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Abstract

Let Ei be Banach spaces and let XEi be Banach spaces continu-
ously contained in the spaces of Ei-valued sequences (x̂(j))j ∈ EN

i , for
i = 1, 2, 3 . Given a bounded bilinear map B : E1 × E2 → E3, we
define (XE2 , XE3)B the space of B-multipliers between XE2 and XE3

to be the set of sequences (λj)j ∈ EN
1 such that (B(λj , x̂(j)))j ∈ XE3

for all (x̂(j))j ∈ XE2 and the Hadamard projective tensor product
XE1 ~B XE2 , consisting of those elements in EN

3 that can be repre-
sented as

∑
n

∑
j B(x̂n(j), ŷn(j)), where (xn)n ∈ XE1 , (yn)n ∈ XE2

and
∑

n ‖xn‖XE1
‖yn‖XE2

<∞.
We will analyze some properties of these two spaces, relate them and
compute the Hadamard tensor products and the spaces of vector-
valued multipliers in several cases, getting applications in the par-
ticular case E = L(E1, E2) and B(T, x) = T (x).

1 Introduction and preliminaries

One of the classic problems in Fourier Analysis is the description of the space
of coefficient multipliers between function spaces. Several papers show the
interest of mathematicians to determine this space in particular cases (see the
recent monograph [JVA] or see the historical situation for Hardy spaces in
[O], and [B3, JJ, JP] for several techniques and results regarding mixed-norm
and Bergman spaces.)

The study of operator-valued multipliers (X(E1), Y (E2)) corresponding
to sequences of operators (Tj)j ∈ L(E1, E2) for which (Tj(xj))j ∈ Y (E2)
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for all (xj) ∈ X(E1) where X(E1) and Y (E2) stand for different spaces of
vector-valued sequences (see [AB3, BFS]) or different spaces of vector-valued
analytic functions see [AB1, B4, B5, B6] and references therein) has been
deeply investigated.

More recently O.Blasco and M. Pavlovic (see [BP]) have considered gen-
eral properties on the spaces of analytic functions in an abstract context to
be able to carry over the study of multipliers between these spaces relying
on the construction of certain Hadamard tensor product. These technique
allows them to recover lots of old results on concrete examples. Motivated by
their paper (see also the recent monograph [P]) we shall introduce the notion
of S(E)-admissibility and consider the vector-valued analogues of several of
the results in [BP]. In particular, we shall develop a very general theory of
vector-valued multipliers adapted to bilinear maps which will cover most of
the known cases in the vector-valued setting and generates new ones, and
another point of view for possible applications.

Given a Banach space E, S(E) stands for the space of sequences (xj)j ⊆ E
endowed with the locally convex topology given by the seminorms pj(f) =
‖xj‖E, j ≥ 0. We shall say that XE is S(E)-admissible if XE is a Banach
space contained with continuity in S(E) and the maps x→ x.ej from E ↪→
XE are also continuous for each j.

It is easy to check that most of the well-known vector-valued sequence
spaces such as `p(E), `weak(E) and `p⊗̂πE, and most vector-valued spaces
of analytic functions, such as vector-valued Hardy, Bergman, Boch or BMO
spaces, turn out to be S(E)−admissible.
Let us now introduce the basic notions in the paper. For a given bounded
bilinear map B : E × E1 → E2, we define the space of multipliers between
XE1 and XE2 to be

(XE1 , XE2)B = {(λj)j ∈ EN s.t. (B(λj, xj))j ∈ XE2 ∀(xj)j ∈ XE1}.

Then, if B verifies that there exists C > 0 such that

‖e‖E ≤ C sup
‖x‖E1

=1

‖B(e, x)‖E2 , e ∈ E, (1)

(XE1 , XE2)B becomes a S(E)-admissible Banach space with its natural norm
(see Theorem 3.3).

The particular instances of bilinear maps such as B0 : K × E −→ E
given by (α, x) 7→ αx, BD : E ′ × E −→ K given by (x′, x) 7→ 〈x′, x〉 and
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BL : L(E,F ) × E −→ F given by (T, x) 7→ T (x) have been considered in
the literature quite often and the corresponding spaces of B-multipliers have
been described in some cases(see [AB1, BFS, B5]).

Given now two admissible spaces XE1 and XE2 and a bilinear map B :
E1 × E2 → E, we define XE1 ~B XE2 as the space of elements h ∈ S(E)
such that h =

∑
n

∑
j B(xn(j), yn(j)) where the series converges in S(E),

(xn)n ∈ XE1 , (yn)n ∈ XE2 and
∑

n ‖xn‖XE1
‖yn‖XE2

<∞.
It is not difficult to see that this space, normed in a natural way, is

also S(E)−admissible for bilinear maps satisfying the following condition:
∃C > 0 such that for each e ∈ E there exists (xn, yn) ∈ E1 × E2 verifying

e =
∑
n

B(xn, yn),
∑
n

‖xn‖E1‖yn‖E2 ≤ C‖e‖E (2)

(see Theorem 4.3).
As a particular example with such a condition and very important for our

purposes is the following bilinear map, defined using the projective tensor
product,

Bπ : E1 × E2 −→ E1⊗̂πE2, (x, y) 7→ x⊗ y.

The reader is referred to [DU] or [R] for the definitions and properties of the
projective tensor product and norm.

Hadarmard tensor product and multipliers are closely related. One first
connection with multipliers comes using the topological dual and the vector-
valued Köthe dual XK

E = (XE, `
1)BD . It will be shown that

(XE1 ~B XE2)
K = (XE1 , X

K
E2

)B∗

and
(XE1 ~B XE2)

′ = (XE1 , X
′
E2

)B∗

where B∗ : E ′ × E1 → E ′2 is the bounded bilinear map defined by

〈B∗(e′, x), y〉 = 〈e′, B(x, y)〉, x ∈ E1, y ∈ E2, e
′ ∈ E ′.

(see Proposition 4.6).
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Given a continuous bilinear map B : X × Y −→ Z then there exist
unique bounded linear operators TB : X⊗̂πY −→ Z and ΦB : X → L(Y, Z)
satisfying

TB(x⊗ y) = B(x, y) = ΦB(x)(y), x ∈ X, y ∈ Y. (3)

Using these identifications one gets that B(X × Y, Z) = L(X⊗̂πY, Z) =
L(X,L(Y, Z)) are isometric isomorphisms. These identifications will give us
a basic formula (see Theorem 4.7):

(XE1 ~Bπ XE2 , XE3)BL = (XE1 , (XE2 , XE3)BL)BL (4)

which shows that describing Hadamard tensor products helps to determine
multipliers.

We shall get the description of Hadamard tensor products in some cases.
A particularly interesting example is the description of H1(D)~B0H

1(D, Lp)
for the values 1 < p ≤ 2 in Theorem 5.5. We will use the above formula
and the previously mentioned description to recover some known results on
vector-valued multipliers ([B4])

(H1(T), BMOA(T, Lp))BL = Bloch(D,L(Lp, Lp)), 2 ≤ p <∞,

(H1(T, Lp), BMOA(T))BL = Bloch(D,L(Lp
′
, Lp

′
)), 1 ≤ p ≤ 2.

where 1
p

+ 1
p′

= 1(see Corollary 5.6).

The paper is organized as follows: Section 2 is devoted to introduce the S(E)-
admissibility and give some examples. In Section 3 we introduce coefficient
multipliers through a bilinear map, deal with solid spaces and relate multi-
pliers with the Köthe dual. Hadamard tensor product is defined in Section
4 where we find its connection with multipliers via the Köthe dual and show
the formula (4). In the last section we first use multipliers to determine the
Hadamard tensor product of some spaces and, in the other direction, we also
use the Hadamard product to obtain some vector-valued multipliers spaces
showing applications to vector-valued Hardy spaces.

2 Vector-valued S-admissibility

Let E be a Banach space. We use the notation S(E) for the space of se-
quences f = (xj)j≥0, where xj ∈ E, endowed with the locally convex topol-
ogy given by the seminorms pj(f) = ‖xj‖E, j ≥ 0. We shall think of f as a
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formal power series with coefficients in E, that is f(z) =
∑

j≥0 xjz
j and most

of the time we will write f̂(j) instead of xj. Hence a sequence (fn)n ⊂ S(E)
converges to f ∈ S(E) if and only if pj(f − fn) → 0 ∀j ≥ 0 if and only if

‖f̂(j)− f̂n(j)‖E → 0 as n→∞ for all j ≥ 0.
We will write ej(z) = zj for each j ≥ 0 and P(E) for the vector space of the

analytic polynomials with coefficients in E, that is
∑N

j xjej, where xj ∈ E.

We first introduce the basic notion which plays a fundamental role in
what follows.

Definition 2.1 Let E be a Banach space and let XE be a subspace of S(E).
We will say that XE is S(E)−admissible (or simply admissible) if

(i) (XE, ‖ · ‖XE) is a Banach space,

(ii) the projection πj : XE −→ S(E), f 7→ f̂(j), is continuous and

(iii) the inclusion ij : E −→ XE, x 7→ xej is continuous.

We denote πj(XE) = ‖πj‖ and ij(XE) = ‖ij‖.
Hence for each j ≥ 0 we have

‖f̂(j)‖E ≤ πj(XE)‖f‖XE , ‖xej‖XE ≤ ij(XE)‖x‖E.

Remark 2.1 Let XE2 be S(E2)-admissible and let E1 be isomorphic to a
closed subspace of E2, say I(E1). Define

XE1 = {(xj)j : xj ∈ E1, (I(xj))j ∈ XE2}

and the norm
‖(xj)j‖XE1

= ‖(I(xj))j‖XE2
.

Then XE1 is S(E1)-admissible.
Also we have that if Z is a Banach space and XE ⊂ Z ⊂ YE where XE

and YE are S(E)-admissible then Z is S(E)-admissible.

Let us give a method to generate S(E)-admissible spaces from classical
S-admissible spaces.
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Proposition 2.2 Let E be Banach space and let X be S-admissible. We
denote

X[E] = {(xj)j≥0 ∈ EN : ‖(‖xj‖E)j‖X <∞},

Xweak(E) =
{

(xj)j≥0 ∈ EN : ‖(xj)j‖Xweak(E) = sup
‖x′‖E′=1

‖(〈xj, x′〉)j‖X <∞
}
.

Then X⊗̂πE,X[E] and Xweak(E) are S(E)-admissible.

Proof. The fact that X[E] is a Banach space is easy and left to the reader.
Clearly Xweak(E) = L(E ′, X) and X⊗̂πE have complete norms.

Due to the continuous embeddings

X⊗̂πE ⊂ X[E] ⊂ Xweak(E)

we only need to see that P(E) ⊂ X⊗̂πE with continuous injections ij for
j ≥ 0 and that Xweak(E) ⊂ S(E) with continuity. Both assertions follow
trivially from the facts

‖xej‖X⊗̂πE = ‖x‖E‖ej‖X ≤ ij(X)‖x‖E

and
‖xj‖E = sup

‖x′‖E′=1

|〈xj, x′〉| ≤ πj(X)‖(xk)k‖Xweak(E).

Definition 2.3 Let XE be S(E)-admissible and denote X0
E = P(E)

XE
. We

say that XE is minimal whenever P(E) is dense in XE , that is to say
X0
E = XE.

Of course X0
E is S(E)−admissible whenever XE is.

Proposition 2.4 Let XE be S(E)−admissible and let F be a Banach space.
Then L(XE, F ) is S(L(E,F ))−admissible.

In particular (XE)′ and (X0
E)′ are S(E ′)−admissible.

Proof. Identifying each T ∈ L(XE, F ) with the sequence (T̂ (j))j ∈
S(L(E,F )) given by T̂ (j)(x) = T (xej), we have that L(XE, F ) ↪→ S(L(E,F )).

Moreover πj(L(XE, F )) ≤ ij(XE) due to the estimate ‖T̂ (j)‖L(E,F ) ≤ ij(XE)‖T‖L(XE ,F ).
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To show P(L(E,F )) ⊂ L(XE, F ), we use that, for each j ≥ 0 and S ∈
L(E,F ), Sej defines an operator in L(XE, F ) by means of

Sej(f) = S(xj), f = (xj) ∈ XE.

Moreover ij(L(E,F )) ≤ πj(XE) because ‖Sej‖L(XE ,F ) ≤ πj(XE)‖S‖L(E,F ).

Example 2.1 Some examples of S(E)-admissible spaces are `p(E), `pweak(E)
and `p⊗̂πE for 1 ≤ p ≤ ∞, where

`p(E) = `p[E] =
{

(xn)n≥0 : ‖(xn)‖`p(E) =
( ∞∑
n=0

‖xn‖pE
)1/p

<∞
}
,

`pweak(E) =
{

(xn)n≥0 : ‖(xn)‖`pweak(E) = sup
‖x′‖E′=1

( ∞∑
n=0

| < xn, x
′ > |p

)1/p
<∞

}
,

with the obvious modifications for p =∞.
In particular, c0(E) = (`∞(E))0 and

UC(E) = (`1weak)
0(E) =

{
(xn)n≥0 ∈ `1weak(E);

∑
n

xn converges unconditionally
}

are S(E)-admissible spaces.
Another interesting space, not coming from the above constructions, is

Rad(E) =
{

(xj)j≥0 : sup
N

[ ∫ 1

0

‖
N∑
j=0

xjrj(t)‖2Edt
]1/2

<∞
}

where rj stands for the Rademacher functions (see [DJT]).
It is well known (see [DJT]) that

`1weak(E) ⊂ Rad(E) ⊂ `2weak(E)

with continuous embeddings and therefore Rad(E) is S(E)-admissible.

Let us mention the interplay with the geometry of Banach spaces when
comparing the space Rad(E) and Rad[E]. Recall that the notions of type 2
and cotype 2 corresponds to `2(E) ⊂ Rad(E) and Rad(E) ⊂ `2(E) respec-
tively (see [DJT]).
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Proposition 2.5 Let E be a Banach space.
(i) Rad(E) = Rad[E] if and only if E is isomorphic to a Hilbert space.
(ii) Radweak(E) = Rad[E] if and only if E is finite dimensional.

Proof. Note that, using the orthonormality of rn, Plancherel’s theorem
gives that Rad[E] = `2(E) and Radweak(E) = `2weak(E) . Of course if E
is a Hilbert space then Rad(E) = `2(E) and for finite dimensional spaces
Radweak(E) = `2weak(E) = `2(E).

On the other hand, clearly Rad[E] ⊂ Rad(E) if and only if E has type 2
and Rad(E) ⊂ Rad[E] if and only if E has cotype 2 . Now use Kwapien’s
theorem (see [DJT], 12.20, p.246) to conclude (i).

To see the direct implication in (ii), simply use that if dim(E) =∞ then
`2(E) ( `2weak(E) (see [DJT] 2.18, p.50).

Example 2.2 Let E be a complex Banach space and denote H(D, E) the
space of holomorphic functions from the unit disc D into E, that is

f(z) =
∞∑
j=0

xjz
j, xj ∈ E, |z| < 1

Then, with the notation in the introduction, f would be written
∑

j≥0 f̂(j)ej
and P(E) would actually be the E-valued polynomials.

In particular for E = C we have most of the classical examples such
as Hardy spaces, Bergman spaces, Besov spaces, Bloch functions and so on,
become S-admissible.

Let us introduce the vector-valued version of some of them to be used in
the paper. The vector-valued disc algebra and the bounded analytic functions
will be denoted

A(D, E) = {f ∈ H(D, E), f ∈ C(D, E)}

and
H∞(D, E) =

{
f ∈ H(D, E), sup

|z|<1

‖f(z)‖E <∞
}

respectively, where we define

‖f‖A(D,E) = sup
|z|=1

‖f(z)‖E, ‖f‖H∞(D,E) = sup
|z|<1

‖f(z)‖E.

It is easy to see that (H∞(D, E))0 = A(D, E).
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Given 1 ≤ p < ∞, the E-valued Bergman space Ap(D, E) is defined as
the space of E- valued analytic functions on the unit disc such that

‖f‖Ap(D,E) =

[∫
D
‖f(z)‖pEdA(z)

]1/p
=

[∫ 1

0

Mp(f, r)
prdr

]1/p
<∞.

where

Mp(f, r) =

[
1

2π

∫ 2π

0

‖f(reit)‖pEdt
]1/p

.

It is known that Ap(D, E) are minimal for 1 ≤ p < ∞ (see for instance
[AB2]).

The E-valued Hardy space Hp(D, E) is defined as the space of E- valued
analytic functions on the unit disc such that

‖f‖Hp(D,E) = sup
0<r<1

Mp(f, r) <∞

We also have the space defined at the boundary

Hp(T, E) =

{
f ∈ Lp(T, E) : f̂(n) =

∫ 2π

0

f(eit)e−int
dt

2π
= 0, n ≤ 0

}
where Lp(T, E) stands for the functions which are p-integrable Bochner with
values in E. It is not difficult to see that Hp(T, E) = (Hp(D, E))0.

It is also well-known that, for 1 ≤ p <∞,

A(D, E) ⊂ H∞(D, E) ⊂ Hp(D, E) ⊂ Ap(D, E) ⊆ A1(D, E).

Observe that A(D)⊗̂πE ⊂ A(D, E) and A1(D, E) ⊂ A1
weak(D, E). Using

that A(D) and A1(D) are S-admissible we have that all the previous spaces
of analytic functions are S(E)-admissible.

Finally we define the E- valued Bloch space, Bloch(D, E), to be the set of
E-valued holomorphic functions on the disc that verify

sup
z∈D

(1− |z|)‖f ′(z)‖E <∞.

It is a Banach space under the norm

‖f‖Bloch(D,E) = ‖f(0)‖E + sup
z∈D

(1− |z|)‖f ′(z)‖E
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We will denote by BMOA(T, E) the space of functions in L1(T, E) with
Fourier coefficients f̂(n) = 0 for n < 0 and such that

sup
1

|I|

∫
I

‖f(eit)− fI‖E
dt

2π
<∞

where the supremum is taken over all intervals I ⊆ [0, 2π), |I| is normalized
I’s Lebesgue measure and fI = 1

|I|

∫
I
f(eit) dt

2π
. This becomes a Banach space

under the norm

‖f‖BMOA(T,E) = ‖f(0)‖E + sup
1

|I|

∫
I

‖f(eit)− fI‖E
dt

2π
.

Again we can use that

A(D, E) ⊂ BMOA(T, E) ⊂ Bloch(D, E)

and Bloch(D, E) = Blochweak(D, E) to obtain that both spaces are S(E)-
admissible.

Remark 2.2 The spaces X(E) and X[E] are quite different whenever X ⊂
H(D) for infinite dimensional Banach spaces E.

For instance let E = c0 and denote (en)n the canonical basis. Consider
the functions fN(z) =

∑N
n=0 enz

n.
Let us analyze its norm in Hp(D, E) and Hp(D)[E]. We have

‖fN‖Hp(D,c0) ≤ ‖fN‖H∞(D,c0) = 1, p ≥ 1.

However
‖fN‖H∞(D)[c0] = N + 1,

‖fN‖Hp(D)[c0] ≥ ‖fN‖H2(D)[c0] = (N + 1)1/2, 2 ≤ p <∞,
and, using Hardy’s inequality for functions in H1 (see [D]),

‖fN‖Hp(D)[c0] ≥ ‖fN‖H1(D)[c0] ≥ C

N∑
n=0

1

n+ 1
≥ C log(N + 1), 1 ≤ p < 2.

Similarly

A2(D)[E] =

{
(xj)j ∈ EN :

∞∑
j=0

‖xj‖2

j + 1
<∞

}
and then for p ≥ 2

‖fN‖Ap(D,c0) ≤ 1, ‖fN‖Ap(D)[c0] ≥ C(log(N + 1))1/2,

which exhibits the difference between the spaces above and the vector-valued
interpretation X[E].
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3 Multipliers associated to bilinear maps

Once the class of spaces into consideration has been introduced, we now
define a general convolution using bilinear maps which will be the main
notion in this paper.

Definition 3.1 Let E1, E2 and E3 be Banach spaces and let B : E1×E2 −→
E3 be a bounded bilinear map.
We define the B-convolution product as the continuous bilinear map S(E1)×
S(E2)→ S(E3) given by (λ, f)→ λ ∗B f where

λ̂ ∗B f(j) = B(λ̂(j), f̂(j)), j ≥ 0.

In particular, our results in the sequel could be applied to the following
bilinear maps:

• For B0 : E ×K −→ E, (x, α) 7→ αx we get

λ ∗B0 f = (αjxj)j.

• For BD : E ′ × E −→ K, (x′, x) 7→ 〈x′, x〉 we get

λ ∗D f = (〈x′j, xj〉)j.

• For BL : L(E1, E2)× E1 −→ E2, (T, x) 7→ T (x) we get

λ ∗L f = (Tj(xj))j

• For Bπ : E1 × E2 −→ E1⊗̂πE2, (x, y) 7→ x⊗ y we get

f ∗π g = (xj ⊗ yj)j

• For a Banach algebra (A, .) and P : A× A −→ A, (a, b) 7→ ab we get

λ ∗P f = (ajbj)j.

Associated to a bilinear convolution we have the spaces of multipliers.
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Definition 3.2 Let E1, E2 and E be Banach spaces and let B : E ×E1 −→
E2 be a bounded bilinear map. Let XE1 and XE2 be S(E1) and S(E2)-
admissible Banach spaces respectively. We define the multipliers space be-
tween XE1 and XE2 through the bilinear map B as

(XE1 , XE2)B = {λ ∈ S(E) : λ ∗B f ∈ XE2 ∀f ∈ XE1}

with the norm
‖λ‖(XE1

,XE2
)B = sup

‖f‖XE1
≤1
‖λ ∗B f‖XE2

.

In the particular case E = L(E1, E2) and B = BL we simply write
(XE1 , XE2).

It is easy to prove that ‖.‖(XE1
,XE2

)B is a norm on (XE1 , XE2)B whenever
B satisfies the condition

B(e, x) = 0, ∀x ∈ E1 =⇒ e = 0.

In other words, the mapping E → L(E1, E2) given by e→ Te where Te(x) =
B(e, x) is injective.

Theorem 3.3 Let E1, E2 and E be Banach spaces and let B : E×E1 −→ E2

be a bounded bilinear map for which there exists C > 0 such that

‖e‖E ≤ C sup
‖x‖E1

=1

‖B(e, x)‖E2 , e ∈ E. (5)

If XE1 and XE2 are S(E1), S(E2)-admissible Banach spaces respectively,
then (XE1 , XE2)B is S(E)−admissible.

Proof. We shall consider first the case E = L(E1, E2) and B = BL.
Let λ = (Tj)j ∈ (XE1 , XE2) and j ≥ 0. For each x ∈ E1, using the

admissibility of XE1 and XE2 , we have

‖Tj(x)‖E2 ≤ πj(XE2)‖Tj(x)ej‖XE2

= πj(XE2)‖λ ∗L xej‖XE2

≤ πj(XE2)‖λ‖(XE1
,XE2

)‖xej‖XE1

≤ πj(XE2)ij(XE1)‖λ‖(XE1
,XE2

)‖x‖E1 .

This gives (XE1 , XE2) ↪→ S(L(E1, E2)) with continuity.
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On the other hand if p ∈ P(L(E1, E2)) and f ∈ XE1 we have p ∗L f ∈
P(E2) ⊂ XE2 . Hence p ∈ (XE1 , XE2). For each j ≥ 0 and T ∈ L(E1, E2), we
have to show that ‖Tej‖(XE1

,XE2
) ≤ Cj‖T‖. Now given f ∈ XE1 , again by

the admissibility of XE1 and XE2 ,

‖Tej ∗L f‖XE2
= ‖T (f̂(j))ej‖XE2

≤ ij(XE2)‖T (f̂(j))‖E2

≤ ij(XE2)‖T‖‖f̂(j)‖E1

≤ ij(XE2)πj(XE1)‖T‖‖f‖XE1
.

Therefore Cj = ij(XE2)πj(XE1).
Let us now show the completeness of (XE1 , XE2). Let (λn)n ⊂ (XE1 , XE2)

be a Cauchy sequence of multipliers. Since the sequence of operators Λn(f) =
λn ∗L f is a Cauchy sequence in L(XE1 , XE2) we define Λ ∈ L(XE1 , XE2) be
its limit in the norm. Therefore

‖Λ− Λn‖ → 0 ⇒ ‖Λ(f)− Λn(f)‖XE2
→ 0 ⇒ λn ∗L f → Λ(f) ∈ S(E2).

On the other hand, we know (XE1 , XE2) ↪→ S(L(E1, E2)) and then there
exists λ ∈ S(L(E1, E2)) such that

λn ∗L f → λ ∗L f

in S(L(E1, E2)). Hence necessarily Λ(f) = λ ∗L f .
For the general case assumption (5) allows to use Remark 2.1 where the

isomorphism is given by e ∈ E → Te ∈ L(E1, E2) where Te(x) = B(e, x) for
each e ∈ E and x ∈ E1. Just note that

(XE1 , XE2)B = {(λ̂(j))j ∈ EN : (Tλ̂(j))j ∈ (XE1 , XE2)}.

Let us consider the particular cases B = B0 and B = BD.

Definition 3.4 Let XE be S(E)-admissible. We define

XS
E = {f = (xj)j ∈ S(E) : (αjxj)j ∈ XE,∀(αj)j ∈ `∞}

and

XK
E =

{
f = (x′j)j ∈ S(E ′) :

∑
j

|〈x′j, xj〉| <∞,∀(xj)j ∈ XE

}
.
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We also denote

XKK
E =

{
f = (xj)j ∈ S(E) :

∑
j

|〈x′j, xj〉| <∞,∀(x′j)j ∈ XK
E

}
.

In general we have
XS
E ⊆ XE ⊆ XKK

E .

One basic concept in the theory of multipliers is the notion of solid space
(see [ACP]). We have the analogue notion in our setting.

Definition 3.5 We say that XE ⊂ S(E) is S(E)-solid (or simply solid)
whenever XE is a S(E)-admissible space verifying (αj f̂(j))j ∈ XE for f ∈
XE and (αj)j ∈ `∞, that is to say XE = XS

E.

Using that (`∞, XE)B0 = XS
E and XK

E = (XE, `
1)BD together with Theo-

rem 3.3 we obtain the following corollary.

Corollary 3.6 Let XE be S(E)-admissible. Then XS
E and XK

E are S(E)-
solid and S(E ′)-solid respectively.

Remark 3.1 Let us collect here some observations of solid spaces.
(a) X[E], Xweak(E) and X⊗̂πE are S(E)-solid iff X is a solid space.
(b) Rad(E) is a S(E)-solid space. (This follows from Kahane’s contrac-

tion principle, [DJT], 12.2, p.231.)
(c) Neither Hp(D, E) nor Ap(D, E) are S(E)-solid unless p = 2.
Assuming that they are S(E)-solid, and restricting to φ(z)x for φ ∈ H(D)

and x ∈ E, we will have that also Hp or Ap must be solid for p 6= 2, which
is not the case.

Proposition 3.7 Let X be S-solid and E a Banach space. Then
(i) (X⊗̂πE)K = (XK)weak(E

′).
(ii) (X[E])K = XK [E ′].

Proof. (i) We first claim that (x′j)j ∈ (XK)weak(E
′) if and only if

(
〈x′j, x〉

)
j
∈

XK for all x ∈ E. We only need to see that if

sup
‖x‖E=1

‖
(
〈x′j, x〉

)
j
‖XK <∞

then
(
〈x′′, x′j〉

)
j
∈ XK for x′′ ∈ E ′′.

14



For each (αj)j ∈ X and N ∈ N, there are εj with |εj| = 1,

N∑
j=0

|〈x′′, x′j〉αj| = |
N∑
j=0

〈x′′, x′j〉αjεj|

= |〈x′′,
N∑
j=0

x′jαjεj〉|

≤ ‖x′′‖E′′‖
N∑
j=0

x′jαjεj‖E′

≤ ‖x′′‖E′′ sup
‖x‖E=1

N∑
j=0

|〈x′j, x〉αj|

≤ ‖x′′‖E′′ sup
‖x‖E=1

‖
(
〈x′j, x〉

)
j
‖XK .

This concludes the claim.
We show first (X⊗̂πE)K ⊆ (XK)weak(E

′). Take λ = (x′j)j ∈ (X⊗̂πE)K ,
x ∈ E and (αj)j ∈ X. Note that

λ ∗D
(
(αj)⊗ x

)
=
(
〈x′j, x〉αj

)
j
∈ `1 (6)

and then we obtain that (x′j)j ∈ (XK)weak(E
′) with ‖(x′j)j‖(XK)weak(E′) ≤ ‖λ‖

from the previous result.
Assume now that λ = (x′j)j ∈ (XK)weak(E

′) and let us show that λ ∈
(X⊗̂πE)K . If ε > 0 and f =

∑
n fn ⊗ xn ∈ X⊗̂πE with f̂n(j) = αnj and∑

n ‖fn‖X‖xn‖E < ‖f‖X⊗̂πE + ε we have∑
j

|λ̂ ∗D f(j)| ≤
∑
j

∑
n

|〈x′j, xn〉αnj |

=
∑
n

∑
j

|〈x′j, xn〉αnj |

≤
∑
n

‖xn‖E‖
(
〈x′j,

xn
‖xn‖

〉
)
j
‖XK‖fn‖X

≤ ‖(x′j)j‖(XK)weak(E′)(
∑
n

‖xn‖E‖fn‖X)

≤ ‖(x′j)j‖(XK)weak(E′)(‖f‖X⊗̂πE + ε)
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(ii) We first notice that∑
j

|〈x′j, xj〉| ≤
∑
j

‖x′j‖E′‖xj‖E ≤ ‖(‖x′j‖E′)j‖XK‖(‖xj‖E)j‖X .

This shows that XK [E ′] ⊆ (X[E])K .
To see the other inclusion, let λ = (x′j)j ∈ (X[E])K and show that

(‖x′j‖E′)j≥0 ∈ XK . Fix (αj)j ∈ X, ε > 0 and j ≥ 0. Let select xj ∈ E

with ‖xj‖E = 1 and ‖x′j‖E′ = |〈x′j, xj〉|+ ε2−(j+1)|αj|−1 for αj 6= 0. Consider
now f = (αjxj)j ∈ X[E] and observe that, using that X is solid, we get∑

j

‖x′j‖E′ |αj| =
∑
j

|〈x′j, xj〉||αj|+ ε

= ‖λ ∗D f‖`1 + ε

≤ ‖λ‖(X[E])K‖f‖X[E] + ε

≤ ‖λ‖(X[E])K‖(αj)j‖X + ε.

This finishes the proof.

Remark 3.2 In general XK⊗̂πE ′ ⊆ (Xweak(E))K .
Indeed, for each g = (βj)j ∈ XK, x′ ∈ E ′ and f = (xj)j ∈ Xweak(E), we

have that
(g ⊗ x′) ∗D f =

(
〈x′, xj〉βj

)
j

(7)

which satisfies ∑
j

|〈x′, xj〉βj| ≤ ‖g‖XK‖x′‖E′‖f‖Xweak(E)

and then
‖g ⊗ x′‖(Xweak(E))K ≤ ‖g‖XK‖x′‖E′

Now we extend using linearity and density to obtain XK⊗̂πE ′ ⊆ (Xweak(E))K .
For the case X = `p, 1 < p <∞, it was shown (see [BD, FR, AB3]) that

(`pweak(E))K = `p
′⊗̂πE ′

Theorem 3.8 Let E1, E2 and E be Banach spaces and let B : E×E1 −→ E2

be a bounded bilinear map satisfying (5).
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Define B∗ : E × E ′2 → E ′1 given by

〈B∗(e, y′), x〉 = 〈y′, B(e, x)〉, e ∈ E, x ∈ E1, y
′ ∈ E ′2.

If XE1 and XE2 are admissible spaces and XE2 = XKK
E2

, then

(XE1 , XE2)B = (XK
E2
, XK

E1
)B∗

Proof. From the definition we can write for λ ∈ S(E), f ∈ S(E1), g ∈ S(E ′2)
and j ≥ 0,

〈ĝ(j), λ̂ ∗B f(j)〉 = 〈λ̂ ∗B∗ g(j), f̂(j)〉.

Assume now that λ ∈ (XE1 , XE2)B and g ∈ XK
E2

. We have

‖λ ∗B∗ g‖XK
E1

= sup
{∑

j

|〈λ̂ ∗B∗ g(j), f̂(j)〉| : ‖f‖XE1
≤ 1
}

= sup
{∑

j

|〈ĝ(j), λ̂ ∗B f(j)〉| : ‖f‖XE1
≤ 1
}

≤ ‖g‖XK
E2

sup{‖(λ ∗B f)‖XE2
: ‖f‖XE1

≤ 1}
≤ ‖λ‖(XE1

,XE2
)B‖g‖XK

E2
.

Using the assumptionXE2 = XKK
E2

one can argue as above for λ ∈ (XK
E2
, XK

E1
)B∗

and f ∈ XE1 to obtain

‖λ ∗B f‖XE2
= sup

{∑
j

|〈ĝ(j), λ̂ ∗B f(j)〉| : ‖g‖XK
E2
≤ 1
}

= sup
{∑

j

|〈λ̂ ∗B∗ g(j), f̂(j)| : ‖g‖XK
E2
≤ 1
}

≤ ‖f‖XE1
sup

{
‖(λ ∗B∗ g)‖XK

E1
: ‖g‖XK

E2
≤ 1
}

≤ ‖λ‖(XK
E2
,XK
E1

)B∗
‖f‖XE1

.

4 B-Hadamard tensor product

Let us now generate a new S(E)−admissible space using bilinear maps and
tensor products.
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Definition 4.1 Let E1, E2 and E3 be Banach spaces and let B : E1×E2 −→
E3 be a bounded bilinear map. Let XE1 , XE2 be S(E1),S(E2)−admissible
respectively. We define the Hadamard projective tensor product XE1 ~B XE2

as the space of elements h ∈ S(E3) that can be represented as

h =
∑
n

fn ∗B gn

where the convergence of
∑

n fn ∗B gn is considered in S(E3), being fn ∈
XE1 , gn ∈ XE2 and ∑

n

‖fn‖XE1
‖gn‖XE2

<∞.

The particular case E3 = E1⊗̂πE2 and Bπ : E1 ×E2 → E3 will be simply
denoted XE1 ~XE2

Proposition 4.2 Let E1, E2 and E3 be Banach spaces and let B : E1 ×
E2 −→ E3 be a bounded bilinear map. Let h ∈ XE1 ~B XE2 and define

‖h‖B = inf
∑
n

‖fn‖XE1
‖gn‖XE2

where the infimum is taken over all possible representations of h =
∑

n fn ∗B
gn.

Then (XE1 ~B XE2 , ‖ · ‖B) is a Banach space.

Proof. Let ‖h‖B = 0 and ε > 0. Thus there exists a representation h =∑
n fn ∗B gn such that

∑
n ‖fn‖XE1

‖gn‖XE2
< ε. Since the series converges in

S(E3) we conclude that ĥ(j) =
∑

nB(f̂n(j), ĝn(j)). Using the admissibility
of XE1 and XE2

‖ĥ(j)‖E3 ≤
∑
n

‖B(f̂n(j), ĝn(j))‖E3

≤ ‖B‖
∑
n

‖f̂n(j)‖E1‖ĝn(j)‖E2

≤ ‖B‖πj(XE1)πj(XE2)
∑
n

‖f̂n‖XE1
‖ĝn‖XE2

< ε.

Consequently ĥ(j) = 0 for all j ≥ 0.
Of course ‖αh‖B = |α|‖h‖B for any α ∈ K and h ∈ XE1 ~B XE2 .
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The triangle inequality follows using that if h1 ∼ (f 1
n ∗B g1n)n and h2 ∼

(f 2
n ∗B g2n)n such that∑

n

‖f in‖XE1
‖gin‖XE2

< ‖hi‖B +
ε

2
, i = 1, 2.

Then h1 + h2 =
∑

n f
1
n ∗B g1n +

∑
m f

2
m ∗B g2m and then

‖h1+h2‖B ≤
∑
n

‖f 1
n‖XE1

‖g1n‖XE2
+
∑
m

‖f 2
m‖XE1

‖g2m‖XE2
< ‖h1‖B+‖h2‖B+ε.

Finally, let us see that XE1~BXE2 is complete. Let
∑

n hn be an absolute
convergent series in XE1 ~B XE2 with hn ∈ XE1 ~B XE2 . For each n ∈ N
select a decomposition hn(z) =

∑
k f

n
k ∗B gnk such that∑

k

‖fnk ‖XE1
‖gnk‖XE2

< 2‖hn‖B.

Let us now show that
∑

n hn =
∑

n

∑
k f

n
k ∗B gnk in S(E3). Indeed, for

each j ≥ 0 we have∑
n

∑
k

‖B(f̂nk (j), ĝnk (j))‖E3 ≤ ‖B‖πj(XE1)πj(XE2)
∑
n

∑
k

‖fnk ‖XE1
‖gnk‖XE2

< 2‖B‖πj(XE1)πj(XE2)
∑
n

‖hn‖B

and since E3 is complete we get the result.
Moreover h =

∑
n hn ∈ XE1 ~B XE2 because

∑
n

∑
k ‖fnk ‖XE1

‖gnk‖XE2
<

∞. Now use that

‖
∞∑
n=N

hn‖B ≤
∞∑
n=N

∞∑
k

‖fnk ‖XE1
‖gnk‖XE2

< 2
∞∑
n=N

‖hn‖B

to conclude that the series
∑

n hn converges to h in XE1 ~B XE2 .

Remark 4.1 If h =
∑

n fn ∗π gn ∈ XE1 ~B XE2 then
∑

n ‖fn ∗B gn‖B < ∞
and h =

∑
n fn ∗B gn converges in XE1 ~B XE2.

Indeed, simply use that

‖f ∗B g‖B ≤ ‖f‖XE1
‖g‖XE2

for f ∈ XE1 and g ∈ XE2 and that for M > N

‖
M∑
n=N

fn ∗B gn‖B ≤
M∑
n=N

‖fn ∗B gn‖B ≤
M∑
n=N

‖fn‖XE1
‖gn‖XE2

.
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Theorem 4.3 Let E1, E2 and E be Banach spaces and let B : E1×E2 −→ E
be a bounded bilinear map satisfying that there exists C > 0 such that for each
e ∈ E there exists (xn, yn) ∈ E1 × E2 such that

e =
∑
n

B(xn, yn),
∑
n

‖xn‖E1‖yn‖E2 ≤ C‖e‖E. (8)

If XE1 and XE2 are admissible spaces then XE1 ~BXE2 is S(E)−admissible.
In particular XE1 ~XE2 is admissible.

Proof. We show first that XE1~BXE2 ⊂ S(E) with continuity. For ε > 0
we can find a representation h =

∑
n fn ∗B gn such that

∑
n ‖fn‖XE1

‖gn‖XE2
<

‖h‖B + ε. Therefore, for each j ≥ 0,

‖ĥ(j)‖E ≤
∑
n

‖B(f̂n(j), ĝn(j))‖E

≤ ‖B‖
∑
n

‖f̂n(j)‖E1‖ĝn(j)‖E2

≤ ‖B‖πj(XE1)πj(XE2)
∑
n

‖f̂n‖XE1
‖ĝn‖XE2

≤ Cj‖h‖B + ε.

To show that P(E) ⊂ XE1~BXE2 , it suffices to see that eej ∈ XE1~BXE2

for each j ≥ 0 and e ∈ E. Now use condition (8) to write e =
∑

nB(xn, yn) ∈
E and therefore

eej =
∑
n

(xnej) ∗B (ynej)

and∑
n

‖xnej‖XE1
‖ynej‖XE2

≤ ij(XE1)ij(XE2)
∑
n

‖xn‖E1‖yn‖E2 ≤ Cj‖e‖E.

Hence eej ∈ XE1 ~B XE2 and ‖eej‖B ≤ Cij(XE1)ij(XE2)‖e‖E.

Remark 4.2 If E1, E2 and E are Banach spaces and B : E1 × E2 −→ E is
a surjective bounded bilinear map such that there exists C > 0 s.t. for every
e ∈ E there exists (x, y) ∈ E1 × E2 verifying

e = B(x, y), ‖x‖E1‖y‖E2 ≤ C‖e‖E (9)

then we can apply Theorem 4.3.
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A simple application of (9) gives the following cases.

Corollary 4.4 (i) If X and XE are admissible spaces and B0 : K×E → E
is given by (α, x)→ αx then X ~B0 XE is S(E)−admissible.

(ii) Let (Σ, µ) be a measure space, 1 ≤ pj ≤ ∞ for i = 1, 2, 3 and 1/p3 =
1/p1+1/p2. Let B : Lp1(µ)×Lp2(µ)→ Lp3(µ) be given by (f, g)→ fg. Then
if XLp1 and XLp2 are admissible spaces then XLp1 ~B XLp2 is admissible.

(iii) Let A be a Banach algebra with identity and P : A×A→ A given by
(a, b)→ ab. If XA and YA are admissible spaces then XA~P YA is admissible.

Remark 4.3 It is straightforward to see that, under the assumptions of The-
orem 4.3, if either XE1 or XE2 are solid spaces then XE1 ~B XE2 is a S(E)-
solid space.

Proposition 4.5 Let E1, E2 and E be Banach spaces and let B : E1×E2 −→
E be a bounded bilinear map satisfying (8). Let XE1 , XE2 be admissible Ba-
nach spaces such that either XE1 or XE2 are minimal spaces, then XE1~BXE2

is a minimal S(E)-admissible space.

Proof. We shall prove the case X0
E1

= XE1 . Let h ∈ XE1 ~B XE2 . From
Remark 4.1, there exist fn ∈ XE1 , gn ∈ XE2 and N ∈ N such that

‖h−
N∑
n=0

fn ∗B gn‖B <
ε

2
.

By density choose polynomials pn with coefficients in E1 such that

‖fn − pn‖XE1
≤ ε

2(N + 1)‖gn‖XE2

Then
∑N

n=0 pn ∗B gn ∈ P(E) and

‖h−
N∑
n=0

pn ∗B gn‖B ≤ ‖h−
N∑
n=0

fn ∗B gn‖B + ‖
N∑
n=0

(fn − pn) ∗B gn‖B

≤ ε

2
+

N∑
n=0

‖fn − pn‖XE1
‖gn‖XE2

≤ ε

2
+

N∑
n=0

ε

2(N + 1)
= ε
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Proposition 4.6 Let B : E1×E2 → E be a bounded bilinear map satisfying
(8). Denote B∗ : E ′ × E1 → E ′2 the bounded bilinear map defined by

〈B∗(e′, x), y〉 = 〈e′, B(x, y)〉, x ∈ E1, y ∈ E2, e
′ ∈ E ′.

If XE1 and XE2 are admissible then

(XE1 ~B XE2)
K = (XE1 , X

K
E2

)B∗ .

(XE1 ~B XE2)
′ = (XE1 , X

′
E2

)B∗

In particular (XE1~XE2)
′ = (XE1 , X

′
E2

) and (XE1~XE2)
K = (XE1 , X

K
E2

).

Proof. Let λ ∈ (XE1 , X
K
E2

)B∗ and define, for f ∈ XE1 and g ∈ XE2 ,

λ̃(f ∗B g)̂(j) = 〈(λ ∗B∗ f)̂(j), ĝ(j)〉, j ≥ 0.

Let us see that λ̃ ∈ (XE1 ~B XE2)
K .∑

j

|λ̃(f ∗B g)̂(j)| =
∑
j

|〈(λ ∗B∗ f)̂(j), ĝ(j)〉|

≤ ‖λ ∗B∗ f‖XK
E2
‖g‖XE2

≤ ‖λ‖(XE1
,XK
E2

)B∗
‖f‖XE1

‖g‖XE2
.

By linearity we can extend the result to finite linear combinations of ∗B-
products and by continuity, to XE1 ~B XE2 , that is

λ̃(h) =
∑
n

λ̃(fn ∗B gn)

whenever h =
∑

n fn ∗B gn and
∑

n ‖fn ∗B gn‖B ≤ ∞. Therefore we conclude
(XE1 , X

K
E2

)B∗ ⊆ (XE1 ~B XE2)
K .

For the other inclusion, consider γ ∈ (XE1~BXE2)
K and define γ̃(f)̂(j) ∈ E ′2

by
〈γ̃(f)̂(j), y〉 = γ(f ∗B yej)̂(j), f ∈ XE1 , y ∈ E2, j ≥ 0.

This gives

〈γ̃(f)̂(j), ĝ(j〉) = γ(f ∗B g)̂(j), f ∈ XE1 , g ∈ XE2 , j ≥ 0.
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Let us see that γ̃ ∈ (XE1 , X
K
E2

)B∗ :

‖γ̃(f)‖XK
E2

= sup
‖g‖XE2

=1

∑
j

|γ(f ∗B g)̂(j)|

≤ ‖γ‖(XE1
~BXE2

)K sup
‖g‖XE2

=1

‖f ∗B g‖B

≤ ‖γ‖(XE1
~BXE2

)K‖f‖XE1
.

The argument to study the dual is similar: Let λ ∈ (XE1 , X
′
E2

)B∗ and
define φλ(f ∗B g) = 〈λ ∗B∗ f, g〉. Note that X ′E2

is also S(E ′2)-admissible and

|φλ(f ∗B g)| ≤ ‖λ‖(XE1
,X′E2

)B∗‖f‖XE1
‖g‖XE2

.

By linearity we can extend the result to finite linear combinations of ∗B-
products and extend by continuity XE1 ~B XE2 , that is

φλ(h) =
∑
n

φλ(fn ∗B gn)

whenever h =
∑

n fn ∗B gn and
∑

n ‖fn ∗B gn‖B ≤ ∞. Therefore we conclude
(XE1 , X

′
E2

)B∗ ⊆ (XE1 ~B XE2)
′.

For the other inclusion, consider T ∈ (XE1 ~B XE2)
′ and define

λT (f)(g) = T (f ∗B g).

Then

‖λT (f)‖X′E2
= sup
‖g‖XE2

=1

|λT (f)(g)| ≤ sup
‖g‖XE2

=1

‖T‖‖f ∗B g‖B ≤ ‖T‖‖f‖XE1
.

Theorem 4.7 Let XE1 , XE2 , XE3 be admissible Banach spaces. Then

(XE1 ~XE2 , XE3) = (XE1 , (XE2 , XE3))

Proof. Due to the identification between L(E1⊗̂πE2, E3) and L(E1,L(E2, E3))
where the correspondence was given by φ(x ⊗ y) = Tφ(x)(y) we obtain,
in our case, that each λ ∈ S(L(E1⊗̂πE2, E3)) can be identified with λ̃ ∈
S(L(E1,L(E2, E3)) satisfying

λ̂(j)(f̂(j)⊗ ĝ(j)) = ̂̃λ(j)(f̂(j))(ĝ(j)).
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Let λ ∈ (XE1 ~XE2 , XE3). For each f ∈ XE1 and g ∈ XE2 we have

λ ∗1 (f ∗π g) = (λ̃ ∗2 f) ∗3 g (10)

where ∗1 is used for multipliers in S(L(E1⊗̂πE2), E3), ∗2 for multipliers in
S(L(E1,L(E2, E3))) and ∗3 for multipliers in S(L(E2, E3)).

Let us now show that λ̃ ∈ (XE1 , (XE2 , XE3)).
We use (10) to get

‖(λ̃∗2f)∗3g‖XE3
≤ ‖λ‖(XE1

~XE2
,XE3

)‖(f∗πg)‖ = ‖λ‖(XE1
~XE2

,XE3
)‖f‖XE1

‖g‖XE2
.

Therefore ‖λ̃‖(XE1
,(XE2

,XE3
)) ≤ ‖λ‖(XE1

~XE2
,XE3

).

For the converse, take λ̃ ∈ (XE1 , (XE2 , XE3)) and h ∈ XE1 ~ XE2 . Assume
that h =

∑
n fn ∗π gn with

∑
n ‖fn‖XE1

‖gn‖XE2
<∞. Hence

‖λ ∗1 h‖XE3
≤
∑
n

‖λ ∗1 (fn ∗π gn)‖XE3

=
∑
n

‖(λ̃ ∗2 fn)‖(XE2
,XE3

)‖gn‖XE2

≤
∑
n

‖λ̃‖(XE1
,(XE2

,XE3
))‖fn‖XE1

‖gn‖XE2

≤ ‖λ̃‖(XE1
,(XE2

,XE3
))

∑
n

‖fn‖XE1
‖gn‖XE2

,

which gives ‖λ‖(XE1
~XE2

,XE3
) ≤ ‖λ̃‖(XE1

,(XE2
,XE3

)).

5 Examples and applications

In this section we would like to use Theorem 4.7 in both directions, that is to
say to compute multiplier spaces and to compute Hadamard tensor products.

We first start with a characterization of S(E)-solid spaces in terms of
Hadamard tensor products.

Proposition 5.1 Let XE be admissible. Then `∞ ~B0 XE is the smallest
S(E)-solid space which contains XE.

In particular XE is S(E)-solid if and only if XE = `∞ ~B0 XE
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Proof. Of course XE ⊆ `∞ ~B0 XE and `∞ ~B0 XE is solid (due to Remark
4.3).

Let YE be a solid space with XE ⊂ YE. We shall see that `∞~B0XE ⊂ YE.
Let h ∈ `∞ ~B0 XE be given by h =

∑
n fn ∗ gn where fn ∈ `∞, gn ∈ XE

and
∑

n ‖fn‖∞‖gn‖XE < ∞. Note that fn ∗ gn ∈ YE and ‖fn ∗ gn‖YE ≤
‖fn‖∞‖gn‖YE for each n because YE is solid. Hence∑

n

‖fn ∗ gn‖YE ≤
∑
n

‖fn‖∞‖gn‖YE ≤ C
∑
n

‖fn‖∞‖gn‖XE <∞

and then h ∈ YE.

Proposition 5.2 Let 1 ≤ p, q ≤ ∞ with 1
p

+ 1
q

= 1. Then

`p(E1) ~ `q(E2) = `1(E1⊗̂πE2).

Proof. Let f ∈ `p(E1) and g ∈ `q(E2). Since f̂ ∗π g(j) = f̂(j)⊗ ĝ(j) and

‖f̂ ∗π g(j)‖E1⊗̂πE2
≤ ‖f̂(j)‖E1‖ĝ(j)‖E2

we have, using Hölder’s inequality,

‖f ∗π g‖`1(E1⊗̂πE2) ≤ ‖f‖`p(E1)‖g‖`q(E2). (11)

Let h ∈ `p(E1)~`q(E2). Let ε > 0 and take h =
∑

n fn∗π gn with fn ∈ `p(E1)
and gn ∈ `q(E2) and

∑
n ‖fn‖`p(E1)‖gn‖`q(E2) ≤ ‖h‖Bπ + ε.

From (11) we have that h =
∑

n fn ∗π gn converges in `1(E1⊗̂πE2) and
‖h‖`1(E1⊗̂πE2) ≤ ‖h‖Bπ + ε. This implies that `p(E1) ~ `q(E2) ⊆ `1(E1⊗̂πE2)
with inclusion of norm 1.

Take now h ∈ `1(E1⊗̂πE2). In particular for each j ≥ 0 and ε > 0 there
exists xjn ∈ E1 and yjn ∈ E2 such that ĥ(j) =

∑
n x

j
n ⊗ yjn and∑

n

‖xjn‖E1‖yjn‖E2 < ‖ĥ(j)‖E1⊗̂πE2
+

ε

2j
.

Define Fn and Gn by the formulae

F̂n(j) =
(
‖xjn‖E1‖yjn‖E2

)1/p xnj
‖xnj ‖E1

, Ĝn(j) =
(
‖xjn‖E1‖yjn‖E2

)1/q ynj
‖ynj ‖E2

.
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Note that

‖Fn‖`p(E1) = (
∑
j

‖xjn‖E1‖yjn‖E2)
1/p, ‖Gn‖`q(E2) = (

∑
j

‖xjn‖E1‖yjn‖E2)
1/q

and ∑
n

‖Fn‖`p(E1)‖Gn‖`q(E2) =
∑
n,j

‖xjn‖E1‖yjn‖E2 ≤ ‖h‖`1(E1⊗̂πE2) + ε.

In such a way we have h =
∑

n Fn ∗π Gn ∈ `p(E1) ~ `q(E2) with ‖h‖Bπ ≤
‖h‖`1(E1⊗̂πE2).

To analyze the other values of p we shall make use of the following result
of multipliers (see [AB2], Proposition 2.2)

(`p1(E1), `
p2(E2)) = `p3(L(E1, E2)) (12)

where 0 < 1
p1

+ 1
p2

= 1
p3
< 1

Proposition 5.3 Let 1 ≤ p, q ≤ ∞ with 0 < 1
p

+ 1
q

= 1
r
< 1. Then

`p(E1) ~ `q(E2) = `r(E1⊗̂πE2).

Proof. Note that same argument as in Proposition 5.2 gives `p(E1) ~
`q(E2) ⊆ `r(E1⊗̂πE2) with inclusion of norm 1.

Indeed, as above, if f ∈ `p(E1) and g ∈ `q(E2) then

‖f̂ ∗π g(j)‖E1⊗̂πE2
≤ ‖f̂(j)‖E1‖ĝ(j)‖E2 .

Hence
‖f ∗π g‖`r(E1⊗̂πE2) ≤ ‖f‖`p(E1)‖g‖`q(E2). (13)

For a general h =
∑

n fn ∗π gn ∈ `p(E1)~ `q(E2) where fn, gn are chosen such
that fn ∈ `p(E1) and gn ∈ `q(E2) and

∑
n ‖fn‖`p(E1)‖gn‖`q(E2) ≤ ‖h‖Bπ + ε

we have from (13) that
∑

n ‖fn ∗π gn‖`r(E1⊗̂πE2) <∞ . Then h =
∑

n fn ∗π gn
converges in `r(E1⊗̂πE2) and ‖h‖`r(E1⊗̂πE2) ≤ ‖h‖Bπ + ε.

To see that they coincide it suffices to show that (`p(E1) ~ `q(E2))
′ =

(`r(E1⊗̂πE2))
′. It is well known that for 1

r′
= 1− 1

r
,

(`r(E1⊗̂πE2))
′ = `r

′
(L(E1, E

′
2)).
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On the other hand, using Lemma 4.6 and (12) we have

(`p(E1) ~ `q(E2))
′ = (`p(E1), `

q′(E ′2)) = `r
′
(L(E1, E

′
2))

where 1
q′

= 1− 1
q
.

We now compute the Hadamard tensor product in some particular cases
of spaces of analytic functions. We shall analyze the case H1 and H1(D, E)
at least for particular Banach spaces E following the ideas developed in [BP].

We need some notions and lemmas before the statement of the result.
Given an E-valued analytic function, F (z) =

∑∞
j=0 xjz

j, we define

DF (z) =
∞∑
j=0

(j + 1)xjz
j.

Lemma 5.4 Let E be a complex Banach space, 1 ≤ p ≤ ∞.
(i) There exist A1, A2 > 0 such that

A1r
m‖f‖Hp(D,E) ≤Mp(f, r) ≤ A2r

n‖f‖Hp(D,E), 0 < r < 1

for f ∈ P(E) given by f(z) =
∑m

j=n xjz
j, xj ∈ E, n,m ∈ N and where

Mp(f, r) = (
∫ 1

0
‖f(reit)‖p dt

2π
)1/p.

(ii) If P (z) =
∑2n+1

k=2n−1 P̂ (k)zk, P̂ (k) ∈ C, then there exist constants B1

and B2 such that

B12
n‖P ∗B0 f‖Hp(D,E) ≤ ‖P ∗B0 Df‖Hp(D,E) ≤ B22

n‖P ∗B0 f‖Hp(D,E) (14)

for any f ∈ Hp(D, E).

Proof. It is well known (see Lemma 3.1 [MP]) that

rm‖φ‖∞ ≤M∞(φ, r) ≤ rn‖φ‖∞, 0 < r < 1.

for each scalar-valued polynomial φ(z) =
∑m

j=n αjz
j, where ‖φ‖∞ = sup|z|=1 |φ(z)|

and M∞(φ, r) = sup|z|=1 |φ(rz)|.
This allows us to conclude, composing with elements in the unit ball of

the dual space,

rm‖F‖∞ ≤M∞(F, r) ≤ rn‖F‖∞, 0 < r < 1.

for any F (z) =
∑m

j=n yjz
j where yj ∈ Y where Y is a complex Banach space.
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Now select Y = Hp(D, E) and F (z) = fz that is to say

F (z)(w) =
m∑
j=n

xjw
jzj.

Using that
‖F‖∞ = sup

|z|=1

‖fz‖Hp(D,E) = ‖f‖Hp(D,E)

and M∞(F, r) = Mp(f, r) we obtain the result.
To see (ii) we first use [BP, Lemma 7.2] that guarantees the existence of

constants B1, B2 such that

B12
n‖P ∗B0 φ‖∞ ≤ ‖P ∗B0 Dφ‖∞ ≤ B22

n‖P ∗B0 φ‖∞

for any φ ∈ H∞(D). Now apply the same argument as above to extend it to
Hp(D, E).

Theorem 5.5 Let B1(D, E) denote the space of E-valued analytic functions
F (z) =

∑
j=0 xjz

j such that DF (z) ∈ A1(D, E) with the norm given by

‖F‖B1(D,E) = ‖F (0)‖E +

∫
D
‖DF (z)‖EdA(z).

Let E = Lp(µ) for any measure µ and 1 ≤ p ≤ 2.

(H1(D) ~B0 H
1(D, Lp(µ))) = B1(D, Lp(µ)).

Proof. Let us first show that B1(D, E) ⊆ (H1(D) ~B0 H
1(D, E)) for any

Banach space E. We argue similarly to [BP, Thm 7.1].
Let {Wn}∞0 be a sequence of polynomials such that

supp(Ŵn) ⊂ [2n−1, 2n+1] (n ≥ 1), supp(Ŵ0) ⊂ [0, 1], sup
n
‖Wn‖1 <∞

and

g =
∞∑
n=0

Wn ∗B0 g, g ∈ H(D, E).

Let f ∈ B1(D, E). Note that

‖(Wn ∗B0 f)r‖H1(D,E) ≤ ‖Wn‖1‖fr‖H1(D,E) ≤ C‖f‖H1(D,E),
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Hence, ‖Wn ∗B0 f‖H1(D,E) ≤ C‖f‖H1(D,E).
Denoting Qn = Wn−1 +Wn +Wn+1 we can write

f =
∞∑
n=0

Qn ∗B0 Wn ∗B0 f.

Note now that Lemma 5.4 allow us to conclude

∞∑
n=0

‖Qn‖1‖Wn ∗B0 f‖H1(D,E) ≤ K

∞∑
n=0

‖Wn ∗B0 f‖H1(D,E)

≤ K
∞∑
n=0

∫ 1−2−(n+1)

1−2−n
2nr2

n‖Wn ∗B0 f‖H1(D,E)dr

≤ K
∞∑
n=0

∫ 1−2−(n+1)

1−2−n
r2

n‖Wn ∗B0 Df‖H1(D,E)dr

≤ K
∞∑
n=0

∫ 1−2−(n+1)

1−2−n
M1(Wn ∗B0 Df, r)dr

≤ K
∞∑
n=0

∫ 1−2−(n+1)

1−2−n
M1(Df, r)dr

= K

∫ 1

0

M1(Df, r)dr

≤ K‖f‖B1(D,E).

To show the other inclusion between these spaces we shall use that E =
Lp(µ) for 1 ≤ p ≤ 2 satisfies the following vector-valued extension of a
Hardy-Littlewood theorem,[∫ 1

0

(1− r)M2
1 (Df, r)dr

]1/2
≤ A‖f‖H1(D,E) (15)

for some constant A > 0(see [B4], Definition 3.5 and Proposition 4.4).
It suffices to see that φ ∗B0 g ∈ B1(D, Lp(µ)) for each φ ∈ H1(D) and

g ∈ H1(D, Lp(µ)). Now taking into account that D2(φ ∗B0 g) = Dφ ∗B0 Dg
and

rD(φ ∗B0 g)(reit) =
∞∑
j=0

(j + 1)φ̂(j)ĝ(j)rj+1eitj =

∫ r

0

D2(φ ∗B0 g)(seit)ds
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we have,∫ 1

0

M1(D(φ ∗B0 g), r)rdr ≤
∫ 1

0

[∫ r

0

M1(D
2(φ ∗B0 g), s)ds

]
rdr

=

∫ 1

0

(1− s)M1(D
2(φ ∗B0 g), s)ds

≤ 2

∫ 1

0

(1− r2)M1(r,Dφ)M1(Dg, r)rdr.

Now from Cauchy-Schwarz and (15) we obtain∫ 1

0

(1− r2)M1(Dφ, r)M1(Dg, r)rdr ≤
[∫ 1

0

(1− r2)M2
1 (Dφ, r)rdr

]1/2
.

[∫ 1

0

(1− r2)M2
1 (Dg, r)rdr

]1/2
≤ K‖φ‖H1‖g‖H1(D,Lp(µ)).

It is known, by Fefferman’s duality result, that (H1)′ = BMOA. In the
vector-valued case, using Lp is an UMD space for 1 < p <∞, we have

(H1(T, Lp(µ)))′ = BMOA(T, Lp′(µ)), 1 < p <∞

(see [B1]). It is also well known that (B1)′ = Bloch (see [ACP]) and for
the vector-valued case (B1(D, E))′ = Bloch(D, E ′) for any complex Banach
space E (see [B2], Corollary 2.1) under the pairing

〈F,G〉 =

∫
D
〈DF (z), G(z)〉dA(z).

Using now Proposition 4.6 we recover the following result.

Corollary 5.6 (see [B4]) Let 1 ≤ p1 ≤ 2 and 2 ≤ p2 <∞.

(H1(T, Lp1), BMOA(T))BL = Bloch(D,L(Lp
′
1 , Lp

′
1)).

(H1(T), BMOA(T, Lp2))BL = Bloch(D,L(Lp2 , Lp2)).
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