>) stand for different spaces of
vector-valued sequences (see [AB3, BFS]) or different spaces of vector-valued
analytic functions see [AB1, B4, B5, B6| and references therein) has been
deeply investigated.

More recently O.Blasco and M. Pavlovic (see [BP]) have considered gen-
eral properties on the spaces of analytic functions in an abstract context to
be able to carry over the study of multipliers between these spaces relying
on the construction of certain Hadamard tensor product. These technique
allows them to recover lots of old results on concrete examples. Motivated by
their paper (see also the recent monograph [P]) we shall introduce the notion
of S(F)-admissibility and consider the vector-valued analogues of several of
the results in [BP]. In particular, we shall develop a very general theory of
vector-valued multipliers adapted to bilinear maps which will cover most of
the known cases in the vector-valued setting and generates new ones, and
another point of view for possible applications.

Given a Banach space £, S(E) stands for the space of sequences (z;); C E
endowed with the locally convex topology given by the seminorms p;(f) =
|z, 7 > 0. We shall say that X is S(£)-admissible if X is a Banach
space contained with continuity in S(E) and the maps © — z.e; from £ —
Xp are also continuous for each j.

It is easy to check that most of the well-known vector-valued sequence
spaces such as (P(E), lyear(F) and (P&, FE, and most vector-valued spaces
of analytic functions, such as vector-valued Hardy, Bergman, Boch or BMO
spaces, turn out to be S(E)—admissible.

Let us now introduce the basic notions in the paper. For a given bounded
bilinear map B : E X Ey — FE,, we define the space of multipliers between
Xp, and Xg, to be

(X5, Xi,)p = {(N)); € B sit. (B(N;,z))); € Xp, V() € X, }-
Then, if B verifies that there exists C' > 0 such that

lelle <C sup [[Ble,2)||lp,, e€E, (1)

llzll 2, =1

(XEg,, Xg,) 5 becomes a S(F)-admissible Banach space with its natural norm
(see Theorem 3.3).

The particular instances of bilinear maps such as By : Kx F — FE
given by (a,x) — ax, Bp : ' x E — K given by (2/,x) — (2/,x) and
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Br : L(E,F) x E — F given by (T,z) — T(x) have been considered in
the literature quite often and the corresponding spaces of B-multipliers have
been described in some cases(see [AB1, BFS, B5]).

Given now two admissible spaces Xpg, and Xpg, and a bilinear map B :
Ey x Ey — E, we define Xg, ®p Xg, as the space of elements h € S(F)
such that b = > > B(2,(j),ya(j)) where the series converges in S(E),
(@n)n € Xpys (Yn)n € X, and 3- [[#n|[ x4, [[Ynll x5, < 00

It is not difficult to see that this space, normed in a natural way, is
also S(E)—admissible for bilinear maps satisfying the following condition:
3C > 0 such that for each e € E there exists (x,,y,) € E1 X E verifying

e=Y B@nyn) > lwnllelyalle < Clels (2)

(see Theorem 4.3).

As a particular example with such a condition and very important for our
purposes is the following bilinear map, defined using the projective tensor
product,

B, : EF1 x Fy — E1®7|-E2, ({E,y) —TY.

The reader is referred to [DU] or [R] for the definitions and properties of the
projective tensor product and norm.

Hadarmard tensor product and multipliers are closely related. One first
connection with multipliers comes using the topological dual and the vector-
valued Kothe dual XE = (Xg, /1)p,. It will be shown that

(Xp, ®p Xp,)"™ = (X, Xp)) e

and
(Xe, ®p Xg,) = (Xg,, Xp,) -

where B* : E' x FE; — FE is the bounded bilinear map defined by
(B*(¢2),5) = (¢, Bx,y)), @€ Eyye Eye € E

(see Proposition 4.6).



Given a continuous bilinear map B : X X Y — Z then there exist
unique bounded linear operators T : X®,Y — Z and &5 : X — L(Y, Z)
satisfying

Tz @y) = B(r,y) = Pp(r)(y), reXyecY. (3)

Using these identifications one gets that B(X x Y,Z) = L(X®,Y,Z) =
L(X,L(Y,Z)) are isometric isomorphisms. These identifications will give us
a basic formula (see Theorem 4.7):

(XE, ®8, X5y Xps )5, = (XE, (XEy, XBS) B, ) B, (4)

which shows that describing Hadamard tensor products helps to determine
multipliers.

We shall get the description of Hadamard tensor products in some cases.
A particularly interesting example is the description of H'(D)®p, H'(D, L?)
for the values 1 < p < 2 in Theorem 5.5. We will use the above formula
and the previously mentioned description to recover some known results on
vector-valued multipliers ([B4])

(H'(T), BMOA(T, L?)), = Bloch(D, L(L?, L)),2 < p < o0,

(HY(T, L?), BMOA(T)) 5, = Bloch(D, L(L” , L)), 1 < p < 2.

where % + % = 1(see Corollary 5.6).

The paper is organized as follows: Section 2 is devoted to introduce the S(E)-
admissibility and give some examples. In Section 3 we introduce coefficient
multipliers through a bilinear map, deal with solid spaces and relate multi-
pliers with the Kéthe dual. Hadamard tensor product is defined in Section
4 where we find its connection with multipliers via the Kothe dual and show
the formula (4). In the last section we first use multipliers to determine the
Hadamard tensor product of some spaces and, in the other direction, we also
use the Hadamard product to obtain some vector-valued multipliers spaces
showing applications to vector-valued Hardy spaces.

2 Vector-valued S-admissibility

Let E be a Banach space. We use the notation S(E) for the space of se-
quences f = (z;)j>0, where z; € E, endowed with the locally convex topol-
ogy given by the seminorms p;(f) = ||z;||z, 7 > 0. We shall think of f as a
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formal power series with coefficients in F, that is f(z) = > >0 z;27 and most

of the time we will write f(j) instead of z;. Hence a sequence (f,), C S(E)
converges to f € S(F) if and only if p,;(f — f.) = 0 Vj > 0 if and only if
1£ () = fuli)|lz = 0 as n — oo for all j > 0.

We will write e;(z) = 27 for each j > 0 and P(F) for the vector space of the
analytic polynomials with coefficients in F, that is Z;V xje;, where z; € E.

We first introduce the basic notion which plays a fundamental role in
what follows.

Definition 2.1 Let E be a Banach space and let X be a subspace of S(E).
We will say that Xg is S(E)—admissible (or simply admissible) if

(i) (Xg,| - |lxz) is a Banach space,
(¢7) the projection wj : Xp — S(E), f — f(j), is continuous and
(tii) the inclusion i; : E — Xg, x — xe; is continuous.

We denote m;(Xg) = ||7;|| and i;(XEg) = ||i;].

Hence for each j > 0 we have

If )z < m(Xe)lflxs  Nzesllxs < i5(Xe) 2]l

Remark 2.1 Let Xg, be S(Ey)-admissible and let Ey be isomorphic to a
closed subspace of Es, say I(Ey). Define

Xp, ={(x;); : zj € Er, (I(z))); € Xp, }

and the norm
()l x5, = [1(1(2));l x4, -
Then Xpg, is S(F1)-admissible.
Also we have that if Z is a Banach space and Xy C Z C Yg where Xg
and Yg are S(E)-admissible then Z is S(E)-admissible.

Let us give a method to generate S(FE)-admissible spaces from classical
S-admissible spaces.



Proposition 2.2 Let FE be Banach space and let X be S-admissible. We
denote

X[E] = {(z;);20 € E" : ||(llz;]lp); ] x < o0},

Xueat(B) = { (@7)120 € B2 | (@3) | rasiey = 500 [I({a5,2"))511x < o0}

[l pr=1

Then X @, E, X[E] and Xyeax(E) are S(E)-admissible.

Proof. The fact that X[E] is a Banach space is easy and left to the reader.
Clearly Xyear(F) = L(E', X) and X®,E have complete norms.
Due to the continuous embeddings

X®E C X[E] C Xuear(E)

we only need to see that P(E) C X®,FE with continuous injections i; for
Jj > 0 and that Xeq(F) C S(E) with continuity. Both assertions follow
trivially from the facts

lzesllxe, m = el ellesllx <4(X)|zlle

and

|zjlle = sup [z, 2")] < m(X)||(2)

2’|l pr=1

Xweak (E) °

XE

Definition 2.3 Let Xp be S(E)-admissible and denote X% = P(E) ~. We
say that Xg is minimal whenever P(E) is dense in Xg , that is to say
XV = Xp.

Of course XY is S(F)—admissible whenever X is.

Proposition 2.4 Let Xg be S(E)—admissible and let F' be a Banach space.
Then L(XEg, F) is S(L(E, F))—admissible.
In particular (Xg)" and (X%) are S(E')—admissible.

Proof. Identifying each T € L(Xg, F) with the sequence (7(j)); €
S(L(E,F))given by T'(j)(z) = T'(ve;), we have that L(Xg, F) — S(L(E, F)).
Moreover 7;(L(Xg, F')) < i;(Xg) due to the estimate ||T'(j)| ze,r) < 4 (Xe)|T || 2(xp,F)-



To show P(L(E,F)) C L(Xg, F), we use that, for each j > 0 and S €
L(E,F), Se; defines an operator in £(Xg, F') by means of

Sej(f) = S(zy), f = (z;) € X&.

Moreover i;(L(E, F)) < m;(Xg) because |Sej|lzxpr)y < mi(Xe)|S|| e, m)-
m

Example 2.1 Some examples of S(E)-admissible spaces are (P(E), (" . (E)
and (PR E for 1 < p < oo, where

#(B) = 5] = {(za)zo : (@)l = (Z fealy) " < o}

O wlE) = {(:vn)nzor\l(fcn)\l O (B) = SUD (Z‘<“’"’“’ >’p> }

[l ]| gr =1

with the obvious modifications for p = oo.
In particular, co(E) = ((*(F))° and

UC(E) = (0:..)(E) = {(acn)n>0 €l il );an converges unconditz’onally}

are S(E)-admissible spaces.
Another interesting space, not coming from the above constructions, is

Rad() = {(&)0 500 | [ |rixm<t>||%dt]”2<oo}

where r; stands for the Rademacher functions (see [DJT]).
It is well known (see [DJT]) that

liear(E) € Rad(E) C £y,00(E)

with continuous embeddings and therefore Rad(E) is S(F)-admissible.

Let us mention the interplay with the geometry of Banach spaces when
comparing the space Rad(E) and Rad[E]. Recall that the notions of type 2
and cotype 2 corresponds to (*(E) C Rad(F) and Rad(FE) C (*(E) respec-
tively (see [DJT]).



Proposition 2.5 Let E be a Banach space.
(i) Rad(E) = Rad[E] if and only if E is isomorphic to a Hilbert space.
(71) Radyear(E) = Rad[E] if and only if E is finite dimensional.

Proof. Note that, using the orthonormality of r,, Plancherel’s theorem
gives that Rad[E] = (*(E) and Radyear(E) = 2., (FE) . Of course if F

weak
is a Hilbert space then Rad(F) = (*(F) and for finite dimensional spaces
R&dweak(E) = e?ﬂeak(E) = gQ(E)

On the other hand, clearly Rad[E] C Rad(FE) if and only if E has type 2
and Rad(E) C Rad[E] if and only if E has cotype 2 . Now use Kwapien’s
theorem (see [DJT], 12.20, p.246) to conclude (i).

To see the direct implication in (ii), simply use that if dim(E) = oo then
(2(E) C 2 . (E) (see [DJT] 2.18, p.50). =m

Example 2.2 Let E be a complex Banach space and denote H(D, E) the
space of holomorphic functions from the unit disc D into E, that is

f(z) = ijzj, r; € B |zl <1
=0

Then, with the notation in the introduction, f would be written Zj>0 f(j)ej
and P(E) would actually be the E-valued polynomials.

In particular for E = C we have most of the classical examples such
as Hardy spaces, Bergman spaces, Besov spaces, Bloch functions and so on,
become S-admissible.

Let us introduce the vector-valued version of some of them to be used in
the paper. The vector-valued disc algebra and the bounded analytic functions
will be denoted

AD,E)={f ¢ H(D,E), f € C(D,E)}
and

H*(D, E) = { ] € H(D, B), sup ||f(:)]| 5 < oo}

|z|<1

respectively, where we define

1/ law.z) = sup 1f e, [[fllae@.e = sup 17 (2)lle-
z|= z|I<

It is easy to see that (H*(D, E))" = A(D, E).
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Given 1 < p < o0, the E-valued Bergman space AP(D, E) is defined as
the space of E- valued analytic functions on the unit disc such that

1 lLav oy = UHf J[BdA(2) } [/Mfr rdr} .

where ) )
1 ™ . p
My(f,r) = {g /0 I f(re”)H%dt] .

It is known that AP(D, E') are minimal for 1 < p < oo (see for instance
[AB2]).

The E-valued Hardy space HP(D, E) is defined as the space of E- valued
analytic functions on the unit disc such that

| fllge@,e) = sup My(f,r) < oo

0<r<1

We also have the space defined at the boundary

HP(T,E) = {f € I’(T,E) : f(n) = K f(e“)e”“‘t;l—fT =0,n< 0}

0

where LP(T, E) stands for the functions which are p-integrable Bochner with
values in E. It is not difficult to see that HP(T,E) = (H?(D, E))°.

It is also well-known that, for 1 < p < oo,
AD,E) Cc H*(D,E) Cc H*(D,E) c A’(D, E) C A'(D, ).

Observe that A(D)@,E C A(D,E) and A*(D,E) C AL (D, E). Using
that A(D) and A'(D) are S-admissible we have that all the previous spaces
of analytic functions are S(E)-admissible.

Finally we define the E- valued Bloch space, Bloch(D, E), to be the set of
E-valued holomorphic functions on the disc that verify

Sup (I = 1zDIf ()|l < oo.

It is a Banach space under the norm

1F | stocn,my = 1 F(0)]| 2 + sup 1= =DIf(2)lle



We will denote by BMOA(T, E) the space of functions in L'(T, E) with
Fourier coefficients f(n) =0 for n < 0 and such that

1 y dt
sup 7 [ ) = fillge < oc

where the supremum is taken over all intervals I C[0,2m), |I| is normalized
I’s Lebesgque measure and f; = il fI gff This becomes a Banach space
under the norm

1 : dt
I llzmoaem) = [ F(O)]z +sup / 1£ ) = frlles -
1] J; 2m

Again we can use that
A(D, E) ¢ BMOA(T, E) C Bloch(D, E)
and Bloch(D, E) = Blochyear(D, E) to obtain that both spaces are S(E)-

admissible.

Remark 2.2 The spaces X (FE) and X[E] are quite different whenever X C
H(D) for infinite dimensional Banach spaces E.
For instance let E = c¢q and denote (ey,), the canonical basis. Consider

the functions fy(z) = SN 0€n?".
Let us analyze its norm in H?(D, E) and H?(D)[E]. We have

| Nl zr o) < N fNllH>@e) =1, P> 1.

However
| fnll oo @yeo) = N + 1,

1l @y = 1 nll 2@y = (N + 1DV, 2 <p < oo,
and, using Hardy’s inequality for functions in H' (see [D]),
N

1
Il e @)eo) = 1SN @Y[co] = CZ 1 > Clog(N+1), 1<p<2.
n=0

Similarly

A2 D) E EN || ]||
CERERED WS
and then for p > 2

I llar@eo) <10 [ fwllar@)ie) = Clog(N +1))12,

which exhibits the difference between the spaces above and the vector-valued
interpretation X |E].
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3 Multipliers associated to bilinear maps

Once the class of spaces into consideration has been introduced, we now
define a general convolution using bilinear maps which will be the main
notion in this paper.

Definition 3.1 Let E1, Es and E3 be Banach spaces and let B : E1 X By —
Es5 be a bounded bilinear map.
We define the B-convolution product as the continuous bilinear map S(Ey) X

S(Ey) — S(E3) given by (A, f) = A*p [ where

~

Mg 1(5) = BAG), f(7), j>0.

In particular, our results in the sequel could be applied to the following
bilinear maps:

o For By: EXxK — E, (z,a) — azr we get

Ak, [ = (ojz;);.

For Bp: E' x E — K, (2/,x) — (2/,x) we get

Neo f = ({1, 2,));.

For B; : L(FE1, Ey) X By — Ey, (T, z) — T(z) we get
Mg f = (Tj(x;));

For B, : By X By — E1®,Es, (z,y) — * @ y we get

[rrg=(2;®@y;);

For a Banach algebra (A,.) and P: A x A — A, (a,b) — ab we get
Axp f = (azb));.

Associated to a bilinear convolution we have the spaces of multipliers.
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Definition 3.2 Let F, Fs and E be Banach spaces and let B : E x E; —»
Ey be a bounded bilinear map. Let Xg, and Xg, be S(Fy) and S(E,)-
admissible Banach spaces respectively. We define the multipliers space be-
tween Xg, and Xg, through the bilinear map B as

(XElaXEQ)B == {)\ < S(E) : /\*Bf S XE2 \V/f S XEl}

with the norm
Ml (xXp, Xey)s = sup [|A x5 fllxg,-
I llxp, <1

In the particular case E = L(Ey, Ey) and B = By we simply write
(XE17XE2)'

It is easy to prove that |.|[(xp, xp,)s 18 @ norm on (Xp,, Xr,)p whenever

B satisfies the condition

B

B(e,x) =0,V € By = e =0.

In other words, the mapping F — L(Ey, Ey) given by e — T, where T, (z) =
B(e, ) is injective.

Theorem 3.3 Let E, E5 and E be Banach spaces and let B : Ex Ey, — Ey
be a bounded bilinear map for which there exists C' > 0 such that

lelle < C sup ||B(e,x)|p, ec€kE. (5)

=]z, =1

If Xg, and Xg, are S(Ey), S(Es)-admissible Banach spaces respectively,
then (Xg,, Xg,)p is S(E)—admissible.

Proof. We shall consider first the case £ = L(E), Ey) and B = By.
Let A\ = (Tj); € (Xg,,Xg,) and j > 0. For each x € Ej, using the
admissibility of Xg, and Xg,, we have
1T < m(Xe)l|IT5(2)elxp,
(X)) [[A % wej xp,
(Xi)
(Xp,)

Il
N

J
T (X ) M (x5, X5y 1765 1 x5,

IA A

(X B )i (X ) [Al (x5, X ) 12]] 2, -

This gives (Xg,, Xg,) = S(L(E1, E2)) with continuity.
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On the other hand if p € P(L(E1, Es)) and f € Xpg, we have p*, f €
P(Ey) C Xg,. Hence p € (Xg,, Xg,). Foreach j > 0and T € L(E,, E,), we
have to show that || Te;l|(x,, xp) < CilIT||. Now given f € Xp,, again by
the admissibility of Xg, and Xg,,

ITe; *c fllxp,

IT(f(G)eslxe,
i(Xe)IT(F ()l

(XTI )l e,
35X, )7y (XTI f 1|,

VAN VAN VAN

Therefore Cj = ij(XEQ)Wj (XEl)

Let us now show the completeness of (Xg,, Xg,). Let (\,), C (Xg,, XE,)
be a Cauchy sequence of multipliers. Since the sequence of operators A, (f) =
An ¢ f is a Cauchy sequence in L(Xg,, Xg,) we define A € L(Xpg,, Xg,) be
its limit in the norm. Therefore

A=Al =0 = IA(S) = Aa(Dllxp, =0 = Anxe [ = A(f) € S(E).

On the other hand, we know (Xg,, Xg,) — S(L(E1, E2)) and then there
exists A € S(L(FE1, Ey)) such that

)‘n*ﬁf_>/\*£f

in S(L(FE1, Ey)). Hence necessarily A(f) = A *. f.

For the general case assumption (5) allows to use Remark 2.1 where the
isomorphism is given by e € E — T, € L(E4, E3) where T.(z) = B(e,x) for
each e € F/ and x € F,. Just note that

(Xey: XBo)B = {<5‘(j))J e E: (T)\(g ) (XEy, X))

[ |
Let us consider the particular cases B = By and B = Bp.

Definition 3.4 Let X be S(E)-admissible. We define
Xi =1{f = (2)); € S(E) : (aj2;); € Xp,¥(ay); € (7}
and

XE = {f = @) € S(E) 3 (w5} < 00,¥(xy); € Xp}.

J
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We also denote

XEK {f = (1;); € S(E) : Y _ (), 2)| < 00, V(a}); € Xg}-
J
In general we have
Xp C Xp CXp™.

One basic concept in the theory of multipliers is the notion of solid space
(see [ACP]). We have the analogue notion in our setting.

Definition 3.5 We say that Xp C S(E) is S(E)-solid (or simply solid)
whenever Xg is a S(E)-admissible space verifying (o f(j)); € Xg for f €
Xg and (a); € €, that is to say Xg = X3.

Using that (¢*°, Xg)p, = Xz and X& = (Xg, (*)p, together with Theo-
rem 3.3 we obtain the following corollary.

Corollary 3.6 Let Xp be S(E)-admissible. Then Xg and X5 are S(E)-
solid and S(E")-solid respectively.

Remark 3.1 Let us collect here some observations of solid spaces.

(a) X[E), Xyear(E) and X@.E are S(E)-solid iff X is a solid space.

(b) Rad(E) is a S(E)-solid space. (This follows from Kahane’s contrac-
tion principle, [DJT], 12.2, p.251.)

(¢) Neither HP(D, E) nor AP(D, E) are S(E)-solid unless p = 2.

Assuming that they are S(E)-solid, and restricting to ¢(z)x for ¢ € H(D)
and x € E, we will have that also HP or AP must be solid for p # 2, which
is not the case.

Proposition 3.7 Let X be S-solid and E a Banach space. Then
(i) (X@rE) = (XT)year(E').
(ii) (X[E])" = X¥[E'].

Proof. (i) We first claim that (z}); € (X*)yea(E") if and only if ({27, x>)] €
XE for all z € E. We only need to see that if

sup || ((a,2)). |l xx < oo

llzll p=1

then ((x”,z}>)j € XX for 2" € E".
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For each (a;); € X and N € N, there are ¢; with |¢;| = 1,

N
Z| ol = | (2" 2yl
=0
N
= (")) wjaye;)]
=0

N
2]l | Z 50564

<

< |l2"|lgr sup Z| )|
lellz=14=5

< la"ller sup [[((2], %)) flxx
lellp=1

This concludes the claim.
We show first (X®,E)* C (X)year(E'). Take X = (2); € (X&,E)",
x € E and (¢ ); € X. Note that

Axp ((a) @ 2) = ((2}, 2)ax ) el (6)
and then we obtain that (2); € (X*)year(E") with [|(2));] xx),omnm) < [IA]

from the previous result.
Assume now that X = (z}); € (X*™)year(£') and let us show that X €

(X&,E)K. Ife>0and f =3, fu®x, € X&E with f,(j) = o and
Zn ||fTLHXHanE' < HfHX®TrE + € we have

PO OB DG

= XXM
< ZHanEH( o)), Il
< NN naston (O Nzall sl full )

< H(%‘)jH(XK)MG,C(E’)(HfHXé@wE + €)
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(ii) We first notice that

> b )l < Y llellzlle < Iegle)slhol (le;l2);x-
J J

N

This shows that XX [E'] C (X[E])¥X.

To see the other inclusion, let A = (z}); € (X[E])" and show that

(125l z)j20 € X, Fix (o;); € X, e > 0 and j > 0. Let select z; € E
with ||z g = 1 and ||2}|| g = [{x}, z;)] + €270+ ||~ for a; # 0. Consider
now f = (a;z;); € X[E] and observe that, using that X is solid, we get

Do ladlelagl = Y Hajap)llayl +e
J J

[ Asp flle + €
||/\||(X[E])K||f||X[E] + €
H>‘|’(X[E])K|‘(O‘j)j||x + €.

VARVAN

This finishes the proof. m

Remark 3.2 In general XX, E' C (Xyear(E))X.
Indeed, for each g = (B;); € XX, 2’ € E' and f = (x;); € Xuear(E), we
have that
(9@ )0 f = (@ a)8,) (7)

which satisfies

ST Bl < Nl e o1
J
and then
19 @ 2| (X peur(mpx < llgllxx]|2]

Now we extend using linearity and density to obtain XX &, E' C (Xyear(E))X.
For the case X = (7, 1 < p < oo, it was shown (see [BD, FR, AB3]) that

(€,

weak

(B))" = ' & E'

Theorem 3.8 Let E, Es and E be Banach spaces and let B : Ex Ey — Ey
be a bounded bilinear map satisfying (5).

16



Define B, : E x E} — E{ given by
(Bi(e,y),z) = (y',Ble,x)), e€ E,x € Ey,y € E).
If Xp, and Xp, are admissible spaces and Xg, = X, then
(Xey Xpy)s = (Xg, XE, ).

Proof. From the definition we can write for A € S(E), f € S(E1), g € S(E))
and 7 > 0,

G(3), X *5 F(0)) = (Vxp. 9(5), F(5)).
Assume now that A € (Xpg,, Xp,)p and g € X[ . We have

os.allg, = sw {3 [V, 90, FON = 11, <1

= Sup{Z| )X ws TGN = Il <1}

< ||9||x,g<2811p{||(A 8 [)llxe, 1 fllxs, <13

< IMlcxe, e lgllxs -

N

Using the assumption Xp, = X5 one can argue as above for A € (X7, X[ ),
and f € Xp, to obtain

N5 fllxe, = sup{D ), A N < lgllxs, <1}

sup{Z! )\*B* 9(i), f()] - HQHX,{g2 <1}
J

IN

£z, 5up {1 5. 9)llxg < Ngllxg <1}
f||XE1‘

< Ml xs s,

4  B-Hadamard tensor product

Let us now generate a new S(E)—admissible space using bilinear maps and
tensor products.

17



Definition 4.1 Let Ey, F5 and E3 be Banach spaces and let B : E1 X Ey —»
Es be a bounded bilinear map. Let Xg,,Xg, be S(F1),S(FE2)—admissible
respectively. We define the Hadamard projective tensor product Xp, ®p Xg,
as the space of elements h € S(E3) that can be represented as

h=3 fu*s gn

where the convergence of > fn*p gn is considered in S(E3), being f, €
Xg,,9n € Xg, and

2 Il ol < .

The particular case B3 = E1®,Fy and By : By x Ey — E5 will be simply
denoted Xp, ® Xpg,

Proposition 4.2 Let Ey, Ey and E3 be Banach spaces and let B : Eq X
Ey — E5 be a bounded bilinear map. Let h € Xp, ®p Xg, and define

hllz = inf Y [l fallxs, llgnllxe,

where the infimum is taken over all possible representations of h =" f.*p
In-
Then (Xg, ®p Xg,, | - ||5) is a Banach space.

Proof. Let ||h||p = 0 and € > 0. Thus there exists a representation h =
> n Jnxp gn such that Y- || fullxp, [|gnllx,, < €. Since the series converges in

S(Es) we conclude that h(j) = 32, B(fu(j), gn(j)). Using the admissibility
of Xp, and Xp,
1A e, < Z | B(a(3): ()12
<|Bll Z 1o ()2 NG ()l 22

< ||Bllms (Xe )5 (Xma) Y W fallxs, 19nllxs, < e

Consequently B(]) =0 for all 7 > 0.
Of course ||ahl|p = |a|||h]|p for any o € K and h € Xg, ®p X, .

18



The triangle inequality follows using that if iy ~ (f! *p gl), and hy ~
(f?*p g*), such that

i i € .
> M fillxs, lghllxs, < lhills + 7 =12

Then hy +he =, frxp gt + > f2 *p g2 and then
hathalls < D allxe, Ignlle, + D Ifllxe, 19mlxe, < IRulls+lhells+e.

Finally, let us see that Xp, ® 5 Xp, is complete. Let ) h, be an absolute
convergent series in Xp, ®p Xp, with h, € Xg, ®p Xp,. For each n € N
select a decomposition h,(z) = >, fi* *p g such that

D s, 98 s, < 20hnll5-
k

Let us now show that > h, = > >, fi *p g in S(E3). Indeed, for
each 7 > 0 we have

ZZHB [ e < 1Bl (Xe,)m(XE,) ZZkaHXEngkHXEQ
< 2||B|mj(Xp )7 (XE,) ZthHB

and since Fj3 is complete we get the result.
Moreover h =) h, € Xg, ®p Xp, because > >, Hf,?||XE1 ||g£||XE2 <
oo. Now use that

I Z hnlls < Z Z 1 xe, 198 s, <2 Z a5

n=N k
to conclude that the series ) h, converges to hin Xg, ®p Xp,. =

Remark 4.1 If h =) fu %z g0 € Xp, ®p Xg, then Y || fu* gullp < 00
and h =" fn*p gn converges in Xp, ®p Xg,.
Indeed, simply use that

I %5 glls < Ifll x5, 19l x5,
for f € Xg, and g € Xg, and that for M > N

M M M
1Y faxsgalls <D M faxs gnlls <Y Ifallxe, Inllxs,-
n=N n=N n=N
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Theorem 4.3 Let Ey, Ey and E be Banach spaces and let B : E1 X Fy — F
be a bounded bilinear map satisfying that there exists C' > 0 such that for each
e € E there exists (x,,yn) € Ey X Ey such that

e= ZB Tns Yn), Z [zl 2 1ynll 2 < Clle|s- (8)

If Xg, and Xg, are admissible spaces then Xp, ®p Xg, is S(F)—admissible.
In particular Xg, ® Xg, s admissible.

Proof. We show first that Xp, ®5 Xg, C S(F) with continuity. For e > 0
we can find a representation h = 3 fn xp gn such that > || fullxp, [19nllxp, <
Ilh]| s + €. Therefore, for each j > 0,

12 ()lle < ZHB (fa(4): 9a (1)l
<||B||Z\|fn M 2190 2

< Bllmj(Xp)mi(Xg,) > fallxs, lnllxs, < Cyllhlls +e.

To show that P(E) C X, ®pXp,, it suffices to see that ee; € Xp, ® X,
for each j > 0 and e € E. Now use condition (8) to write e = > B(xy,yn) €

FE and therefore
eej = > (wn€)) #5 (yne;)

n

and

> llznesllxn, yneillxe, < i(Xp)i(Xe) > l2alle |yl < Cjllels.
Hence ee; - XE1 ®p XE2 and ||66j”B < CZJ<XE1)’L](XE2)||6HE
| |

Remark 4.2 If £y, F5 and E are Banach spaces and B : Ey X Fy — FE is
a surjective bounded bilinear map such that there exists C' > 0 s.t. for every
e € E there exists (x,y) € E1 X Ey verifying

e=B(z,y), |zllelyle < Cllels (9)

then we can apply Theorem 4.5.

20



A simple application of (9) gives the following cases.

Corollary 4.4 (i) If X and Xg are admissible spaces and By : K x E — E
is given by (o, x) — ax then X ®p, Xg is S(E)—admissible.

(i1) Let (X, ) be a measure space, 1 < p; < oo fori=1,2,3 and 1/p;s =
1/p1+1/py. Let B : LP* () x LP? () — LP3(u) be given by (f,g9) — fg. Then
if Xpew and Xpee are admissible spaces then X ®p Xpee is admissible.

(7ii) Let A be a Banach algebra with identity and P : Ax A — A given by
(a,b) — ab. If X4 and Y4 are admissible spaces then X 4®p Yy is admissible.

Remark 4.3 It is straightforward to see that, under the assumptions of The-
orem 4.3, if either Xg, or Xg, are solid spaces then Xp, ®p Xg, is a S(F)-
solid space.

Proposition 4.5 Let E, E5 and E be Banach spaces and let B : E1 X Ey —
E be a bounded bilinear map satisfying (8). Let Xg,, Xg, be admissible Ba-
nach spaces such that either X, or Xg, are minimal spaces, then Xp, ® g Xg,
is a minimal S(F)-admissible space.

Proof. We shall prove the case X]%l = Xpg,. Let h € Xp, ®p Xg,. From
Remark 4.1, there exist f,, € Xp,, g, € Xg, and N € N such that

N
€
h — n e < =.
Ih =3 fuxs oulls <

By density choose polynomials p,, with coefficients in F; such that

€
||fn _anX §
T 2(N 4 1)l gnllx,

Then Z —oDn *B gn € P(E) and

||h an *B gn”B < ||h an *B gnHB + || Z pn *B gnHB

€

€
§+Z||f” anXEl||gn||XE2 = 5

2(N 1 1)

= €

QMZ
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Proposition 4.6 Let B : E; x Ey — E be a bounded bilinear map satisfying
(8). Denote B* : E' x Ey — El the bounded bilinear map defined by

<B*<€/,$),y> = <€/,B(l’,y)>, erl?Z/EEZ?e,EE/'
If Xp, and Xg, are admissible then
(Xp, ®p Xp,)" = (XEUX][;{Z)B*-

(Xp, ®p Xp,)' = (Xp,, Xp, ) 5+
In particular (Xp, ® Xg,) = (Xpg,, Xp,) and (X, ® Xp,)* = (Xg,, X}).

Proof. Let A € (Xp,, X£ )p- and define, for f € Xp, and g € Xp,,

Af*59)~(5) = (A g £)~(5),3(3)),5 > 0.

Let us see that A € (Xp, ®p Xg,)*.

SR 9 G = DM 70)50))

< [ fllxg gl xs,

< N AMlees, ) pe 1 s, lglxe,

By linearity we can extend the result to finite linear combinations of *pg-
products and by continuity, to Xg, ®p Xg,, that is

A(h) = 3" A(fu %5 92)

whenever h =) fo*p g, and >, || fn*p5 gnllp < 00. Therefore we conclude
(Xp1, X35,) 8- € (XB, ®5 Xi,)".
For the other inclusion, consider v € (Xg, ®pXp,)* and define ¥(f)"(j) € £
by

<§/(f)/\(j)7y> :7(]0 *B yej)/\(j)v fEXE17yE E27 .] ZO

This gives

GG 9G) =v(f*89)" (), f € Xpy, 9 € Xy, J 20
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Let us see that ¥ € (Xg,, X[} ) p+:

1F7(Pllxg, = sup 1X:h(f*Bg)A(j)l

H9||XE2 =17

< Vlxg @sxs)x sup |f x5 glls
lgll e, =1

< llxe, @ mxm,) 1 fllxg, -

The argument to study the dual is similar: Let A € (Xg,, X%, )p- and
define ¢\(f *p g) = (A *p- f,g). Note that Xz, is also S(£))-admissible and

0 (f *8 9) < (Ml xe, xp) e 1 e, 1191 x5, -

By linearity we can extend the result to finite linear combinations of *g-
products and extend by continuity Xz, ®p Xg,, that is

pa(h) = Z OA(fn *B gn)

whenever h =) f.*pgn and Y ||fu *5 gnllp < 00. Therefore we conclude
(XEl’ X/EQ)B* - (XE1 ®p XEZ)/’
For the other inclusion, consider T € (Xpg, ®p Xg,)" and define

Ar(f)(g) =T(f *5 9)-

Then
IAr(Nllxy, = sup [Ar(f)(9) < sup [[TI|If *5 gllz < | T f]lxe, -
lgllx g, =1 lgllx g, =1
n

Theorem 4.7 Let Xg,, Xp,, Xg, be admissible Banach spaces. Then
(XEI ® XE27 XEs) = (XE1> (XE27 XES))

Proof. Due to the identification between £(E)®, o, E3) and L(Ey, L(Ey, E3))
where the correspondence was given by ¢(z ® y) = Ty(x)(y) we obtain,
in our case, that each A\ € S(L(E1&,Fs, E3)) can be identified with A €
S(L(Ey, L(Esy, E5)) satisfying

~

AGFG) @ §G) = 25 TGN @G0G))-



Let A € (Xg, ® Xg,, Xg,). For each f € Xp, and g € Xg, we have

Akt (frrg)=(Nx2 f)x3 g (10)

where *; is used for multipliers in S(L(E1®,Es), E3), *, for multipliers in
S(L(E1, L(Esy, E3))) and %3 for multipliers in S(L(E2, E3)).

Let us now show that A € (Xg,, (Xg,, Xg,)).
We use (10) to get

|Gt sl s, < MM oxp, @550, 0 | P50 = I, @150, 00y 11, Nl

Therefore [[Ml|(xp, (xz, x5,)) < Ml (xs, @5, X5,
For the converse, take A € (Xg,, (Xg,, Xg,)) and h € Xg, ® Xp,. Assume
that b =3 foxr gn with 3 || follxp, [|gnllxs, < oo. Hence

1A 51 Bllxg, < DA 10 (fa o 90l
=D N2 fadllxu, X l9nll x,

< M, (X, X Ll 1l

n

< M ey Xy Xy D M Fallxs, 9l xs,
Wthh giVeS ||A”(XE1®XE2,XE3) S ||A||(XE17(XE27XE3))' u

5 Examples and applications

In this section we would like to use Theorem 4.7 in both directions, that is to
say to compute multiplier spaces and to compute Hadamard tensor products.

We first start with a characterization of S(F)-solid spaces in terms of
Hadamard tensor products.

Proposition 5.1 Let Xp be admissible. Then (> ®p, Xg is the smallest
S(E)-solid space which contains Xg.
In particular Xg is S(E)-solid if and only if Xp = (> ®p, Xg
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Proof. Of course Xg C (* ®p, Xg and (* ®p, X is solid (due to Remark
4.3).

Let Yg be a solid space with Xp C Yg. We shall see that (*®p, Xp C Y.
Let h € (® ®p, Xg be given by h = > f, * g, where f,, € (>, g, € X

and > [|fulloollgnllxz < oo Note that fo x gn € Y and [|fo * gnllvy <
Il fulloollgnllv, for each n because Y is solid. Hence

Do gallve < D Ifalloolgallve < C Dl fallocllgnllxe < oo

and then h € Y. m

Proposition 5.2 Let 1 < p,q < oo with % + % =1. Then
P(E)) ® 1(Ey) = (M(E1®,F5).
Proof. Let f € ¢?(E,) and g € (9(Es). Since f/*:g(j) = f(j) ® §(j) and

175 9l < IF N 13C)

we have, using Holder’s inequality,

1f *x 9llomio, 5 < I fllev ()l gllea(i)- (11)

Let h € (P(Ey)®(9(E,). Let e > 0 and take h = ) f,, % g, With f,, € P(E})
and In € Eq(E2) and Zn ||fn||fp(E1)||gn||@q(E2) < ||h||Bw +e

From (11) we have that h = ) f, * g, converges in (Y (B, &, E5) and
Il (516, 5 < IIRllB, + € This implies that (P(E,) ® £9(Ey) C (HE1®,E>)
with inclusion of norm 1.

Take now h € 61(E1®WE2). In particular for each j > 0 and € > 0 there
exists 27, € Fy and yJ € Ey such that h(j) = >, ) @yl and

> ke gz < 1A lpo,e, + 55

Define F,, and G,, by the formulae

"

L i i Up  aj A j ; 1/q
Fu() = (el i ) NORS (AN ATS

ez
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Note that

1Eallorzny = Q lledlz il e) s NGl = Q leille lylz)
J J

and

Y MENe@)Gallaey = Y bz llyalle. < hlame, ) +
n n,j
In such a way we have h = 3 F, %, G,, € (P(E}) ® (1(E,) with |||, <

|| h||£1(E1®ﬂ-E2) N
|

To analyze the other values of p we shall make use of the following result
of multipliers (see [AB2], Proposition 2.2)

(67 (Ey), £72(E3)) = €7 (L(Ey, Ey)) (12)

Where0<pil+i— L

=-<1
D2 P3

Proposition 5.3 Let 1 < p,q < oo with 0 < %%— é = % < 1. Then
P(B) ® V1(Ey) = ("(E,®.E>).

Proof. Note that same argument as in Proposition 5.2 gives (P(E;) ®
(1(Ey) C "(E1®,E,) with inclusion of norm 1.
Indeed, as above, if f € (P(E;) and g € (9(FE3) then

17 #r 9 mr s < 1)1 2

Hence
1f *x 9ller 80y < 1 eyl lleaims)- (13)
For a general h = ) f,, %, g, € (*(Ey) ® (4(Ey) where f,, g, are chosen such
that f, € (*(Ey) and g, € (1(Ey) and 2, || fuller(en) lgnlleaces) < |I0l]B, + €
we have from (13) that > || fo *x gnller(pie, ) < 00 - Then h = 3" fo % gn
converges in (" (E1®-Ey) and ||hllpr g6, 5, < b5, + €
To see that they coincide it suffices to show that (?(E;) ® (1(Es)) =
(0"(E1®rE»))'. 1t is well known that for L =1—1,

(0" (B\&rBy)) = " (L(Ey, EY)).
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On the other hand, using Lemma 4.6 and (12) we have
((7(Br) ® (1(Ey))' = ((°(En), 04 (By)) = (" (L(By, Ey))

Whereizl—%. |
We now compute the Hadamard tensor product in some particular cases
of spaces of analytic functions. We shall analyze the case H' and H'(D, F)
at least for particular Banach spaces E following the ideas developed in [BP].
We need some notions and lemmas before the statement of the result.
Given an E-valued analytic function, F'(z) = Z;io x;27, we define

= (+ Dy,
j=0

Lemma 5.4 Let E be a compler Banach space, 1 < p < 0.
(i) There exist Ay, Ay > 0 such that

AlrmeHHp(D,E) < Mp(f, ?”) < AQ?”anHHP(]D’E), O<r<l1

for f € P(E) given by f(z
My(fyr) = (fy I (re)|[P o) /e

(ii) If P(z) = ¥ 0 P
and By such that

>, wid x; € Eynym € N and where

) =
1/p
(k)z*, P(k) € C, then there exist constants By
B12"||P g, fllar@,e) < 1P 5y Df|larm,p) < Bo2"|P #p, fllarp)  (14)
for any f € H?(D, E).
Proof. It is well known (see Lemma 3.1 [MP]) that

™ 0lloo < Moo(d,7) <1 [B]loc, 0 <7 < 1.

for each scalar-valued polynomial ¢(2) = 7" a;27, where ||¢[loc = supy,_; [¢(2)]

and Moo<¢7 T) = Sup|z|:1 |¢(TZ)|
This allows us to conclude, composing with elements in the unit ball of
the dual space,

"™ Flloo < Moo(F,7) < 1"||Flloo, 0<r <1

for any F'(z) = >0 y;27 where y; € Y where Y is a complex Banach space.
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Now select Y = H?(D, E') and F(z) = f, that is to say
F(2)(w) = Z zjwl 2.
j=n

Using that
| Flleo = sup || fo]lr@.z) = | f |20 @,2)

|z|=1

and My (F,r) = M,(f,r) we obtain the result.
To see (ii) we first use [BP, Lemma 7.2] that guarantees the existence of
constants B, By such that

Bl2an*BO ¢Hoo < HP*BO D¢HOO < B22nHP*Bo ¢HOO

for any ¢ € H*(ID). Now apply the same argument as above to extend it to
HP(D,E). m

Theorem 5.5 Let B (D, E) denote the space of E-valued analytic functions
F(z) =3, g %% such that DF(z) € AY(D, E) with the norm given by

IFllavo.ry = IFOlle+ [ IDF()]sdAC)
Let E = LP(u) for any measure pn and 1 < p < 2.
(H'(D) ®p, H'(D, LP (1)) = B (D, L”(n)).

Proof. Let us first show that B'(D, F) C (H'(D) @, H'(D, E)) for any
Banach space E. We argue similarly to [BP, Thm 7.1].
Let {W,,}3° be a sequence of polynomials such that

supp(Wo) € [2"71,2"1] (n > 1), supp(Wo) € [0,1],  sup [Wilx < oc

and

QZZWn *B, 0, g€ H(D, E).
n=0
Let f € BY(D, E). Note that
|(Wa x5, flellm,e) < Wallillfellrmey < Cllfllam,e)s
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Hence, |W,, *p, f||H1(DE) < C\\ fllao,e)-
Denoting @, = W,,_1 + W,, + W, .1 we can write

f - ZQn * By Wn *By f
n=0
Note now that Lemma 5.4 allow us to conclude

S QI W %5, flmmr < KD 1Waxs, flmo.e
n=0

n=0
1—2—(n+1)
< K[ 2 W St
e e} 1—92—(n+1)
< KZ/ W By D f|| 1 ,g)dr
n=0v1-27"
e o] 1—2—(n+1)
< K Ml(Wn *By Df )
n=0“/1-27"
1—2—(n+1)

IN

KZ/ (Df,r)dr

= K/ My(Df,r)dr
0
< K| flls,e)-

To show the other inclusion between these spaces we shall use that £ =
LP(p) for 1 < p < 2 satisfies the following vector-valued extension of a
Hardy-Littlewood theorem,

1/2

{/01(1 —T)Mf(Df,r)dr] < Al . (15)

for some constant A > O(see [B4], Definition 3.5 and Proposition 4.4).

It suffices to see that ¢ x5, g € BY(D, LP(u)) for each ¢ € H'(D) and
g € HY(D, L*(1)). Now taking into account that D?*(¢ *p, g) = D¢ *p, Dg
and

D(¢ *p, 9)(re®) =Y (5 + 1)o(7)g(j)r' e = / D*(¢ %, g)(se")ds

=0 0
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we have,
1 1 r
/ My(D(¢ *p, g),r)rdr < / [/ Ml(DQ(qb *pB, ), 8)ds| rdr
0 0 0
1

— / (1 —S)Ml(D2(¢ *By g),s)ds

0

1
< 2/ (1— r2)M1(r, D¢)M,(Dg,r)rdr.
0
Now from Cauchy-Schwarz and (15) we obtain
1 1 1/2
/ (1-— r2)M1(D¢,T)M1(Dg,T)rdT < {/ (1-— TQ)MIQ(DQZ), T)Td?“:|
0 0

1/2

U;u ) M2(Dy, r)rdr}

K&z |9] 21 @,r ()

IA

|
It is known, by Fefferman’s duality result, that (H')’ = BMOA. In the
vector-valued case, using LP is an UMD space for 1 < p < oo, we have

(H(T, L (1)) = BMOA(T, L¥ (1)), 1 < p < 00

(see [B1]). It is also well known that (B') = Bloch (see [ACP]) and for
the vector-valued case (B'(D, E))’ = Bloch(D, E’) for any complex Banach
space E (see [B2], Corollary 2.1) under the pairing

(F.G) = [ (DF(:).G)dA:).
D
Using now Proposition 4.6 we recover the following result.
Corollary 5.6 (see [B4]) Let 1 < p; <2 and 2 < py < 0.
(HY(T, LP*), BMOA(T)) g, = Bloch(D, L(LP1, LF1)).

(HY(T), BMOA(T, L*?))p, = Bloch(D, L(L*, L**)).
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