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1 Introduction.

It is well known that the method of transference is a useful procedure for
obtaining norm estimates independent of the dimension for classical operators
acting on Lp(Rn, dx) (see for instance [1, 12, 13]) and even in the weighted
situation (see for instance [7, 8, 9]). The aim of this note is to combine the
techniques and methods at our disposal from the linear case (see [1, 6, 7, 17,
12]) and the “bilinear transference” method, introduced in [4] (and extended
in [2, 3]), to show the boundedness of certain bilinear multipliers defined in
Rn with the norm independent of the dimension n.

One particular case of interest in this note is the bilinear version of the
classical Riesz transforms on Rn, defined for 1 ≤ k ≤ n by

(Rkf)(x) = cn lim
ε→0

∫
ε<|y|<1/ε

f(x− y)
yj

|y|n+1
dy, k = 1, 2, ..., n (1)

where cn = Γ(n+1
2

)π−
n+1

2 , or equivalently, and more useful, by

(Rkf )̂(ξ) =
−iξk

(
∑n
j=1 ξ

2
j )

1/2
f̂(ξ), k = 1, 2, ..., n (2)

where f̂(ξ) =
∫
Rn f(x)e−2πi〈x,ξ〉dx. These operators are known to satisfy, for

1 < p <∞, the estimate

‖(
n∑
k=1

|Rk(f)|2)1/2‖Lp(Rn) ≤ C‖f‖Lp(Rn) (3)
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with a constant C independent of n.
The Riesz transforms are the basic examples of Calderón-Zygmund oper-

ators with kernels which are odd and homogeneous of degree 0.
Throughout the paper K(x) = Ω(x)

|x|n , where Ω is an odd function, ho-

mogeneous of degree 0 and integrable over Σn−1, i.e. Ω(−x) = −Ω(x) and
Ω(λx) = Ω(x) for x ∈ Rn and λ > 0, with Ω(u) ∈ L1(Σn−1). We define

TΩ(f) = cn(Ω) lim
ε→0

∫
ε<|y|<1/ε

f(x− y)
Ω(y)

|y|n
dy

where cn(Ω) is chosen such that ‖TΩ‖L2(Rn)→L2(Rn) = 1, i.e.

cn(Ω)−1 = ‖K̂‖L∞(Rn).

We use the notations vn = π
n
2

Γ(n
2
+1)

for the volume of the unit ball and write

dσ the normalized area measure of the sphere Σn−1. We shall see from our
considerations that actually the following result holds true: The condition

nvncn(Ω)‖Ω‖Σn−1 ≤ C (4)

implies
‖TΩ(f)‖Lp(Rn) ≤ C‖f‖Lp(Rn)

for all 1 < p <∞ with a constant C independent of n.
In the last decade the bilinear Hilbert transform, given by

H(f, g)(x) = lim
ε→0

1

π

∫
|y|>ε

f(x− y)g(x+ y)

y
dy

for f, g belonging to the Schwarzt class S(R), was shown by M. Lacey and
C. Thiele to be bounded from L2(R) × L2(R) into L1(R) solving an old
question by A. Calderón. In the their fundamental work they discover that
the parameter p3 in the range space could go even below 1.

Theorem 1.1 (see [10, 11]) Let 1 < p1, p2 < ∞, 1/p3 = 1/p1 + 1/p2 and
2/3 < p3 <∞. Then there exists a constant C > 0 such that

‖H(f, g)‖Lp3 (R) ≤ C‖f‖Lp1 (R)‖g‖Lp2 (R). (5)
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In a similar way we shall define the bilinear version of the operator TΩ and
shall try to get its boundedness from Lp1(Rn)× Lp2(Rn) into Lp3(Rn) under
the same conditions on pi. To analyze the independence of the dimension
for the norm of the corresponding bilinear operator one needs to select the
right normalization constant bn(Ω). Let us introduce the natural choice in
the following definition.

Definition 1.2 Given Ω as above we define

BΩ(f, g)(x) = bn(Ω) lim
ε→0

∫
ε<|y|<1/ε

f(x− y)g(x+ y)
Ω(y)

|y|n
dy,

where bn(Ω) is chosen in such a way that

‖BΩ‖L2(Rn)×L2(Rn)→L1(Rn) = 1.

Let us also mention the formulation in terms of Fourier transforms which
is left to the reader.

Remark 1.1 Let f, g ∈ S(Rn). Then

BΩ(f, g)(x) = bn(Ω)
∫

Rn

∫
Rn
f̂(ξ)ĝ(η)K̂(ξ − η)e2πi〈(ξ+η),x〉dξdη. (6)

Let us estimate bn(Ω) and calculate cn(Ω) for particular cases.

Proposition 1.3 Let Ω be defined as above. Then

bn(Ω) ≤ cn(Ω).

Proof. Denote

B̃Ω(f, g)(x) = lim
ε→0

∫
ε<|y|<1/ε

f(x− y)g(x+ y)
Ω(y)

|y|n
dy

and

T̃Ω(f)(x) = lim
ε→0

∫
ε<|y|<1/ε

f(x− y)
Ω(y)

|y|n
dy.

We shall show that

‖B̃Ω‖L2(Rn)×L2(Rn)→L1(Rn) ≥ ‖T̃Ω‖L2(Rn)→L2(Rn).
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If f, g ∈ S(Rn) we have

‖B̃Ω(f, g)‖L1(Rn) ≥ |
∫

Rn
(
∫

Rn
f(x− y)g(x+ y)dx)

Ω(y)

|y|n
dy|

= |
∫

Rn
(
∫

Rn
f(x)g(x+ 2y)dx)

Ω(y)

|y|n
dy|

= |
∫

Rn
(
∫

Rn
f(x)g(x− y)dx)

Ω(y)

|y|n
dy|

= |
∫

Rn
f(x)T̃Ω(g)(x)dx|.

Now taking the supremum over f, g ∈ S(Rn) with ‖f‖L2(Rn) = ‖g‖L2(Rn) = 1

we obtain ‖B̃Ω‖L2(Rn)×L2(Rn)→L1(Rn) ≥ ‖T̃Ω‖L2(Rn)→L2(Rn) and the result fol-
lows. �

Proposition 1.4 Let a ∈ Rn \ {0} and Ωa(x) = 〈a,x〉
|x| . Then, for e1 =

(1, 0, ..., 0),
bn(Ωa) = |a|−1bn(Ωe1).

Proof. Let A be an orthogonal transformation of Rn such as Ae1 = a
|a| and

write fA(x) = f(Ax). Then, for f, g ∈ S(Rn),

B̃Ωa(f, g)(Ax) =
∫

Rn
f(Ax− y)g(Ax+ y)

〈a, y〉
|y|n+1

dy

= |a|
∫

Rn
fA(x− u)gA(x+ u)

u1

|u|n+1
du

= |a|B̃Ωe1
(fA, gA)(x).

This allows to conclude the result. �

Proposition 1.5 cn(Ωa) = |a|−1π−
n+1

2 Γ(n+1
2

) = cn
|a| .

Proof. It is elementary to show that if Ω is odd then

K̂(ξ) =
iπnvn

2

∫
Σn−1

Ω(u)sign〈u, ξ〉dσ(u).

Hence |K̂(ξ)| ≤ πnvn

2
‖Ω‖L1(Σn−1). In particular for Ω = Ωa one gets

K̂(a) = iπnvn

2

∫
Σn−1

|Ωa(u)|dσ(u).
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Hence
πnvncn(Ωa)‖Ωa‖L1(Σn−1) = 2. (7)

On the one hand, using polar coordinates, one has∫
|x|≤1

|〈a, x〉|dx =
n

n+ 1
vn‖Ωa‖L1(Σn−1),

and, on the other hand, using Fubini’s theorem, one also has∫
|x|≤1

|〈a, x〉|dx = |a|
∫
|x|≤1

|x1|dx = |a|2vn−1

n+ 1
.

Hence nvn‖Ωa‖L1(Σn−1) = 2|a|vn−1 which gives

cn(Ωa) =
1

|a|πvn−1

= |a|−1π−
n+1

2 Γ(
n+ 1

2
).

�

Definition 1.6 For a = ek, Ω(x) = xk

|x| , k = 1, 2, ..., n, the bilinear Riesz
transform is given by

(Rk(f, g))(x) = bn lim
ε→0

∫
|y|>ε

f(x− y)g(x+ y)
yk

|y|n+1
dy (8)

= −ibn
cn

∫
Rn

∫
Rn
f̂(ξ)ĝ(η)

ξk − ηk
|ξ − η|

e2πi〈(ξ+η),x〉dξdη, (9)

where b−1
n = ‖B̃Ωe1

‖L2(Rn)×L2(Rn)→L1(Rn).
Hence BΩa = |a|−1 ∑n

k=1 akRk, a ∈ Rn \ {0}.

Our aim is to show that the transforms Rk (and more generally BΩ for
certain Ω) define bounded bilinear maps from Lp1(Rn)×Lp2(Rn) into Lp3(Rn)
for 1

p3
= 1

p1
+ 1

p2
for 1 < p1, p2 < ∞ and certain values of p3 with norm

independent of the dimension. As in the linear case we shall make use of the
method of rotations and a transference result.

We now define the directional bilinear Hilbert transform Rn as follows:
Given u ∈ Σn−1 we denote

Hu(f, g)(x) = lim
ε→0

1

π

∫
ε<|t|<1/ε

f(x− tu)g(x+ tu)
dt

t
.

We also use the notation

H(f, g)(x, y) = H
y
|y| (f, g)(x), x ∈ Rn, y ∈ Rn, y 6= 0.

Here is our version of the method of rotations in the bilinear case.
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Theorem 1.7 Let Ω ∈ L1(Σn−1) be odd and homogeneous of degree 0 and let
ψn ∈ L1(R+, dr

r
). Define dµn(x) = ψn(|x|)dx and 〈f, g〉µn =

∫
Rn f(x)g(x)ψn(|x|)dx.

Then

BΩ(f, g)(x) =
π

2
nvnbn(Ω)

∫
Σn−1

H(f, g)(x, u)Ω(u)dσ(u), x ∈ Rn (10)

BΩ(f, g)(x) =
πbn(Ω)

2‖ψn‖L1(R+, dr
r

)

〈H(f, g)(x, .), K〉µn , x ∈ Rn (11)

for f, g ∈ S(Rn).

Proof. Use the spherical coordinates to obtain (10).

BΩ(f, g)(x) = nvnbn(Ω) lim
ε→0

∫
Σn−1

∫
ε<t<1/ε

f(x− tu)g(x+ tu)
Ω(u)

t
dσ(u)dt

=
nvn
2
bn(Ω) lim

ε→0

∫
Σn−1

∫
ε<|t|<1/ε

f(x− tu)g(x+ tu)
Ω(u)

t
dσ(u)dt

=
π

2
nvnbn(Ω)

∫
Σn−1

Ω(u)H(f, g)(x, u)dσ(u).

Now

〈H(f, g)(x, ·), K〉µn =
∫

Rn
H(f, g)(x, y)

Ω(y)

|y|n
ψn(|y|)dy

= nvn(
∫ ∞

0

ψn(r)

r
dr)(

∫
Σn−1

H(f, g)(x, u)Ω(u)dσ(u))

=
2‖ψn‖L1(R+, dr

r
)

πbn(Ω)
BΩ(f, g)(x).

�

Let us mention the transference result we shall need later on. Let G
be a l.c.a group with Haar measure m, let R : G → L(Lp(µ), Lp(µ)) be a
representation of G into the space of bounded linear operators on Lp(µ) for
some measure space (Ω,Σ, µ), i.e. t → Rt verifies RtRs = Rt+s for t, s ∈ G,
limt→0Rtf = f for f ∈ Lp(µ) and supt∈G ‖Rt‖ <∞. For a given K ∈ L1(G)
with compact support we denote

CK(φ, ψ)(s) =
∫
G
φ(s− t)ψ(s+ t)K(t)dm(t)
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(defined for nice functions φ, ψ defined on G). We consider the transferred
operator by the formula

TK(f, g)(w) =
∫
G
R−tf(w)Rtg(w)K(t)dm(t)

where f and g are functions defined on Ω.

Theorem 1.8 (see [4]) Let 1 ≤ p1, p2 < ∞ and 1/p3 = 1/p1 + 1/p2 and let
R be a representation of R on acting Lpi(µ) for i = 1, 2. Assume that there
exists a map S : R → L(Lp3(µ), Lp3(µ)) given by t → St such that St are
invertible with supt∈R ‖St‖ = 1 and

Ss((R−tf)(Rtg)) = (Rs−tf)(Rs+tg)

for s, t ∈ R, f ∈ Lp1(µ) and g ∈ Lp2(µ).
If K ∈ L1(G) has compact support and the bilinear operator CK is bounded

from Lp1(G) × Lp2(G) into Lp3(G) with “norm” Np1,p2(CK) then TK is also
bounded from Lp1(µ)×Lp2(µ) to Lp3(µ) and with norm bounded by CNp1,p2(CK).

For each u ∈ Σn−1 we can use the representationRu : R → L(Lp(Rn), Lp(Rn))
given by Ru

t f(x) = f(x − tu). Hence Theorem 1.8 can be applied, using
St = Ru

t together with Fubini’s theorem, to obtain the following result.

Corollary 1.9 Let 1 < p1, p2 < ∞, p3 > 2/3 and 1/p3 = 1/p1 + 1/p2. Let
ψ ∈ Lp3(Rn) with ‖ψ‖p3 = 1 and

Hψ(f, g)(x, y) = H(f, g)(x, y)ψ(y) y ∈ Rn \ {0}.

Then Hψ : Lp1(Rn)×Lp2(Rn) → Lp3(R2n) is bounded with norm independent
of n.

An application of Minkowski’s inequality in Theorem 1.7, combined with
Theorem 1.8, allows us to conclude the following boundedness result.

Theorem 1.10 Let Ω be an odd kernel, homogeneous of degree 0, and let
1 < p1, p2 <∞, p3 ≥ 1 and 1/p3 = 1/p1+1/p2. Then BΩ : Lp1(Rn)×Lp2(Rn)
to Lp3(Rn) with

‖BΩ‖Lp1×Lp2→Lp3 ≤
π

2
‖H‖Lp1×Lp2→Lp3nvnbn(Ω)‖Ω‖L1(Σn−1).
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Finally combining Theorem 1.10, Proposition 1.3 and (7) one obtains our
main result.

Corollary 1.11 Let |a| = 1, 1 < p1, p2 <∞, p3 ≥ 1 and 1/p3 = 1/p1 +1/p2.
Then

∑n
k=1 akRk is bounded from Lp1(Rn) × Lp2(Rn) to Lp3(Rn) with norm

independent of the dimension.

Remark 1.2 Observe that Theorems 1.7 and 1.10 are valid for vector-valued
kernels. We can consider Ω̄(x) = (Ω1(x), ...,Ωn(x)) = x

|x| as a `n2 -valued
kernel, where Ωi = Ωei

.
Defining

BΩ̄(f, g) = (R1(f, g), ..., Rn(f, g)) = bn

∫
Rn
f(x− y)g(x+ y)

y

|y|
dy,

the previous method does not give the analogue of (3). Note that ‖Ω̄(x)‖`n2 = 1
for each x ∈ Rn gives

‖Ω̄‖L1(Σn−1,`n2 ) = 1

and now, using bn ≤ cn, one can only estimate 4π
n
2 bn(Ω̄)
Γ(n

2
)
‖Ω̄‖L1(Σn−1,`2) ≤ C

√
n.

Our aim is now to show that in spite of this observation, also the norm for
the `n2 -valued formulation of the bilinear Riesz transform, at least for p3 > 1,
is independent of the dimension.

Let us select ψn(r) = (2π)−
n
2 rn+1e−

r2

2 and Ω(x) = Ωa(x), |a| = 1, in
Theorem 1.7. Observe that

‖ψn‖L1( dr
r

) = (2π)−
n
2

∫ ∞

0
rne−

r2

2 dr = (2π)−
n
2 2

n−1
2 Γ(

n+ 1

2
) =

√
π

2
cn

which gives
2‖ψn‖L1( dr

r
)

πbn(Ω)
=

√
2

π

cn
bn
.

In particular, denoting by dγn(y) = (2π)−
n
2 e−

|y|2
2 dy the Gaussian measure

our formula (11) becomes

〈H(f, g)(x, ·), 〈a, ·〉〉γn =

√
2

π

cn
bn
BΩa(f, g)(x). (12)
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Observing that the coordinate functions yk are an orthonormal system
in L2(γn) and following G. Pisier ([12]) we define An to be the subspace
generated by {y1, ..., yn} in L2(γn) and by Q : L2(γn) → An the orthogonal
projection, that is

Q(f)(y) =
n∑
k=1

(
∫

Rn
f(y)ykdγn(y))yk. (13)

Hence applying (12) to this particular case one gets the following analogue
to the result given in [12]

Q(H(f, g))(x, y) =

√
2

π

cn
bn

n∑
k=1

ykRk(f, g)(x). (14)

This allows us to repeat Pisier’s argument ([12]) and get the following
analogue of (3).

Theorem 1.12 Let 1 < p1, p2 < ∞, 1/p3 = 1/p1 + 1/p2, p3 > 1. There
exists C independent of n such that

‖(
n∑
k=1

|Rk(f, g)|2)1/2‖Lp3 (Rn) ≤ C‖f‖Lp1 (Rn)‖g‖Lp2 (Rn). (15)

Proof. Following Pisier’s proof one first uses the fact that

‖
n∑
k=1

λkyk‖Lp(γn) = (
n∑
k=1

|λk|2)1/2γ(p) (16)

where γ(p) = (
∫
R |t|pe−

t2

2
dt√
2π

)1/p.

‖(
n∑
k=1

|Rk(f, g)|2)1/2‖p3Lp3 (Rn)

= γ(p3)
−p3‖

n∑
k=1

ykRk(f, g)‖p3Lp3 (Rn×γn)

≤ C
bn
cn
‖Q(H(f, g))‖p3Lp3 (Rn×γn)

≤ C‖Q‖p3Lp3 (γn)→Lp3 (γn)‖H(f, g)‖p3Lp3 (Rn×γn)

≤ C‖Q‖p3Lp3 (γn)→Lp3 (γn)‖f‖
p3
Lp1 (Rn)‖g‖

p3
Lp2 (Rn).

�
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Universitad de Valencia, Burjassot, 46100-Valencia, (SPAIN)

E–mail: oscar.blasco@uv.es

School of Mathematics and Maxwell Institute for Mathematical Sciences

University of Edinburgh, Edinburgh EH9 3JZ, (SCOTLAND)

E–mail: t.a.gillespie@ed.ac.uk

11


