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Abstract

Given 1 < p,q¢ < oo and sequences of integers (ng)r and (n) )
such that ny < nj < nyy1, the generalized mixed-norm space X(p,q)
is defined as those sequences (a;); such that ((3_;c;, |a;[P)1/P), € ¢4
where I, = {j € Ng s.t. ni, < j <nj}, ke N.

The necessary and sufficient conditions for a sequence A = (}j);
to belong to the space of multipliers (¢Z(r,s), ¢ (u,v)), for different
sequences Z and J of intervals in Ny, are determined.
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1 Introduction

Let S the space of complex-valued sequences with the locally convex vector
topology given by means of the semi-norms p;(\) = |\;| where A = (\;)en, -
Given two Banach spaces A, B continuously contained in S we write (A, B)
for the space of multipliers from A into B. More precisely,

(A, B) ={\=(N); : (Njay); € B V(a;); € A}.

We shall use the notation supp(a) = {n € Ny : a, # 0} and X x a for the
sequence (A;ja;) en, where A = () en, and a = (a;)jen,-

Of course for the classical 7 spaces one easily sees that (¢, (P?) = (7
Where 1/p = (1/p2 — 1/p1)T. We use the notation p; © p; = p to mean

p26p1 - p_2 - p_ whenever p; > p, and p = oo whenever p; < p».

*Both authors have been partially supported by Spanish Project BMF2011-231674



The above result can be extended (see [K]) to the class of mixed norm
sequence spaces, denoted ¢(p, q), which are defined by the condition

(X0 Y ) <

n=0 2n—-1<g<2n+tl—1

Theorem 1.1. Let 1 < r,s,u,v < oo. Then
(£(r,s), l(u,v)) = L(uST,VES3).

In particular the Kothe dual of 4(p,q), defined by (£(p,q), ') becomes
', q) forlgp,q<ooand%+z%=%+$:1.

Also multipliers between sequence spaces given by Taylor coefficients of
holomorphic functions in the disk have been deeply studied in the literature.
Since the time of Hardy and Littlewood, mixed-norm and related spaces have
been used to study function spaces on the unit disk, and later to study multi-
pliers between such spaces. Special emphasis has been put on the case where
the spaces A and B correspond to the sequence space of Taylor coefficient
of analytic functions such as Hardy spaces, Bergman spaces, mixed norm
spaces of analytic functions, etc. The theory of Hardy spaces and mixed
norm spaces of analytic functions was originated in the work of Hardy and
Littlewood (see [HL1, HL2|) who implicitly considered the spaces H(p, q, «)
of functions f € H(D) such that

(/O (1-— r)q“_lM]‘j(f, r)dr)l/q < 0.

Their work on these spaces was continued by Flett and Sledd (see [F1, F2,
F3, S1, S2|) and later on by Pavlovic (see [P1, P2|). Multipliers on Hardy
spaces were in fashion for a long time and much work was done on them
and related spaces. However nowadays complete descriptions of multipliers
between Hardy spaces (HP, H?) for certain values of p and ¢ remain still
open. The reader is referred to the surveys (see [CL, O]) for lots of results
and references. Also many results on multipliers between mixed norm spaces
of analytic functions have been established in the last decades (see [B1, B2,
B3| and references thereby). For such a purpose the use of solid spaces
(sequence spaces whose norm depends only on the size of the coefficients),
and in particular ¢(p,q) spaces, is a rather important tool. It is worth o
mentioning that the smallest solid space contained or which contains one of
classical Hardy, Bergman and H (p, ¢, «) is actually H(2, ¢, ) for some values
p,q and « (see [B2, B3]) and this last space can be identified with certain
weighted £(2, q), due to Plancherel’s theorem.
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Another appearance of mixed norm spaces comes with the use of lacunary
sequences, that is a = (a,) such that supp(a) C {ny : k € Ny} for a sequence
of integers satisfying infngi1/nr = A > 0. Recently (see [KD-SAA|) the
description of the Taylor coefficient of analytic functions F(z) = >~ bpz"*,
where ny, is a lacunary sequence, belonging to the weighted Bergman-Besov
space B!(p) has been achieved under certain conditions on the weight. Tt
corresponds again with certain weighted ¢(2,1).

In this paper we consider families of intervals Z = {I; : k € Ny} where
I. = {j € Ny s.t. np < j < n}} for some increasing sequences (ng), and
(n},) such that ny < nj, < ngyq and we use the notation Az = Ul,. We shall
introduce the spaces (*(p, ¢) given by sequences a = (a;) e, verifying

(O lag[") 7)€ 20

JEly

and the obvious modifications for p = oo or ¢ = co.

In particular £(p, q) = ¢*(p,q) for I}, = [2F—1,2*—1)NNy. Also a lacunary
sequence a = (ay), corresponds to supp(a) C Az where Z = {I; : k € Ny}
with I, = {ni} (that is n} = ng + 1) for some inf; ngi1/npg = A > 1.

We shall give the necessary and sufficient conditions for a sequence \ =
(A\;); to belong to the multiplier space (¢*(r, s), ¢/ (u,v)) whenever Az = A .
We also get some applications to multipliers between certain weighted mixed
norm spaces of analytic functions. The paper is organized as follows. Section
2 contains the definitions and first properties of the spaces ¢%(p, q), study-
ing inclusions between them and conditions for coincidence results ¢Z(p, q) =
?7(p,q). Section 3 contains the main result, which is split into three subsec-
tions: The case where intervals in 7 are union of intervals in Z, to be denoted
7 < J, the case where for each I € 7 there exits J € J such that either
I C Jor J C I and finally the case where there exists (I,J) € Z x J such
that INJ # @ and INJ ¢ ZUJ. In Section 4 we include some application
to multipliers on spaces of analytic functions and extend some recent result
on weighted Bergman-Besov classes.

From now on, we will write A ~ B whenever there exist C' > 0 such that
C~'A < B < CAand, as usual, #I stands for the cardinal of I, 1/p+1/p’ = 1
for 1 < p < oo and also C' denotes a constant that may vary from line to
line.

2 (Generalized mixed-norm spaces

Definition 2.1. Let 1 < p,g < oo and let Z be a collection of disjoint
intervals in Ny, say Iy = Ngo N [ng,n}) where ny < nj < ngri. We set
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Az = Ugen, Ix- We write ¢%(p, q) for the space of sequences (a,)nen, verifying
(O a7y, € 0.
JjEly
This space becomes a Banach space under the norm

1/q

0o q/p
lally, = [ > {Z |ajlp}

k=0 jely
with the obvious modifications for p = 0o or ¢ = oo.

Remark 2.2. Of course (X(p,p) = {(an)ner, = (O, |an|?)/? < o0}, In
particular ¢Z(p, p) = ¢F whenever Az = Nj.
An elementary approach, using Holder’s inequality, leads to the duality

C(p,q)" =, q)
for 1 <pg<ooand 1/p+1/p=1/¢+1/¢ =1.
Remark 2.3. It is clear that (a;); € €*(p, q) < (a?); € €*(1,q/p) in the case

p < q and also (a;); € (*(p,q) < (af); € Ez(g, 1) in the case p > q.

— p
Moreover, for a? = (a%);,

1/p 1/q
laliZ, = (Ia?iEyy,) = (o) 1)

Remark 2.4. Let a € (p, q).
(i) If 7’ is a sub-collection of intervals in Z then ||a||£:q < lallf,-
(i) If Z = 7' UZ" for two disjoint collections 7’ and Z"” then |[a|ll, =

Il q I" q 1/q
((laliZ)e + (lalZye) ™
We would like to analyze the embedding between ¢%(py, q1) and (% (pa, o).

Proposition 2.5. Let T be a collection of disjoint intervals in Ny and let
1 < p1,p2,q < 00 with py # pa. Then €*(p1,q) = (*(p2, q) (with equivalent
norms) if and only if

sup #1 < oo (2)
keNg

In particular if supyey, #1x < oo then

(p,q) = {(an)nens = (O lan|)"? < oo},



Proof. =) Assume, for instance, p; < p, and that ||a|| -

supported in Az. Hence taking a = x;, one concludes that (nﬁg—nk)l/ p1=1/p2 <
C' for any k. Hence sup, #1; < 0.
<=) Note that #I; = (n}, — ng) and assume M = sup(ng —n},). Then

1/q 1/q

0o a/p1 0o a/p2
JallE = z{zw} - z{zw} ol

k=0 \jel k=0 jer,

~ |lal|3, , for all a

since ||.[[p, = ||.]|p, In CM,

]

Proposition 2.6. Let 1 < pi,q1,p2,q2 < o0 and let T be a collection of

disjoint intervals in Ng with supp#I; = oo.
Then (*(py, q1) € €*(p2, q2) if and only if p1 < p2 and g1 < go.

Proof. =) Assume that there exists C' > 0 such that |||, = < Cllalf? . for

all @ supported in Az. Hence taking & € Ny and a = x;, one concludes that

(#1;)/P2=1/7 < C. Hence p; < py. Let N € Ny and consider a = S8 X, -

Applying the above inequality we obtain N'/2~%a < C. Therefore ¢; < gs.
<=) Let us denote

() = {(wr)reny  ox € O allE)? < 00}

k=0
Hence the mapping
(an)neno — ((a;)jen)ren
is an isometric embedding from ¢Z(p, q) into £9(¢?). Taking into account that
(" (E) C (" (E) for any Banach space E and r; < ry we conclude that

£I<p7 ql) g gf(p, QQ) and gI(pla Q> g gI(p% q)

Therefore
fz(pbﬁh) C fz(pmﬁh) C fz(p%(b).
Il

We would like to analyze the embedding between ¢%(p, q) and ¢/ (p, q) for
7 # J whenever Az = A .

Proposition 2.7. LetZ ={I;: 1 e No} and J = {J : k € No}. If Az = A7,
p < q (respect. ¢ < p) and sup, #Jx < 00 (respect. sup, #1; < oo ) then

*(p.q) C 07 (p,q)( respect. ¢7(p,q) C (*(p,q)).



Proof. From Proposition 2.5 gives 7 (p,q) = 7 (q,q) and clearly ¢7(q,q) =
?*(q,q). Then the result follows using ¢Z(p,q) C ¢*(q,q) whenever p < q.
]

Let us mention another particular case where they coincide.

Proposition 2.8. Let T such that I;; = [ng,n}) N Ny with nby, = nog11 and
define
j: {Jk :[2kU12k+1 : k EN()}.

Then (*(p,q) = €7 (p, q).

Proof. Note that J, = Iy U I541 is again an interval in Ny. Using that
(a+0)* < Cy(a® +b*) for a, b, > 0 then

oo a/p\ /1
Jal, = z{z |aj|p}
k=0 \jeJi

a/p\ /1

[
[M]#

D P+ D ol

k=0 \ j€l2k J€l2k+1
1/q
- a/p - q/p
|p P
<C E E |aj] + E E |ajl
k=0 \j€ly k=0 | j€lopi1

< Cllally,
On the other hand, using now (a” + b°) < Cjs(a + b)? for a,b, 3 > 0,

a/p\ V1

0o q/p
JalZ, = z{zw} S
k=0 \jel, J€l2k41

a/p\ /4

<> D lal

k=0 |\ j€l2xUlzk+1

< C'llally

The previous idea easily generalizes using the following definition.



Definition 2.9. Let Z := {[;: | € No} and J :={Jx : k € No}. We say
that Z < J if the following conditions hold:

(1) Az = AJ?

(11) F, = Fk(I,j) = {l eENy: I C Jk} 7§ () for all k € Np,

(111) Jk = UlEFk[l for all k € No-

Proposition 2.10. Let 1 < p,q < oo and Z < J. Then
(1) t7 (p,q) € {*(p,q) forp <q.
(ii) *(p.q) € 7 (p,q) for ¢ < p.
Moreover the embeddings above are of norm 1.

Proof. (i) Case ¢ = oo: Let a € £7(p,0) and | € Ny. We know that there is
k such that I; C J,. Hence

(D lanl)? < (Y lan”)? < flallf -

nel; neJg

This gives [|al[7 . < [|allf
The case p = 1: Let a € £7(1,q) and q > 1. Therefore

(tali) =3 (ZZ \an\)q >33 O el = (llalf, )"

The case 1 < p < ¢ < oo follows using (1) and the previous one.
(ii) The case p = oo: Let a € #*(c0, q). Then

JallZy = (S suptsuplaa?) ™ < (30 S Guplaalyr) ™ = ol

3 leF, nel) kE lcFy, nel;

To cover the remaning cases, from (1), we simply need to show that ¢Z(p, 1) C
(7 (p,1) for p > 1. Now observe that

lally} = Z SN au) e = Z S flaxa )

leFy, nel; leFy
< Z > llaxall, = Z(Z |an[?)7? = |lali?,
k leF} I nel

[]

Theorem 2.11. Let Z < J and 1 < p,q < oo with p # q.
(p,q) =17 (p,q) (with equivalent norms) if and only if sup, #F, < oo.



Proof. =) Assume that ||a|lY, ~ |a|, for all a finitely supported. Let
k € Ny and define
k) — Z(#Il) Yrxy.
leFy,

Then [la|l], = (#F)"? and [la|} , = (#F)"/.
One concludes that Cy < (#F,)Y/P~1/¢ < €} which implies, in the case

p # 4, SuPgen, (#F%) < oo
<=) Case p < ¢: From Proposition 2.10 we only need to show ¢Z(p, q) C

?7(p,q). Using now Holder’s inequality for ¢/p > 1

1/p 1/p 1/q
{Z!an!p} é{ZZlan|p} s{Z(DanV’)W} (#Fy) 750

neJy l€F, nel; leEF, n€El;

Therefore, if M = sup,, F}, we have

= (03 ) <075 (5 S ()

k=0 neJg keNg leFy, nel;
1/q
= M7 (SO ey ) = Ml
ZENO nEIl

Case p > ¢: Using again Proposition 2.10 we shall show ¢7(p,q) C
*(p,q). Using 1/¢g=1/q©p+1/p

lallrq = Q_ laxa i) = (32> llaxa g
l

k leFy
1/q
< <Z(Z ||aX11||§)Q/p(#Fk)‘”"ep)
ke,
1/q
< M (Z D lal”) Wp) < M |fal|7,
neJy

[]

Let us now exhibit an example where neither ¢(p,q)* C ¢7(p,q) nor
7 (p,q) € *(p, q).

Example 2.12. Let 1 < p < g < oo and take Z, J as showed below:



I,
+1
P L I, .. I, ! Inivo  Lnytny+1
' — — I/—\I/\I/—\I ...

1
I
0 ni 2n1 2n1+n2 2(n1+n2)
1 .
I

Jnl ni+nz+1
with:
card(lp) = m card(Jo) = ... = card(J,,) =1
card(ly) = ... = card(l,,) =1 card(Jy,) = ny
card(Iy, +1) = ng card(Jp,11) = ... = card(Jn,1ny) =
card(Ip,+2) = ... = card(Ip, 4ny41) = 1 card(Jn, sny11) = N2,

card(In, yny,42) = N3, ...

Let’s see that neither /7 (p, q) C ¢*(p, q) nor ¢*(p,q) C ¢ (p,q).
Taking

ny ni na
—— N
a = (51, ...,61,07 ...,O,ﬁg, ...,ﬂg,o, )
and
b - (O, ...,O,ﬁl, ...,61,0, ...,O,ﬁg, )
—— —— N——
we have:

lallZ, = lIblIT, = (Y Bint/?)!/e

J
lallyly = Ibll5g = O Bing)®
J
Then it is enough to consider ¢ > p and 3; = nj_l/pjfl/q. Now

Qa1 = (35 = o0

j
and, since n; > j,

(Z ﬁfnj)l/q _ (Zj—ln;—q/f’)l/q < (Zj—q/p)l/q < 0.
J J ]

J

Hence we have a € ¢7(p,q)\¢*(p,q) and b € (*(p, q)\¢7 (p, q).

We would like to explain a procedure to analyze the general case Az = A 7.
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Definition 2.13. Let Z and J families of disjoint intervals in Ny with Az =
Az. For each k € Ny we use the notation, as above, F, = {l € Ny : I; C Ji.}
which now might be empty. We also define

Fp={leNy:J,NI #0}.
We write ¢ and ¢ for the mappings given by
$(k) = min F}, and ®(k) = max F},.
Similarly, interchanging 7 and 7, we define G;, Gy, 1(1) and ¥(1).
Definition 2.14. We define the "left" and "right" part of the interval J; by
Je = Ji N Iy and jk = Ji N Lo

and, denoting J;, = Ujep, [; and Jp, = Uje, 11, we have

Ji C J, C Ji (3)
and ) )
J = J, U Jp U Jg, (4)

where J; = () whenever F}, = (. o )
Similarly, interchanging Z and J we consider [, [;, I} and 1.

With this notation out of the way we can classify intervals in 7 into four
different types (according to Z). Note that each interval J € J there are
four possibilities: J coincides with I for some I € 7, J can be written as a
union of at least two intervals in Z, J is strictly contained into some interval
I € T or there exists [ € Z which overlaps with J and its complement J°.

Therefore we decompose Ny into four disjoint sets defined as follows:

Definition 2.15. Let Z and J families of disjoint intervals in Ny with Az =
A 7. We introduce

Négual:{keNO:#(Fk\Fk)207#Fk:1}7 (5)

Nily = {k € No: #(F \ Fy) = 0, #F, > 2}, (6)

Ni@all:{keNO:#<Fk\Fk)>07#Fk:1}7 (7>

Ner = {k € No: #(F; \ Fy) > 0,#F; > 2} (8)
We define the sets NZ ., Nii,, Ni . and N7, . similarly.
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Remark 2.16. Using (4) we can also give a description of the sets above in
terms of ¢ and ®:

Nepuar = {k 2 6(k) = ®(k), Ju = Ly }-

N = {k: ¢(k) < ®(k), Jr = Ji}.

N = {k = 6(k) = @(k), i & Loy }-

Using the above decomposition we can generalize Proposition 2.7, Propo-
sition 2.10 and Theorem 2.11. Note that sup, #.J; < oo implies sup, #F, <
oo and also that T < J corresponds to the case where N/, UNJ = () or
equivalently #G; = 1 for any [ € N,.

Theorem 2.17. Let 1 <p < q<oo andZ,J with Ax = Ay. Then
(p.q) € 7 (p.q) <= sup{#Fy; k € No} < 0.
Proof. =) Arguing as in Theorem 2.11, for & € Ny we consider

a®) = " (#(L0T) X,

lEFk
Hence
Ha(k)ng _ (Z |an|P) /P = (Z Z |a, |P) P = (#F;)VP
neJy leFy, n€LNJg
and -
||a(k)’|g’q — (Z( Z |a, |[P)/P) 9 = (#E,)Y.
leﬁ‘k neljNJg

Therefore using that [|a®|7 < Clla®|Z and p < ¢ we conclude that
sup{#Fj; k € No} < oo.

<=) Denote sup(#F;) = M > 0 and let k € Ny.

Case g =o0: If ke NJ U Néguaz then

ST

(D laa)P < (Y laal)'? < lally -

neJi n€ly(x)
Itk e Ng?g U N/, we have
D laaP)? = QoY Sl + D0 laa)
neJy leFy, nel; neJ,UJy,
SO D an) P+ (D a0 fanl)?
leF), nel; n€ly () n€lg k)
< CSsup(> Jan )P (#F) P + 2|2
lEFY, nel;
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This shows (% (p, 00) C (7 (p, ).

Case ¢ < oo0: Arguing as in Proposition 2.10 we simply show that
2(1,q) C¢7(1,q) for ¢ > 1.

Observe that

Do lahr< D> D> faal)

keN . neJy IENE UNL,., o(k)=l n€J
< 2 (L X lalr
leNE UNT ., ¢(k)=In€Jy

= > Ol

leNL uNZ nel

big inter

q
(lalf, )
Also we have

Yoo O lahrs > QD el

IN

J J 7 7
keN&qualUNbig nEJk keNequalUN' lEFk nEIl
1
<D @R faal
J J
kENT aUNSL, lEF), nely

<Mt YT YO al)”

kENT L UNS 1€Fk nely

equal

< Mo (Jaf%,)"
-~ 17(1 .

Finally
> (el 3 0D el + 3 fand+ 3 e
keNT,., "€k keNy, =~ 1eFnel; nedy neds

<0 Y @ Y el
kENT,.. IEF;, nel]

Y Y lar e Y (O )
kENznter nejk kENMLter nejk

< CM! Z (Z lan])?

leNlInterUNGImall neh

O (D lal) D0 (X el

kENglter €Lk kEN{ZLter n€lyp(k)
q
< ¢(Jlalf, )
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Combining the above estimates we conclude this implication. O

Corollary 2.18. Let 1 <p<qg< o0 and Z,J with Az = Ay. Then
7 (p,q) C *(p,q) <= sup{#él;l € No} < 0.
Next result can be achieved using duality but we include a direct proof.
Theorem 2.19. Let 1 < ¢ <p<oo andZ,J with Az = Az. Then
07 (p,q) € (*(p, q) <= sup{#Fy; k € No} < oo.

Proof. =) Repeat the argument presented in the direct implication of The-
orem 2.17.
<=) Denote again sup,(#Fx) = M.

Case p = oo: Observe first that if [ € NZ

7
big Y Negua We have

(sup |an|)? = lan@|” < (sup [an|)?

nel; neJy
for some k = k(1) € stma”UthZual. Since k(1) # k(") for l £ 1' € szl-gUNeunal
we obtain
Z (sup ‘an‘)q < Z (sup |an|)q'
lENingUNci]ual nEIl keNgrLallUNglual nEJk

Also if I € N7, then (sup,,c; [an|)? = |ane|? where n(l) € Ij U I U,. Note

that n(l) € J; for some k € N7 . UN7

sm inter and

1< #({l € Niyer : (1) € Ji}) < 2.

Hence

S Gwpla)r<2 S (sup ).

leNT nel; kNI UNT neJy
small i

inter inter

On the other hand

D (suplan)? < >0 ) (suplan))?

T ’VLEIZ ~ ’VZEIZ
leNsmall kGNl;ngNi{mter w(l)fkl
<D (sl
7 7 neJy
kerigUNinter

< M(Jlall;0)"-

Combining the previous cases we get (7 (00, q) C *(c0, q).
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Case p < oo. Arguing as in Proposition 2.10 we simply show that
07 (p,1) € ¢*(p,1) for p > 1.

p,1 Z Z|a |p 1

nEIl

< Z (D laaf)t?

T
leNsmall ne[l

o (0D e

lall,

leNquualUNing keGynedy
1
+ § § E |an’p+ E :|an|p+ E |an|p> /p
leNZ, = keGineldy nel nel;
== Il -+ _[2 -+ 13.

Now observe that

< Y Sl s S (X Il B < Mall,

kEN‘j uUNY lEF;C nel; keNI UNT neJy

inte big inter

Also note, since p > 1,

L< Y Y (D ) < lall,

leNquualUNing keG; nedy
Finally
< D O0 D a) P+ O lan) P+ O fan)
leNIIm keGy neJy nel nel)
< 2 Qa3 () e D (3 fal)?
keNy, UNT . nEJk leNE ., =—neJyq leNE . —neJyq)
< CZ > lan”)? = Cllal,
neJy
The converse implication is now complete. O

Corollary 2.20. Let 1 <g<p< o0 and Z,J with Az = Ay. Then

€I(p, q) C Ej(p, q) = sup{#él;l € Nyo} < 0.
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Corollary 2.21. Let 1 < p,q < o0 with p # q and Z,J with Az = Ay.
Then

07 (p,q) = *(p. q) <= sup{(#F) (#G1); k.1 € No} < 0.

Proof. Tt suffices to show the case p < q. Note that ¢Z(p,q) C ¢ (p,q) and
t7(p,q) € €*(p, q) are equivalent, due to Theorem 2.17 and Corollary 2.18,
to the facts supg(#F;) < oo and sup;(#G)) < 0o, or equivalently

sup{ (#F,)(#G)); k,1 € No} = s%p(#ﬁ’k) s&;p(#él) < 0.

]

3 Multipliers on generalized mixed-norm spaces

In this section we consider 1 < 7, s,u,v < oo and Z, J such that Az = A 7.
We define

(5(r,5), 7 (1, 0)) = {A = n)neazony * [|nan)neny 70 < Cll(@n)nensllr.s}-

The case Z = J can be shown repeating the proof for Z = {I; : k € Ny}
where I}, = [2% — 1,28 — 1) NNy (see |K, Theorem 1]).

Theorem 3.1. ((*(r,s), *(u,v)) = F(uSr,vO s).
We define the Kothe dual ¢Z(p, q)® = (¢(p, q),¢*(1,1)).
Corollary 3.2. (Z(r,s)K = (Z(+',s').

There are some other cases where the set of multipliers can be easily
determined. Using Proposition 2.5 and Corollary 2.21 one easily obtains the
following results.

Proposition 3.3.
(i) If supgen, #Jx < 00 then ((X(r,s), 07 (u,v)) = £(v O 1,06 3).
(i) If supyey, #1, < 0o then ((*(r,s), 07 (u,v)) =07 (u© 5,0 & s).
(iii) If sup{ (#F%)(#G)); k, 1 € No} < 0o then

(E(r,s), 07 (u,v)) =7 (uor,ves) =F(uorvos).
Also as a direct consequence of Theorem 2.17 we obtain:

Proposition 3.4. If r <wu, s <v and u < v and sup{#ﬁk;k; € Ng} <
then
(X (r, 5), 07 (u,v)) = {(An)nen, : sup |An| < oo}
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Proof. It is obvious that if (A,)nea, is a multiplier needs to be a bounded
sequence. Note that the inclusion

{(An)neng :sup [An| < oo} C (E(r, 5), 67 (u,v))
is equivalent to ¢ (r, s) C 7 (u,v). Now use the embedding ¢*(r, s) C *(u,v)
and Theorem 2.17 to conclude the result. ]
Definition 3.5. If 7, 7 with Az = A;. We define the collection of pairwise
disjoint intervals in Ny

INT ={LNJy: k€Nl € Ey).

It coincides with {I; N J, : 1 € No, k € G} }.
Proposition 3.6. Let 1 < r,s,u,v < 00o.

(i) If r < s,v < u then ((*(r,s), 07 (u,v)) C ﬁfﬂ\j(u or,ve s).

In particular, if sup, #F, < oo then
(KI(T, 5),6‘7(% v)) C Kj(u orves).

(i) If s <r,u<w then~€ﬁ(u or,vos) C (E(r,s), 07 (u,v)).
In particular, if sup; #G; < oo then

Fluor,vos) C (E(r,s), 07 (u,v)).

Proof. (i) Note that Ing < 7 and InJg < J. Hence, from Proposition
2.10,

2 (p,q) € E(p,q),p > ¢q (9)
and -
t7(p,q) L™ (p,q),p < q. (10)
Now using (9), (10) and Theorem 3.1 we obtain
(KI(T, s),ﬁj(u,v)) C (Em(r, s),ﬁm(u,v)) = Em(u orves).

Also we have

—_—

F(INT.J)={(k1):1€F}

and

FINT.T)={(k1): ke

Using now Theorem 2.11

(707 (p,q) = 17 (p, q) <= sup #F}, < oc. (11)
k
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T (p, q) = (X (p, q) <= sup #G; < c. (12)
l

The particular case follows now applying (11).
(i) is similar and left to the reader. O

Our purpose is to get a final description of multipliers (¢Z(r, s), £ (u,v)).
We shall deal first with the case Z < 7 and get a reduction to this situation
in the remaining cases.

3.1 ThecaseZ<J

In this section we consider 7 and J such that Ny = NZ;Z g UN ;Zml. This means

that F}, = F, # 0 and J, = Ujep [y for all k. Notice that if I € F}, means
I, C J,, and we have

Fy={l€Ng:¢(k) <1< P(k)}.

We use the notation J/Z = {F; : k € Ng}.
We shall need the following well known fact.

Lemma 3.7. Let 0 < u,r < oo, A C Ny and (\;)ica. There exists (a;)ica
such that

O lal)Yr =1 and (3 M) = (3 Jaih )V

i€A i€A i€A
(with the obvious modifications whenever u,r or u S r equals c.)

Proof. For r = oo (then u & r = u) it suffices to take a; = 1,7 € A.
If r < oo and u > r (hence u © r = 00) it suffices to take

%:{1¢=um

0 otherwise

for i(A) such that sup;c4 |Ai| = [Xiga)|-
If u<r < oo take

a; = (Y [NV e A
i€A

Using that 1 + “2% = Y% one shows the result. O

u
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Theorem 3.8. If7 < J then

(E5(r,5), 7 (u,0)) = {(Aa) - ((Z |Ai|“@’")1/“@’")l et (uss,ve )}

i€l

Proof. C) Assume that (\,), € (¢*(r, s), 07 (u,v)).
We use Lemma 3.7 with A = I; to select for each for [ € Ny, a sequence
l l T ' ugor uor
(a)ier, such that (Siep, [a’|)"" = 1 and § = (S o)/ =

l u u
(Ficr N[
Now, again use Lemma 3.7 with A = F}, for each k € Ny, to choose ()i,
verifying (ZleFk, |04l|s)1/s =1 and (ZleFk lues)1/ues = (ZleFk, |ﬁl0‘l|u)1/u~
Finally, using Lemma 3.7 for A = Ny, one more time, take v = (), veri-

: s\1/s uOs vOs /uds 1/vOs v uSs v/ uss) /v
fying (32, [7x] )1/ = land (Zk {ZleFk le } @/9) = (Zk%{ZZGFk le } / e) .

This procedure allows us to obtain the sequence a = (a;);, a; = fykalaz(l)

where i € I}, | € F}, and k € Ny. With this choice we get that [|a||Z, = 1 and

J/T
18172, s = A all7, < Il

D) Let a = (a;); € £X(r,s) and A\ = ();); such that (8); € £7/7 (uSs,vOs)

where
Br= (Y Inlrenytier.
i€l;
Fix k£ € Ny
1/u 1/u
(Zhar) - (T nar)
i€Jy lEFY, i€])
1/u
< (Z (Z p\Ju@r)u/u@r(Z ‘CLZV)?:)
leF), i€l i€l
1/ues 1/s
< (Z (Z |)\i’uer)ues/uer> (Z (Z |ai|r)8/r)
leF, i€l leFy, i€l

18



Taking the v-norm, we get to:

1/v 1/v
(S aari) = (T ames )

i€Jk leFy, leF), i€l]

IN

leFy, leF, i€l

leF}, i€l]

Hence (Ay)n € (€2(r, ), £7 (u,0)) and A < [|B]1747 e

Corollary 3.9. Let 7 <Z and 1 <r,s,u,v < oo. Then

(¢*(r,s), 07 (u,v)) = {(A\)n ((Z |)\i|“67’)1/“er>k € EI/J(U or,ves)}.

1€k

Proof. Recall that G =G = {keNy: Jp C I} and [} = Upeg, Jr: We now
denote Z/J = {G, : | € No}. Using Kothe duals we actually have

(FE(r, 8), 07 (u,v)) = (07 (W, 0), 02 (o', §")).

Taking into account that p' © ¢ = ¢ © p for all p, g the result follows from
Theorem 3.8. O

—_ T —

3.2 ThecaseZINJCIUJ

Let Z={[;:l € Ng} and J = {Jy : k‘ € Ny} such that Az = A7. We assume
in this section that NZ, . =0 and N7, =), that is to say for a given I € Ny
either there exists k such that/[l\/g J;, or there exist k' such that J C I;. In
other words each interval in Z N J belongs either to Z or to J.

To extend the result on multipliers to this setting we shall use the follow-

ing lemma whose easy proof is left to the reader.

Lemma 3.10. Let Z = {I, : | € No} and J = {Ji : k € Ny} such that
Ar = A7 and let Z; (respect. J; ) for i = 1,--- m sub-collections of T
(respect. J) with T = U, Z; (respect. J = U, T;) satisfying Az, = Nz, for
1=1,---,m. Then

A= (An)neas € (E4(r,5),07 (u,v))
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if and only if
AD = (Aneng, € (€5 (r,s), 67 (u,v)),i =1,--- ,m.
Moreover | Al = S0 [[AD]].

Theorem 3.11. Let 7N J CIZUJ. Then (M\p)n € ((X(r,s), 07 (u,v)) if and
only if it satisfies the conditions

(N o) s € 0, (13)
i€Jg
Z | X[ 4O, et L€ Fluos,vos), (14)
i€l}
(i) s € Boerues), (15)
1€Jy,

where F = {F}, : k € Ngg} and G = {Gy: 1l € N[ }.
Proof. Let us consider the following collection of intervals
={J:keNL}, Je={l:keNZ .}, and T, = {Jy: k€ NJ ,,}

and similarly for 7.
If Jp € Jp (vespect. I} € T)) we have Fy = {l € Ng : I, C Ji} # 0
(respect. G, ={k € Ny : Jp C [;} # () and

Jp = UleFk]h]l €, ( respect. [; = UleGlea Ji € \75) (16)
Hence 7 = .U U Js, T =1, UL, UL, and
‘76 = {Jk k € Nqual} { 3/ € Nqual} I

Observe that Z, < J, and Js; < Z;, and, in particular, G = Z,/J; and F =
Tv/Zs.

We use Lemma 3.10 and observe that, denoting Ao = Ay, Ay = Ay = Az,
and A2 = AJs = AIb7

(A)neng € (67(r, ), €7 (u,v))
corresponds to (13) invoking Theorem 3.1, also that
(A)nen, € (% (1, 5), 0% (u,v))
corresponds to (14) invoking Theorem 3.8 and, finally,
(M)nen, € (2 (r,8), 07 (u,v))
corresponds to (15) invoking Corollary 3.9. O
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3.3 The general case

In this segticzg we assume that there exist £ € Ny and [ € Fk such that
[lﬂJkGIﬂjandIlﬂJkgéIUj.

Since the notation may be a bit confusing, we will illustrate the idea. Let
7Z,J be different partitions of Ny, for example:

Iy L I, I5 Iy I5
e N Y Y N,
0 ni ng ns3 n4 ns  ne nr
(') ?]-0/”; 1\/"; 2\_/77;3 77;4\/77;5
Jl J3
Jo

The situation we are handling now corresponds to N;7, ~# () (and hence
Nilr—Lter 7é (Z))
Definition 3.12.

\7, = {JI; = UlEFk[l ok S N07 #Fk > 0}7

H=TNJ\(ZTUJ),
Jo={Jy: ke NI 1.

Denote J" = J'UJs and Jpew = J" UH.
We use similar notations for 7.

Recalling that ¢(k) = min F}, and ®(k) = max F}, for k € Ny. We easily
observe that ¢(N£ual) g Nezqual’ gb(Nl;Zg) g st—malb gb(Nanall) g ngg U Ni%zter
and ¢(N;7,. ) C NI . UNZ, . Same results hold for ®.

m inter:*
Lemma 3.13.

H:{jkll{?ENJ

inter?

o(k) € N,

wnter

}U{j]cikEN-J

wnter?

q)(k) S Nz'lw;ter}'

Proof. C) Let I € H. Since [ € m then there exist k € Ny and [ € F,
such that I = I; N Ji. On the other hand, since I ¢ 7 U J we have that
I C I and I € J,. Hence either ¢(k) = [ and V() = k or (k) = [ and
Y(l) = k. This gives either k € N, and ¢(k) € Njer (and hence I = Ji)

inter inter
or k€ N7 and ®(k) € NZ,, (and hence I = J;).

D) Let k € N7, with ¢(k) € NZ,,. and consider J, = Jy NIy € Z N J.
Then Ji € Ji (hence Ji, ¢ J) and Jy, C I4(k) (hence Ji ¢ T). Similarly for
Ji in the case k € Ny, with ®(k) € Nf,,..

[]
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Remark 3.14. Note that jk = Ji N I; if and only if I, = I, N J,,.. Therefore
H = {fl : l € Ni{n&ervw(l) € N{Zter} U {jl : k € Nilr;tew ‘I’(l) € N{Zter}'

Lemma 3.15. o
"N JgrCcI,UJ, Uz, Cc1"uJg".

Proof. Let e T’UZ, and J € J' U J, with INJ # (). The case I € Z, and
J € J, can not hold. If I € Z, and J € J' then I NJ = I € Z,. Similarly if
Ie€Z and J € J,then INJ =J € J,. Finally if I € 7/ and J € J' then
I=Jel,=J.. O

Theorem 3.16. \ € (¢X(r,s), 07 (u,v)) if and only if (\,), satisfies

)\i uor l/uer) gv@s 17
<(§k' ) e € (17)
(T Ifenyireer) €F(uosv0s) (18)
Z’GIZ leNsImall
(O Inlener) - elferves) (19)
ieJy, keNgmall
|uer\l/uer |uer\1l/uer vSs 2
(<EZJ|AZ| ) )keAT+(<ZJ;|AZ| ) Ll (20)
7 k 1€Jy

where

A, ={ke N7 &ok) e NE

lnter} a’nd Al = {k € Nz%ter? ¢<k) € Nglter}7
G={Gi:l € Nj;,UN},..,#G, > 0}
and

F=A{F.:keNJLUNZ,, #F >0}

Proof. Using J, = J, U jk U J, and Lemma 3.13 one obtains Jpew < J
and Z,e < Z. Clearly #F(Zpew,Z) < 3 and #Fy(Tpew, J) < 3 for all
k. Therefore, using Proposition 2.11, we have (7« (p,q) = ¢7(p,q) and
(rew (p, q) = (*(p, q), which gives

(E(r, 8), 07 (u,v)) = (= (r, 8), 0T (u, v)). (21)

Taking into account Lemma 3.13 and Remark 3.14 we observe that Ay =
A,« U Al and AI// = Aj//.
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Since Jnew = J"UH and Z,,.,, = Z"UH we can apply Lemma 3.10 to con-
clude that A € (¢%(r, s), 7 (u,v)) if and only if (A, )nen,, € ((7(r, 5), (7 (u,v))
and (An)ngn,, € (' (r, 5), 07" (u,v)).

Now apply Theorem 3.1 to obtain (A,)nen,, € (v & r,v & s) which
corresponds to (20).

On the other hand, comparing Z” and J" we notice that I € Z";, corre-
sponds to I = I for some [ € Ny, U N7,.. and #G; > 1. Hence we obtain
that G = {G; : I € 7", } and similarly F = {F; : J € J iy}

We now use Lemma 3.15 together with Theorem 3.11 to obtain the equiv-
alence with (17), (18) and (19) and (\,)nga,, € (2 (r,8), 67" (u,v)).

O

4 An application

Let p: [0,1) — [0,00) be a non-decreasing function such that p(0) = 0 and
p(t)/t € L'([0,1)) we define the weighted Bergman-Besov space Bl(p) as
those analytic functions F' in the unit disk such that

( |2])
/yF 1_|| AU ) 14z) < o

An analytic function F' is called lacunary if F'(z) = > .\, an2" where
L ={{ng}: k € Ng} for some (ny) such that inf, ny,1/ng > 1.

Recently weights with the following condition had been considered in
[KD-SAA]: There exist Cy,Cy > 0 such that

1 J—
C’l/ r2n’1udr < K(n,p) < CQ/
0 L—r 1

and the following result has been shown.

1—2—(n+1)
n 1 -

r? aoapll=r) T)dr (22)

_9—n - T

Theorem 4.1. (see [KD-SAA]) Let F(z) = ), .\, an2" be a lacunary func-
tion and let p be a weight satisfying (22). Then F belongs to B(p) if and

only if

o0

SO fauf?) 224 K (k) < o0 (23)

k=0 neJg

where Jy = {n :2F — 1 < k < 281 — 1},

We shall extend the previous result for more general classes of weight
functions and families of intervals 7.
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Definition 4.2. Let 0 < ¢ < 0o, J be a collection of disjoint intervals in
Ny, say Jy = Ng N [my, mis1) where mg = 0 and (my,) is some increasing
sequence in Ny. and let p : [0,1) — [0,00) be a measurable function such
that p(t)/t € L'([0,1)).

We say that p is g-adapted to J whenever there exists C' > 0 such that

1 J— J——
/ pomn LT g, / pamns PLZT) g, (24)
0 1—r A, 1—r

for all n > 0 where Ag = [0,1 — =) and A, = [1 — --,1 — =) for n > 1.

n+1

We denote

1—7
In particular, from condition (24) if p is g-adapted to J we get that

pp(s) = /01 TSMdT, s>0. (25)

1p(qmn) = pp(qmip41) (26)

Note also that condition (22) means that p is 1/2-adapted for J where m,, =
2" — 1.

Proposition 4.3. Let p,(t) = t* with a > 0 and J = {[mn, mp+1) NNy :
n € No}. The following statements are equivalent:

(i) pa is q-adapted to J for all g > 0.

(i) po is q-adapted to J for some q > 0.

(71) sup,, Mp41/Mmy < 00.

Proof. (i) = (ii) Obvious.
(i) = (i17) Tt is well known that B(n+1,a) = fol r*(1—r)*tdr ~n=
and therefore p1,, (gm,) =~ m,*.
Hence it follows from (26) that m,,; ~ m,. therefore sup m,1/m, < co.
(13i) = (i) Let sup my,41/m, = ¢ and take ¢ > 0. Now observe that

1 1

1— L
Mp ]_ mn
/ o rdmnl (1 — ) dr > (1 — — )7 / s*tds
1_

1 My, 1
mn mn+1
1 1 .
> (1= )1 — ()
« My, Mp41
1 1 1
> 2 ((1 — — )" 0q,.,,—a 1 — (2«
2 (0= ™) (1= (5)%)
Z C/’Lpa(qmn>
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We now modify the proof of Lemma 3 in [B2| to obtain the following
result.

Lemma 4.4. Let 0 < ¢ < 1, let J be a collection of disjoint intervals in Ny
and assume p is a weight q-adapted to J. If (ay,) > 0 then

1 o [e'e]
P =1
[ awrm = = S (S o)
0 n=o n=0 keJ,
where J, = {k:m, <k <mp1}
Proof. As above Ay = [0,1 — ) and A, = [1 — —,1 — n—) for n > 1.
Then
0 nzooz I—r B nnOOén 11—
> Z/ Z LT qp(ll )d
An keJ, -r
p(1—r)
5 [ (S w2
An ked, 1=
>C” Z > ) p(gmn).
n=0 keJ,

Conversely, since ¢ < 1,

/Ol(ianr )qp / Z(Z Oékrk)qpa%_:)dr

n=0 n=0 keJ,

<SS | A=) iy

n=0 keJ,

< Z Z ,Up qmn)

n=0 k€Jn
[l

We first note that for lacunary functions F' and 0 < p < oo we have (see

Z])

o iy p 40 1/ o ioy 2 40 1/2
My(Eor) = ([ 1RGPS = MaEr) = ([ 1RGPS
0 U 0 2m
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Therefore for lacunary functions F' one has that F € B'(p) if and only if

1
1—
/ MQ(F',r)udr < 00.

Therefore invoking Plancherel’s theorem and Lemma 4.4 we recover Theorem
4.1.

Recall that an analytic function F' : D — C with F(z) = > 7 ja,2" is
said to belong to H(p, q, p) (see [B2, Definition 2|) whenever

1 2
p(1—717)
1E | trpg.0) = (/0 My (F, T)l_—ﬂrdr)l/q < 00.

We use the notation H(p, q, «) if p(t) = t*.
A consequence of Lemma 4.4 is the following result.

Corollary 4.5. Let 0 < q < 2, let J be a collection of disjoint intervals in
Ny and p be a weight q/2-adapted to J. Then

o0

1Fllan ~ (33 a2 (ama)/2)

n=0 keJ,

Moreover if F' is lacunary and 0 < p < oo then

o0

1Flloan ~ (D00 D a2 up((amn)/2)

n=0 keJ,NA

1/q

Theorem 4.6. Let 0 < g < oo, let J be a collection of disjoint intervals in
Ny and assume p is a weight q-adapted to J. Define X = (A)x such that

1
p(1—r1) 1/
M= ([ rmeBETNa peg,
o= ([ o=y e
and M\, = 0 otherwise. Then (M\p)x € (H(1,q,p), 07 (00,q)).
Proof. We shall show that

[e.9]

1/q
(D= (sup far)pp(ama)) < ClIF 1.0

5 ken
Recall that

sup |ag|r® < My(F,r)
kJEJn—l
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and therefore, if Ag = [0,1—.-) and A, = [1 -

L) for n > 1 then
+1

[e.9]

1 —
Z(sup lag|)p,(gmy) < C’Z (sup |ag|)? / rqm"“udr
o kE€Jn 0 k€Jn An l—r
p(1—7)
<C / sup |ag|r®)!—=dr
Z keJP:L | ‘ L—r
< M} (F )d
C’Z/ —dr
- CHFHH(lqp

O

Theorem 4.7. Let 1 < ¢ < ¢1 < 2 and let J and I be collections of
disjoint intervals in Ny, generated by sequences my and ny respectively, such
that T < J. Assume that py is a weight q1/2-adapted to T and ps is a weight
q2/2-adapted to J. Denote

s ) = (G ()20 () 2) )

Then
(H(2,q1, 1), H(2,q2,p2)) = {(An)n; (Z»ulp Lipspo ()| Me]) € 6777 (00,00 6 1)}

n

Proof. Let

Pr(z) =Y (pto (@ini/2))7 1 (> 27),
k=0 j€ly
Fr(2) =3 (arme/2)) 70 (3 ),
and . o
Gr(2) =) (o (g2 /2)) () 27)
k=0 j€Jk

Using Corollary 4.5 one has that f € H(2,q,p1) if and only if f % Fr €
(2,q1) and g € H(2, qo, p2) if and only if g * G 7 € £7(2, q2)
We use that A € (H(2,q1,p1), H(2,q2,p2)) is equivalent to A x G7 €
(H(2,q1, ), 07 (2, ¢2)) and also equivalent to MxG 7+ Er € ((2(2,q1), 47 (2, ¢2)).
Making use of Theorem 3.8 we have

(°(2,01), 072, @2)) = { (V) s (sup |} € (00,42 © q1)}-

This concludes the result. ]
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Let us finish by observing some examples to apply the above results.

Example 4.8. Let A > 1 and denote mg(\) = 0 and my(\) = [\¥] for k € Ny
and J(A) the partition of intervals Jx(A\) = [mg(A), mi41(A)) N Np. In this
case fi,, (qgmy) = A™*", and then, from Proposition 4.3, p, is g-adapted to
J () for any value of g > 0.

Let A >~ > 1 with A =" with N € Ny. Then J(v) < J(A) because

my(A) = (A = ("] = mai(y)

and therefore
Je(X) = Uier, Ji(7)

where F, = {l : Nk < [ < Nk + N}. Hence J(\)/T(v) = Z where
I, = [Nk, N(k + 1)) N Ny, that is my(Z) = Nk.
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