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Abstract

Given 1 ≤ p, q ≤ ∞ and sequences of integers (nk)k and (n′k)k
such that nk ≤ n′k ≤ nk+1, the generalized mixed-norm space `I(p, q)
is defined as those sequences (aj)j such that ((

∑
j∈Ik |aj |

p)1/p)k ∈ `q
where Ik = {j ∈ N0 s.t. nk ≤ j < n′k}, k ∈ N0.

The necessary and sufficient conditions for a sequence λ = (λj)j
to belong to the space of multipliers (`I(r, s), `J (u, v)), for different
sequences I and J of intervals in N0, are determined.
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1 Introduction
Let S the space of complex-valued sequences with the locally convex vector
topology given by means of the semi-norms pj(λ) = |λj| where λ = (λj)j∈N0 .
Given two Banach spaces A,B continuously contained in S we write (A,B)
for the space of multipliers from A into B. More precisely,

(A,B) = {λ = (λj)j : (λjaj)j ∈ B ∀(aj)j ∈ A}.

We shall use the notation supp(a) = {n ∈ N0 : an 6= 0} and λ ∗ a for the
sequence (λjaj)j∈N0 where λ = (λj)j∈N0 and a = (aj)j∈N0 .

Of course for the classical `p spaces one easily sees that (`p1 , `p2) = `p

where 1/p = (1/p2 − 1/p1)+. We use the notation p2 	 p1 = p to mean
1

p2	p1
= 1

p2
− 1

p1
whenever p1 > p2 and p =∞ whenever p1 ≤ p2.
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The above result can be extended (see [K]) to the class of mixed norm
sequence spaces, denoted `(p, q), which are defined by the condition( ∞∑

n=0

(
∑

2n−1≤k<2n+1−1

|ak|p)q/p
)1/q

<∞.

Theorem 1.1. Let 1 ≤ r, s, u, v ≤ ∞. Then

(`(r, s), `(u, v)) = `(u	 r, v 	 s).

In particular the Köthe dual of `(p, q), defined by (`(p, q), `1) becomes
`(p′, q′) for 1 ≤ p, q <∞ and 1

p
+ 1

p′
= 1

q
+ 1

q′
= 1.

Also multipliers between sequence spaces given by Taylor coefficients of
holomorphic functions in the disk have been deeply studied in the literature.
Since the time of Hardy and Littlewood, mixed-norm and related spaces have
been used to study function spaces on the unit disk, and later to study multi-
pliers between such spaces. Special emphasis has been put on the case where
the spaces A and B correspond to the sequence space of Taylor coefficient
of analytic functions such as Hardy spaces, Bergman spaces, mixed norm
spaces of analytic functions, etc. The theory of Hardy spaces and mixed
norm spaces of analytic functions was originated in the work of Hardy and
Littlewood (see [HL1, HL2]) who implicitly considered the spaces H(p, q, α)
of functions f ∈ H(D) such that

(

∫ 1

0

(1− r)qα−1M q
p (f, r)dr)1/q <∞.

Their work on these spaces was continued by Flett and Sledd (see [F1, F2,
F3, S1, S2]) and later on by Pavlovic (see [P1, P2]). Multipliers on Hardy
spaces were in fashion for a long time and much work was done on them
and related spaces. However nowadays complete descriptions of multipliers
between Hardy spaces (Hp, Hq) for certain values of p and q remain still
open. The reader is referred to the surveys (see [CL, O]) for lots of results
and references. Also many results on multipliers between mixed norm spaces
of analytic functions have been established in the last decades (see [B1, B2,
B3] and references thereby). For such a purpose the use of solid spaces
(sequence spaces whose norm depends only on the size of the coefficients),
and in particular `(p, q) spaces, is a rather important tool. It is worth o
mentioning that the smallest solid space contained or which contains one of
classical Hardy, Bergman and H(p, q, α) is actually H(2, q, α) for some values
p, q and α (see [B2, B3]) and this last space can be identified with certain
weighted `(2, q), due to Plancherel’s theorem.
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Another appearance of mixed norm spaces comes with the use of lacunary
sequences, that is a = (an) such that supp(a) ⊂ {nk : k ∈ N0} for a sequence
of integers satisfying inf nk+1/nk = λ > 0. Recently (see [KD-SAA]) the
description of the Taylor coefficient of analytic functions F (z) =

∑∞
k=0 bkz

nk ,
where nk is a lacunary sequence, belonging to the weighted Bergman-Besov
space B1(ρ) has been achieved under certain conditions on the weight. It
corresponds again with certain weighted `(2, 1).

In this paper we consider families of intervals I = {Ik : k ∈ N0} where
Ik = {j ∈ N0 s.t. nk ≤ j < n′k} for some increasing sequences (nk)k and
(n′k) such that nk ≤ n′k ≤ nk+1 and we use the notation ΛI = ∪Ik. We shall
introduce the spaces `I(p, q) given by sequences a = (aj)j∈ΛI verifying

((
∑
j∈Ik

|aj|p)1/p)k ∈ `q

and the obvious modifications for p =∞ or q =∞.
In particular `(p, q) = `I(p, q) for Ik = [2k−1, 2k−1)∩N0. Also a lacunary

sequence a = (an)n corresponds to supp(a) ⊆ ΛI where I = {Ik : k ∈ N0}
with Ik = {nk} (that is n′k = nk + 1) for some infk nk+1/nk = λ > 1.

We shall give the necessary and sufficient conditions for a sequence λ =
(λj)j to belong to the multiplier space (`I(r, s), `J (u, v)) whenever ΛI = ΛJ .
We also get some applications to multipliers between certain weighted mixed
norm spaces of analytic functions. The paper is organized as follows. Section
2 contains the definitions and first properties of the spaces `I(p, q), study-
ing inclusions between them and conditions for coincidence results `I(p, q) =
`J (p, q). Section 3 contains the main result, which is split into three subsec-
tions: The case where intervals in J are union of intervals in I, to be denoted
I ≤ J , the case where for each I ∈ I there exits J ∈ J such that either
I ⊆ J or J ⊆ I and finally the case where there exists (I, J) ∈ I × J such
that I ∩ J 6= ∅ and I ∩ J /∈ I ∪ J . In Section 4 we include some application
to multipliers on spaces of analytic functions and extend some recent result
on weighted Bergman-Besov classes.

From now on, we will write A ≈ B whenever there exist C > 0 such that
C−1A ≤ B ≤ CA and, as usual, #I stands for the cardinal of I, 1/p+1/p′ = 1
for 1 ≤ p ≤ ∞ and also C denotes a constant that may vary from line to
line.

2 Generalized mixed-norm spaces
Definition 2.1. Let 1 ≤ p, q ≤ ∞ and let I be a collection of disjoint
intervals in N0, say Ik = N0 ∩ [nk, n

′
k) where nk ≤ n′k ≤ nk+1. We set
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ΛI = ∪k∈N0Ik. We write `I(p, q) for the space of sequences (an)n∈ΛI verifying

((
∑
j∈Ik

|aj|p)1/p)k ∈ `q.

This space becomes a Banach space under the norm

‖a‖Ip,q =

 ∞∑
k=0

{∑
j∈Ik

|aj|p
}q/p

1/q

with the obvious modifications for p =∞ or q =∞.

Remark 2.2. Of course `I(p, p) = {(an)n∈ΛI : (
∑

n |an|p)1/p < ∞}. In
particular `I(p, p) = `p whenever ΛI = N0.

An elementary approach, using Hölder’s inequality, leads to the duality

`I(p, q)∗ = `I(p′, q′)

for 1 ≤ p, q <∞ and 1/p+ 1/p′ = 1/q + 1/q′ = 1.

Remark 2.3. It is clear that (aj)j ∈ `I(p, q)⇔ (apj)j ∈ `I(1, q/p) in the case
p < q and also (aj)j ∈ `I(p, q)⇔ (aqj)j ∈ `I(

p
q
, 1) in the case p > q.

Moreover, for ap = (apj)j,

‖a‖Ip,q =
(
‖ap‖I1,q/p

)1/p

=
(
‖aq‖Ip/q,1

)1/q

(1)

Remark 2.4. Let a ∈ `I(p, q).
(i) If I ′ is a sub-collection of intervals in I then ‖a‖I′p,q ≤ ‖a‖Ip,q.
(ii) If I = I ′ ∪ I ′′ for two disjoint collections I ′ and I ′′ then ‖a‖Ip,q =(

(‖a‖I′p,q)q + (‖a‖I′′p,q)q
)1/q

.

We would like to analyze the embedding between `I(p1, q1) and `I(p2, q2).

Proposition 2.5. Let I be a collection of disjoint intervals in N0 and let
1 ≤ p1, p2, q ≤ ∞ with p1 6= p2. Then `I(p1, q) = `I(p2, q) (with equivalent
norms) if and only if

sup
k∈N0

#Ik <∞ (2)

In particular if supk∈N0
#Ik <∞ then

`I(p, q) = {(an)n∈ΛI : (
∑
n

|an|q)1/q <∞}.
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Proof. =⇒) Assume, for instance, p1 < p2 and that ‖a‖Ip1,q
≈ ‖a‖Ip2,q

for all a
supported in ΛI . Hence taking a = χIk one concludes that (n′k−nk)1/p1−1/p2 ≤
C for any k. Hence supk #Ik <∞.
⇐=) Note that #Ik = (n′k − nk) and assume M = supk(nk − n′k). Then

‖a‖Ip1,q
=

 ∞∑
k=0

{∑
j∈Ik

|aj|p1

}q/p1
1/q

≈

 ∞∑
k=0

{∑
j∈Ik

|aj|p2

}q/p2
1/q

= ‖a‖Ip2,q

since ‖.‖p1 ≈ ‖.‖p2 in CM .

Proposition 2.6. Let 1 ≤ p1, q1, p2, q2 ≤ ∞ and let I be a collection of
disjoint intervals in N0 with supk#Ik =∞.
Then `I(p1, q1) ⊆ `I(p2, q2) if and only if p1 ≤ p2 and q1 ≤ q2.

Proof. =⇒) Assume that there exists C > 0 such that ‖a‖Ip2,q2
≤ C‖a‖Ip1,q1

for
all a supported in ΛI . Hence taking k ∈ N0 and a = χIk one concludes that
(#Ik)

1/p2−1/p1 ≤ C. Hence p1 ≤ p2. Let N ∈ N0 and consider a =
∑N

k=1 χnk .
Applying the above inequality we obtain N1/q2−1/q1 ≤ C. Therefore q1 ≤ q2.
⇐=) Let us denote

`q(`p) = {(xk)k∈N0 : xk ∈ `p, (
∞∑
k=0

‖xk‖q`p)
1/q <∞.}

Hence the mapping
(an)n∈N0 → ((aj)j∈Ik)k∈N0

is an isometric embedding from `I(p, q) into `q(`p). Taking into account that
`r1(E) ⊆ `r2(E) for any Banach space E and r1 ≤ r2 we conclude that

`I(p, q1) ⊆ `I(p, q2) and `I(p1, q) ⊆ `I(p2, q).

Therefore
`I(p1, q1) ⊆ `I(p2, q1) ⊆ `I(p2, q2).

We would like to analyze the embedding between `I(p, q) and `J (p, q) for
I 6= J whenever ΛI = ΛJ .

Proposition 2.7. Let I = {Il : l ∈ N0} and J = {Jk : k ∈ N0}. If ΛI = ΛJ ,
p ≤ q (respect. q ≤ p) and supk #Jk <∞ (respect. supl #Il <∞ ) then

`I(p, q) ⊆ `J (p, q)( respect. `J (p, q) ⊆ `I(p, q)).
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Proof. From Proposition 2.5 gives `J (p, q) = `J (q, q) and clearly `J (q, q) =
`I(q, q). Then the result follows using `I(p, q) ⊆ `I(q, q) whenever p ≤ q.

Let us mention another particular case where they coincide.

Proposition 2.8. Let I such that Ik = [nk, n
′
k) ∩ N0 with n′2k = n2k+1 and

define
J = {Jk = I2k ∪ I2k+1 : k ∈ N0}.

Then `I(p, q) = `J (p, q).

Proof. Note that Jk = I2k ∪ I2k+1 is again an interval in N0. Using that
(a+ b)α ≤ Cα(aα + bα) for a, b, α > 0 then

‖a‖Jp,q =

 ∞∑
k=0

{∑
j∈Jk

|aj|p
}q/p

1/q

=

 ∞∑
k=0

∑
j∈I2k

|aj|p +
∑

j∈I2k+1

|aj|p

q/p


1/q

≤ C

 ∞∑
k=0

{∑
j∈I2k

|aj|p
}q/p

+
∞∑
k=0

 ∑
j∈I2k+1

|aj|p

q/p


1/q

≤ C‖a‖Ip,q

On the other hand, using now (aβ + bβ) ≤ Cβ(a+ b)β for a, b, β > 0,

‖a‖Ip,q =

 ∞∑
k=0

{∑
j∈I2k

|aj|p
}q/p

+

 ∑
j∈I2k+1

|aj|p

q/p


1/q

≤ C ′

 ∞∑
k=0

 ∑
j∈I2k∪I2k+1

|aj|p

q/p


1/q

≤ C ′‖a‖Jp,q

The previous idea easily generalizes using the following definition.

6



Definition 2.9. Let I := {Il : l ∈ N0} and J := {Jk : k ∈ N0}. We say
that I ≤ J if the following conditions hold:

(i) ΛI = ΛJ ,
(ii) Fk = Fk(I,J ) := {l ∈ N0 : Il ⊆ Jk} 6= ∅ for all k ∈ N0,
(iii) Jk = ∪l∈FkIl for all k ∈ N0.

Proposition 2.10. Let 1 ≤ p, q ≤ ∞ and I ≤ J . Then
(i) `J (p, q) ⊆ `I(p, q) for p ≤ q.
(ii) `I(p, q) ⊆ `J (p, q) for q ≤ p.
Moreover the embeddings above are of norm 1.

Proof. (i) Case q =∞: Let a ∈ `J (p,∞) and l ∈ N0. We know that there is
k such that Il ⊆ Jk. Hence

(
∑
n∈Il

|an|p)1/p ≤ (
∑
n∈Jk

|an|p)1/p ≤ ‖a‖Jp,∞.

This gives ‖a‖Ip,∞ ≤ ‖a‖Jp,∞.
The case p = 1: Let a ∈ `J (1, q) and q ≥ 1. Therefore

(
‖a‖J1,q

)q
=
∑
k

(∑
l∈Fk

∑
n∈Il

|an|

)q

≥
∑
k

∑
l∈Fk

(
∑
n∈Il

|an|)q =
(
‖a‖I1,q

)q
.

The case 1 < p ≤ q <∞ follows using (1) and the previous one.
(ii) The case p =∞: Let a ∈ `I(∞, q). Then

‖a‖J∞,q =
(∑

k

sup
l∈Fk

(sup
n∈Il
|an|)q

)1/q

≤
(∑

k

∑
l∈Fk

(sup
n∈Il
|an|)q

)1/q

= ‖a‖I∞,q.

To cover the remaning cases, from (1), we simply need to show that `I(p, 1) ⊆
`J (p, 1) for p ≥ 1. Now observe that

‖a‖Jp,1 =
∑
k

(
∑
l∈Fk

∑
n∈Il

|an|p)1/p =
∑
k

(
∑
l∈Fk

‖aχIl‖pp)1/p

≤
∑
k

∑
l∈Fk

‖aχIl‖p =
∑
l

(
∑
n∈Il

|an|p)1/p = ‖a‖Ip,1.

Theorem 2.11. Let I ≤ J and 1 ≤ p, q ≤ ∞ with p 6= q.
`I(p, q) = `J (p, q) (with equivalent norms) if and only if supk #Fk <∞.
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Proof. =⇒) Assume that ‖a‖Jp,q ≈ ‖a‖Ip,q for all a finitely supported. Let
k ∈ N0 and define

a(k) =
∑
l∈Fk

(#Il)
−1/pχIl .

Then ‖a‖Jp,q = (#Fk)
1/p and ‖a‖Ip,q = (#Fk)

1/q.
One concludes that C2 ≤ (#Fk)

1/p−1/q ≤ C1 which implies, in the case
p 6= q, supk∈N0

(#Fk) <∞.
⇐=) Case p < q: From Proposition 2.10 we only need to show `I(p, q) ⊆

`J (p, q). Using now Hölder’s inequality for q/p > 1{∑
n∈Jk

|an|p
}1/p

≤

{∑
l∈Fk

∑
n∈Il

|an|p
}1/p

≤

{∑
l∈Fk

(
∑
n∈Il

|an|p)q/p
}1/q

(#Fk)
1
p	q .

Therefore, if M = supk Fk, we have

‖a‖Jp,q =
( ∞∑
k=0

(
∑
n∈Jk

|an|p)q/p
)1/q

≤M
1
p	q

(∑
k∈N0

∑
l∈Fk

(
∑
n∈Il

|an|p)q/p
)1/q

= M
1
p	q

(∑
l∈N0

(
∑
n∈Il

|an|p)q/p
)1/q

= M
1
p	q ‖a‖Ip,q.

Case p > q: Using again Proposition 2.10 we shall show `J (p, q) ⊆
`I(p, q). Using 1/q = 1/q 	 p+ 1/p

‖a‖Ip,q = (
∑
l

‖aχIl‖qp)1/q = (
∑
k

∑
l∈Fk

‖aχIl‖qp)1/q

≤

(∑
k

(
∑
l∈Fk

‖aχIl‖pp)q/p(#Fk)q/q	p
)1/q

≤M
1
q	p

(∑
k

(
∑
n∈Jk

|an|p)q/p
)1/q

≤M
1
q	p‖a‖Jp,q.

Let us now exhibit an example where neither `(p, q)I ⊆ `J (p, q) nor
`J (p, q) ⊆ `I(p, q).

Example 2.12. Let 1 ≤ p < q <∞ and take I,J as showed below:
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0 n1 2n1 2n1+n2 2(n1+n2)

· · ·

I0
I1 I2 ··· In1

In1+1 In1+2 ···In1+n2+1

· · ·
J0 J1

··· Jn1−1
Jn1

Jn1+1
··· Jn1+n2 Jn1+n2+1

with:

card(I0) = n1 card(J0) = ... = card(Jn1) = 1
card(I1) = ... = card(In1) = 1 card(Jn1) = n1

card(In1+1) = n2 card(Jn1+1) = ... = card(Jn1+n2) = 1
card(In1+2) = ... = card(In1+n2+1) = 1 card(Jn1+n2+1) = n2, ...
card(In1+n2+2) = n3, ... ...

Let’s see that neither `J (p, q) ⊂ `I(p, q) nor `I(p, q) ⊂ `J (p, q).
Taking

a = (

n1︷ ︸︸ ︷
β1, ..., β1,

n1︷ ︸︸ ︷
0, ..., 0,

n2︷ ︸︸ ︷
β2, ..., β2, 0, ...)

and
b = (0, ..., 0︸ ︷︷ ︸

n1

, β1, ..., β1︸ ︷︷ ︸
n1

, 0, ..., 0︸ ︷︷ ︸
n2

, β2, ...)

we have:
‖a‖Ip,q = ‖b‖Jp,q = (

∑
j

βqjn
q/p
j )1/q

‖a‖Jp,q = ‖b‖Ip,q = (
∑
j

βqjnj)
1/q

Then it is enough to consider q > p and βj = n
−1/p
j j−1/q. Now

(
∑
j

βqjn
q/p
j )1/q = (

∑
j

j−1)1/q =∞

and, since nj ≥ j,

(
∑
j

βqjnj)
1/q = (

∑
j

j−1n
1−q/p
j )1/q ≤ (

∑
j

j−q/p)1/q <∞.

Hence we have a ∈ `J (p, q)\`I(p, q) and b ∈ `I(p, q)\`J (p, q).

We would like to explain a procedure to analyze the general case ΛI = ΛJ .
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Definition 2.13. Let I and J families of disjoint intervals in N0 with ΛI =
ΛJ . For each k ∈ N0 we use the notation, as above, Fk = {l ∈ N0 : Il ⊆ Jk}
which now might be empty. We also define

F̃k = {l ∈ N0 : Jk ∩ Il 6= ∅}.

We write φ and Φ for the mappings given by

φ(k) = min F̃k and Φ(k) = max F̃k.

Similarly, interchanging I and J , we define Gl, G̃l, ψ(l) and Ψ(l).

Definition 2.14. We define the "left" and "right" part of the interval Jk by

J̌k = Jk ∩ Iφ(k) and Ĵk = Jk ∩ IΦ(k)

and, denoting J ′k = ∪l∈FkIl and J̃k = ∪l∈F̃kIl, we have

J ′k ⊆ Jk ⊆ J̃k (3)

and
Jk = J ′k ∪ Ĵk ∪ J̌k, (4)

where J ′k = ∅ whenever Fk = ∅.
Similarly, interchanging I and J we consider Ǐl, Îl, I ′l and Ĩl.

With this notation out of the way we can classify intervals in J into four
different types (according to I). Note that each interval J ∈ J there are
four possibilities: J coincides with I for some I ∈ I, J can be written as a
union of at least two intervals in I, J is strictly contained into some interval
I ∈ I or there exists I ∈ I which overlaps with J and its complement J c.

Therefore we decompose N0 into four disjoint sets defined as follows:

Definition 2.15. Let I and J families of disjoint intervals in N0 with ΛI =
ΛJ . We introduce

NJequal = {k ∈ N0 : #(F̃k \ Fk) = 0,#F̃k = 1}, (5)

NJbig = {k ∈ N0 : #(F̃k \ Fk) = 0,#F̃k ≥ 2}, (6)

NJsmall = {k ∈ N0 : #(F̃k \ Fk) > 0,#F̃k = 1}, (7)

NJinter = {k ∈ N0 : #(F̃k \ Fk) > 0,#F̃k ≥ 2}. (8)

We define the sets NIequal, NIbig, NIsmall and NIinter similarly.
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Remark 2.16. Using (4) we can also give a description of the sets above in
terms of φ and Φ:

NJequal = {k : φ(k) = Φ(k), Jk = Iφ(k)}.
NJbig = {k : φ(k) < Φ(k), Jk = J̃k}.
NJsmall = {k : φ(k) = Φ(k), Jk ( Iφ(k)}.
NJinter = {k : φ(k) < Φ(k), Jk ( J̃k}.
Using the above decomposition we can generalize Proposition 2.7, Propo-

sition 2.10 and Theorem 2.11. Note that supk #Jk <∞ implies supk #F̃k <
∞ and also that I ≤ J corresponds to the case where NJinter ∪NJsmall = ∅ or
equivalently #G̃l = 1 for any l ∈ N0.
Theorem 2.17. Let 1 ≤ p < q ≤ ∞ and I,J with ΛI = ΛJ . Then

`I(p, q) ⊆ `J (p, q)⇐⇒ sup{#F̃k; k ∈ N0} <∞.
Proof. =⇒) Arguing as in Theorem 2.11, for k ∈ N0 we consider

a(k) =
∑
l∈F̃k

(#(Il ∩ Jk))−1/pχIl∩Jk .

Hence

‖a(k)‖Jp,q = (
∑
n∈Jk

|an|p)1/p = (
∑
l∈F̃k

∑
n∈Il∩Jk

|an|p)1/p = (#F̃k)
1/p

and
‖a(k)‖Ip,q = (

∑
l∈F̃k

(
∑

n∈Il∩Jk

|an|p)q/p)1/q = (#F̃k)
1/q.

Therefore using that ‖a(k)‖Jp,q ≤ C‖a(k)‖Ip,q and p < q we conclude that
sup{#F̃k; k ∈ N0} <∞.
⇐=) Denote supk(#Fk) = M ≥ 0 and let k ∈ N0.
Case q =∞: If k ∈ NJsmall ∪N

J
equal then

(
∑
n∈Jk

|an|p)1/p ≤ (
∑

n∈Iφ(k)

|an|p)1/p ≤ ‖a‖Ip,∞.

If k ∈ NJbig ∪N
J
inter we have

(
∑
n∈Jk

|an|p)1/p = (
∑
l∈Fk

∑
n∈Il

|an|p +
∑

n∈J̌k∪Ĵk

|an|p)1/p

≤ (
∑
l∈Fk

∑
n∈Il

|an|p)1/p + (
∑

n∈Iφ(k)

|an|p)1/p + (
∑

n∈IΦ(k)

|an|p)1/p

≤ C

{
sup
l∈Fk

(
∑
n∈Il

|an|p)1/p(#Fk)
1/p + 2‖a‖Ip,∞

}
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This shows `I(p,∞) ⊆ `J (p,∞).
Case q < ∞: Arguing as in Proposition 2.10 we simply show that

`I(1, q) ⊆ `J (1, q) for q > 1.
Observe that∑

k∈NJsmall

(
∑
n∈Jk

|an|)q ≤
∑

l∈NIbig∪N
I
inter

∑
φ(k)=l

(
∑
n∈Jk

|an|)q

≤
∑

l∈NIbig∪N
I
inter

(
∑
φ(k)=l

∑
n∈Jk

|an|)q

=
∑

l∈NIbig∪N
I
inter

(
∑
n∈Il

|an|)q

≤
(
‖a‖I1,q

)q
Also we have∑

k∈NJequal∪N
J
big

(
∑
n∈Jk

|an|)q ≤
∑

k∈NJequal∪N
J
big

(
∑
l∈Fk

∑
n∈Il

|an|)q

≤
∑

k∈NJequal∪N
J
big

(#Fk)
q−1
∑
l∈Fk

(
∑
n∈Il

|an|)q

≤M q−1
∑

k∈NJequal∪N
J
big

∑
l∈Fk

(
∑
n∈Il

|an|)q

≤M q−1
(
‖a‖I1,q

)q
.

Finally ∑
k∈NJinter

(
∑
n∈Jk

|an|)q ≤
∑

k∈NJinter

(
∑
l∈Fk

∑
n∈Il

|an|+
∑
n∈J̌k

|an|+
∑
n∈Ĵk

|an|)q

≤ C
∑

k∈NJinter

(#Fk)
q−1
∑
l∈Fk

(
∑
n∈Il

|an|)q

+ C
∑

k∈NJinter

(
∑
n∈J̌k

|an|)q + C
∑

k∈NJinter

(
∑
n∈Ĵk

|an|)q

≤ CM q−1
∑

l∈NIinter∪NIsmall

(
∑
n∈Il

|an|)q

+ C
∑

k∈NJinter

(
∑

n∈Iφ(k)

|an|)q +
∑

k∈NJinter

(
∑

n∈IΦ(k)

|an|)q

≤ C
(
‖a‖I1,q

)q
12



Combining the above estimates we conclude this implication.

Corollary 2.18. Let 1 ≤ p < q ≤ ∞ and I,J with ΛI = ΛJ . Then

`J (p, q) ⊆ `I(p, q)⇐⇒ sup{#G̃l; l ∈ N0} <∞.

Next result can be achieved using duality but we include a direct proof.

Theorem 2.19. Let 1 ≤ q < p ≤ ∞ and I,J with ΛI = ΛJ . Then

`J (p, q) ⊆ `I(p, q)⇐⇒ sup{#F̃k; k ∈ N0} <∞.

Proof. =⇒) Repeat the argument presented in the direct implication of The-
orem 2.17.
⇐=) Denote again supk(#Fk) = M .
Case p =∞: Observe first that if l ∈ NIbig ∪NIequal we have

(sup
n∈Il
|an|)q = |an(l)|q ≤ (sup

n∈Jk
|an|)q

for some k = k(l) ∈ NJsmall∪N
J
equal. Since k(l) 6= k(l′) for l 6= l′ ∈ NIbig∪NIequal

we obtain ∑
l∈NIbig∪N

I
equal

(sup
n∈Il
|an|)q ≤

∑
k∈NJsmall∪N

J
equal

(sup
n∈Jk
|an|)q.

Also if l ∈ NIinter then (supn∈Il |an|)
q = |an(l)|q where n(l) ∈ I ′l ∪ Îl ∪ Ǐl. Note

that n(l) ∈ Jk for some k ∈ NJsmall ∪N
J
inter and

1 ≤ #({l ∈ NIinter : n(l) ∈ Jk}) ≤ 2.

Hence ∑
l∈NIinter

(sup
n∈Il
|an|)q ≤ 2

∑
k∈NJsmall∪N

J
inter

(sup
n∈Jk
|an|)q.

On the other hand∑
l∈NIsmall

(sup
n∈Il
|an|)q ≤

∑
k∈NJbig∪N

J
inter

∑
ψ(l)=k

(sup
n∈Il
|an|)q

≤
∑

k∈NJbig∪N
J
inter

(sup
n∈Jk
|an|)q(#Fk)q

≤M q(‖a‖Jp,∞)q.

Combining the previous cases we get `J (∞, q) ⊆ `I(∞, q).
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Case p < ∞. Arguing as in Proposition 2.10 we simply show that
`J (p, 1) ⊆ `I(p, 1) for p > 1.

‖a‖Ip,1 =
∑
l

(
∑
n∈Il

|an|p)1/p

≤
∑

l∈NIsmall

(
∑
n∈Il

|an|p)1/p

+
∑

l∈NIequal∪N
I
big

(
∑
k∈Gl

∑
n∈Jk

|an|p)1/p

+
∑

l∈NIinter

(
∑
k∈Gl

∑
n∈Jk

|an|p +
∑
n∈Ǐl

|an|p +
∑
n∈Îl

|an|p)1/p

= I1 + I2 + I3.

Now observe that

I1 ≤
∑

k∈NJbig∪N
J
inter

∑
l∈Fk

(
∑
n∈Il

|an|p)1/p ≤
∑

k∈NJbig∪N
J
inter

(
∑
n∈Jk

|an|p)1/p#(Fk) ≤M‖a‖Jp,1.

Also note, since p > 1,

I2 ≤
∑

l∈NIequal∪N
I
big

∑
k∈Gl

(
∑
n∈Jk

|an|p)1/p ≤ ‖a‖Jp,1.

Finally

I3 ≤
∑

l∈NIinter

(
∑
k∈Gl

∑
n∈Jk

|an|p)1/p + (
∑
n∈Ǐl

|an|p)1/p + (
∑
n∈Îl

|an|p)1/p

≤

 ∑
k∈NJinter∪N

J
small

(
∑
n∈Jk

|an|p)1/p +
∑

l∈NIinter

(
∑

n∈Jψ(l)

|an|p)1/p +
∑

l∈NIinter

(
∑

n∈JΨ(l)

|an|)q


≤ C
∑
k

(
∑
n∈Jk

|an|p)1/p = C‖a‖Jp,1.

The converse implication is now complete.

Corollary 2.20. Let 1 ≤ q < p ≤ ∞ and I,J with ΛI = ΛJ . Then

`I(p, q) ⊆ `J (p, q)⇐⇒ sup{#G̃l; l ∈ N0} <∞.
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Corollary 2.21. Let 1 ≤ p, q ≤ ∞ with p 6= q and I,J with ΛI = ΛJ .
Then

`J (p, q) = `I(p, q)⇐⇒ sup{(#F̃k)(#G̃l); k, l ∈ N0} <∞.

Proof. It suffices to show the case p < q. Note that `I(p, q) ⊆ `J (p, q) and
`J (p, q) ⊆ `I(p, q) are equivalent, due to Theorem 2.17 and Corollary 2.18,
to the facts supk(#F̃k) <∞ and supl(#G̃l) <∞, or equivalently

sup{(#F̃k)(#G̃l); k, l ∈ N0} = sup
k

(#F̃k) sup
l

(#G̃l) <∞.

3 Multipliers on generalized mixed-norm spaces
In this section we consider 1 ≤ r, s, u, v ≤ ∞ and I,J such that ΛI = ΛJ .
We define

(`I(r, s), `J (u, v)) = {λ = (λn)n∈ΛI∩ΛJ : ‖(λnan)n∈ΛJ ‖Ju,v ≤ C‖(an)n∈ΛI‖Ir,s}.

The case I = J can be shown repeating the proof for I = {Ik : k ∈ N0}
where Ik = [2k − 1, 2k+1 − 1) ∩ N0 (see [K, Theorem 1]).

Theorem 3.1. (`I(r, s), `I(u, v)) = `I(u	 r, v 	 s).

We define the Köthe dual `I(p, q)K = (`I(p, q), `I(1, 1)).

Corollary 3.2. `I(r, s)K = `I(r′, s′).

There are some other cases where the set of multipliers can be easily
determined. Using Proposition 2.5 and Corollary 2.21 one easily obtains the
following results.

Proposition 3.3.
(i) If supk∈N0

#Jk <∞ then (`I(r, s), `J (u, v)) = `I(v 	 r, v 	 s).
(ii) If supl∈N0

#Il <∞ then (`I(r, s), `J (u, v)) = `J (u	 s, v 	 s).
(iii) If sup{(#F̃k)(#G̃l); k, l ∈ N0} <∞ then

(`I(r, s), `J (u, v)) = `J (u	 r, v 	 s) = `I(u	 r, v 	 s).

Also as a direct consequence of Theorem 2.17 we obtain:

Proposition 3.4. If r ≤ u, s ≤ v and u < v and sup{#F̃k; k ∈ N0} < ∞
then

(`I(r, s), `J (u, v)) = {(λn)n∈ΛI : sup
n
|λn| <∞}.
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Proof. It is obvious that if (λn)n∈ΛI is a multiplier needs to be a bounded
sequence. Note that the inclusion

{(λn)n∈ΛI : sup
n
|λn| <∞} ⊆ (`I(r, s), `J (u, v))

is equivalent to `I(r, s) ⊆ `J (u, v). Now use the embedding `I(r, s) ⊆ `I(u, v)
and Theorem 2.17 to conclude the result.

Definition 3.5. If I,J with ΛI = ΛJ . We define the collection of pairwise
disjoint intervals in N0

Ĩ ∩ J = {Il ∩ Jk : k ∈ N0, l ∈ F̃k}.

It coincides with {Il ∩ Jk : l ∈ N0, k ∈ G̃l}.

Proposition 3.6. Let 1 ≤ r, s, u, v ≤ ∞.
(i) If r ≤ s, v ≤ u then (`I(r, s), `J (u, v)) ⊆ `Ĩ∩J (u	 r, v 	 s).
In particular, if supk #F̃k <∞ then

(`I(r, s), `J (u, v)) ⊆ `J (u	 r, v 	 s).

(ii) If s ≤ r, u ≤ v then `Ĩ∩J (u	 r, v 	 s) ⊆ (`I(r, s), `J (u, v)).
In particular, if supl #G̃l <∞ then

`I(u	 r, v 	 s) ⊆ (`I(r, s), `J (u, v)).

Proof. (i) Note that Ĩ ∩ J ≤ I and Ĩ ∩ J ≤ J . Hence, from Proposition
2.10,

`Ĩ∩J (p, q) ⊆ `I(p, q), p ≥ q (9)

and
`J (p, q) ⊆ `Ĩ∩J (p, q), p ≤ q. (10)

Now using (9), (10) and Theorem 3.1 we obtain

(`I(r, s), `J (u, v)) ⊆ (`Ĩ∩J (r, s), `Ĩ∩J (u, v)) = `Ĩ∩J (u	 r, v 	 s).

Also we have
Fk(Ĩ ∩ J ,J ) = {(k, l) : l ∈ F̃k}

and
Fl(Ĩ ∩ J , I) = {(k, l) : k ∈ G̃l}.

Using now Theorem 2.11

`Ĩ∩J (p, q) = `J (p, q)⇐⇒ sup
k

#F̃k <∞. (11)
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`Ĩ∩J (p, q) = `I(p, q)⇐⇒ sup
l

#G̃l <∞. (12)

The particular case follows now applying (11).
(ii) is similar and left to the reader.

Our purpose is to get a final description of multipliers (`I(r, s), `J (u, v)).
We shall deal first with the case I ≤ J and get a reduction to this situation
in the remaining cases.

3.1 The case I ≤ J

In this section we consider I and J such that N0 = NJbig∪N
J
equal. This means

that F̃k = Fk 6= ∅ and Jk = ∪l∈FkIl for all k. Notice that if l ∈ Fk means
Il ⊆ Jk and we have

Fk = {l ∈ N0 : φ(k) ≤ l ≤ Φ(k)}.

We use the notation J /I = {Fk : k ∈ N0}.
We shall need the following well known fact.

Lemma 3.7. Let 0 < u, r ≤ ∞, A ⊆ N0 and (λi)i∈A. There exists (ai)i∈A
such that

(
∑
i∈A

|ai|r)1/r = 1 and (
∑
i∈A

|λi|u	r)1/u	r = (
∑
i∈A

|aiλi|u)1/u

(with the obvious modifications whenever u, r or u	 r equals ∞.)

Proof. For r =∞ (then u	 r = u) it suffices to take ai = 1, i ∈ A.
If r <∞ and u ≥ r (hence u	 r =∞) it suffices to take

ai =

{
1 i = i(A)
0 otherwise

for i(A) such that supi∈A |λi| = |λi(A)|.
If u < r <∞ take

ai = (
∑
i∈A

|λi|u	r)−1/rλ
u	r/r
i , i ∈ A.

Using that 1 + u	r
r

= u	r
u

one shows the result.

17



Theorem 3.8. If I ≤ J then

(`I(r, s), `J (u, v)) = {(λn)n :
(

(
∑
i∈Il

|λi|u	r)1/u	r
)
l
∈ `J /I(u	 s, v 	 s)}.

Proof. ⊆) Assume that (λn)n ∈ (`I(r, s), `J (u, v)).
We use Lemma 3.7 with A = Il to select for each for l ∈ N0, a sequence

(a
(l)
i )i∈Il such that (

∑
i∈Il |a

(l)
i |r)1/r = 1 and βl = (

∑
i∈Il |λi|

u	r)1/u	r =

(
∑

i∈Il |λia
(l)
i |u)1/u.

Now, again use Lemma 3.7 with A = Fk for each k ∈ N0, to choose (αl)l∈Fk
verifying (

∑
l∈Fk |αl|

s)1/s = 1 and (
∑

l∈Fk β
u	s
l )1/u	s = (

∑
l∈Fk |βlαl|

u)1/u.
Finally, using Lemma 3.7 for A = N0, one more time, take γ = (γk)k veri-

fying (
∑

k |γk|s)1/s = 1 and
(∑

k {
∑

l∈Fk β
u	s
l }v	s/u	s

)1/v	s
=
(∑

k γ
v
k{
∑

l∈Fk β
u	s
l }v/u	s

)1/v.
This procedure allows us to obtain the sequence a = (ai)i, ai = γkαla

(l)
i

where i ∈ Il, l ∈ Fk and k ∈ N0. With this choice we get that ‖a‖Ir,s = 1 and

‖β‖J /Iu	s,v	s = ‖λ ∗ a‖Ju,v ≤ ‖λ‖.

⊇) Let a = (ai)i ∈ `I(r, s) and λ = (λi)i such that (βl)l ∈ `J /I(u	s, v	s)
where

βl = (
∑
i∈Il

|λi|u	r)1/u	r.

Fix k ∈ N0(∑
i∈Jk

|λiai|u
)1/u

=

(∑
l∈Fk

∑
i∈Il

|λiai|u
)1/u

≤

(∑
l∈Fk

(
∑
i∈Il

|λi|u	r)u/u	r(
∑
i∈Il

|ai|r)
u
r

)1/u

≤

(∑
l∈Fk

(
∑
i∈Il

|λi|u	r)u	s/u	r
)1/u	s(∑

l∈Fk

(
∑
i∈Il

|ai|r)s/r
)1/s
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Taking the v-norm, we get to:(∑
k

(
∑
i∈Jk

λiai|u)
v
u

)1/v

≤

(∑
k

{
∑
l∈Fk

βu	sl }v/u	s{
∑
l∈Fk

(
∑
i∈Il

|ai|r)s/r}v/s
)1/v

≤

(∑
k

{
∑
l∈Fk

βu	sl }v	s/u	s
)1/v	s(∑

k

{
∑
l∈Fk

(
∑
i∈Il

|ai|r)s/r}s/s
)1/s

=

(∑
k

{
∑
l∈Fk

βu	sl }v	s/u	s
)1/v	s(∑

l

{
∑
i∈Il

|ai|r}s/r
)1/s

Hence (λn)n ∈ (`I(r, s), `J (u, v)) and ‖λ‖ ≤ ‖β‖J /Iu	s,v	s.

Corollary 3.9. Let J ≤ I and 1 ≤ r, s, u, v ≤ ∞. Then

(`I(r, s), `J (u, v)) = {(λn)n :
(

(
∑
i∈Jk

|λi|u	r)1/u	r
)
k
∈ `I/J (v 	 r, v 	 s)}.

Proof. Recall that G̃l = Gl = {k ∈ N0 : Jk ⊆ Il} and Il = ∪k∈GlJk: We now
denote I/J = {Gl : l ∈ N0}. Using Köthe duals we actually have

(`I(r, s), `J (u, v)) = (`J (u′, v′), `I(r′, s′)).

Taking into account that p′ 	 q′ = q 	 p for all p, q the result follows from
Theorem 3.8.

3.2 The case Ĩ ∩ J ⊆ I ∪ J

Let I = {Il : l ∈ N0} and J = {Jk : k ∈ N0} such that ΛI = ΛJ . We assume
in this section that NIinter = ∅ and NJinter = ∅, that is to say for a given l ∈ N0

either there exists k such that Il ⊆ Jk or there exist k′ such that Jk′ ⊆ Il. In
other words each interval in Ĩ ∩ J belongs either to I or to J .

To extend the result on multipliers to this setting we shall use the follow-
ing lemma whose easy proof is left to the reader.

Lemma 3.10. Let I = {Il : l ∈ N0} and J = {Jk : k ∈ N0} such that
ΛI = ΛJ and let Ii (respect. Ji ) for i = 1, · · · ,m sub-collections of I
(respect. J ) with I = ∪mi=1Ii (respect. J = ∪mi=1Ji) satisfying ΛIi = ΛJi for
i = 1, · · · ,m. Then

λ = (λn)n∈ΛI ∈ (`I(r, s), `J (u, v))
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if and only if

λ(i) = (λn)n∈ΛIi
∈ (`Ii(r, s), `Ji(u, v)), i = 1, · · · ,m.

Moreover ‖λ‖ ≈
∑m

i=1 ‖λ(i)‖.

Theorem 3.11. Let Ĩ ∩ J ⊆ I ∪J . Then (λn)n ∈ (`I(r, s), `J (u, v)) if and
only if it satisfies the conditions

((
∑
i∈Jk

|λi|u	r)1/u	r)k∈NJequal
∈ `v	s, (13)

((
∑
i∈Il

|λi|u	r)1/u	r)l∈NIsmall ∈ `
F(u	 s, v 	 s), (14)

.
((
∑
i∈Jk

|λi|u	r)1/u	r)k∈NJsmall
∈ `G(v 	 r, v 	 s), (15)

where F = {Fk : k ∈ NJbig} and G = {Gl : l ∈ NIbig}.

Proof. Let us consider the following collection of intervals

Jb = {Jk : k ∈ NJbig}, Je = {Jk : k ∈ NJequal}, and Js = {Jk : k ∈ NJsmall}

and similarly for I.
If Jk ∈ Jb (respect. Il ∈ Ib) we have Fk = {l ∈ N0 : Il ( Jk} 6= ∅

(respect. Gl = {k ∈ N0 : Jk ( Il} 6= ∅) and

Jk = ∪l∈FkIl, Il ∈ Is ( respect. Il = ∪l∈GlJk, Jk ∈ Js). (16)

Hence J = Je ∪ Jb ∪ Js, I = Ie ∪ Ib ∪ Is and

Je = {Jk : k ∈ NJequal} = {Il : l ∈ NIequal} = Ie.

Observe that Is ≤ Jb and Js ≤ Ib and, in particular, G = Ib/Js and F =
Jb/Is.

We use Lemma 3.10 and observe that, denoting Λ0 = ΛJe , Λ1 = ΛJb = ΛIs
and Λ2 = ΛJs = ΛIb ,

(λn)n∈Λ0 ∈ (`Je(r, s), `Ie(u, v))

corresponds to (13) invoking Theorem 3.1, also that

(λn)n∈Λ1 ∈ (`Is(r, s), `Jb(u, v))

corresponds to (14) invoking Theorem 3.8 and, finally,

(λn)n∈Λ2 ∈ (`Ib(r, s), `Js(u, v))

corresponds to (15) invoking Corollary 3.9.
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3.3 The general case

In this section we assume that there exist k ∈ N0 and l ∈ F̃k such that
Il ∩ Jk ∈ Ĩ ∩ J and Il ∩ Jk /∈ I ∪ J .

Since the notation may be a bit confusing, we will illustrate the idea. Let
I,J be different partitions of N0, for example:

0 n1 n2 n3 n4 n5 n6 n7

· · ·
I0

I1 I2 I3
I4 I5

0 m1 m2 m3 m4 m5

· · ·
J0 J1

J2
J3

The situation we are handling now corresponds to NJinter 6= ∅ (and hence
NIinter 6= ∅).

Definition 3.12.

J ′ = {J ′k = ∪l∈FkIl : k ∈ N0,#Fk > 0},

H = Ĩ ∩ J \ (I ∪ J ),

Js = {Jk : k ∈ NJsmall}.
Denote J ′′ = J ′ ∪ Js and Jnew = J ′′ ∪H.
We use similar notations for I.

Recalling that φ(k) = min F̃k and Φ(k) = max F̃k for k ∈ N0. We easily
observe that φ(NJequal) ⊆ NIequal, φ(NJbig) ⊆ NIsmall, φ(NJsmall) ⊆ NIbig ∪ NIinter
and φ(NJinter) ⊆ NIsmall ∪NIinter. Same results hold for Φ.

Lemma 3.13.

H = {Ĵk : k ∈ NJinter, φ(k) ∈ NIinter} ∪ {J̌k : k ∈ NJinter,Φ(k) ∈ NIinter}.

Proof. ⊆) Let I ∈ H. Since I ∈ Ĩ ∩ J then there exist k ∈ N0 and l ∈ F̃k
such that I = Il ∩ Jk. On the other hand, since I /∈ I ∪ J we have that
I ( Il and I ( Jk. Hence either φ(k) = l and Ψ(l) = k or Φ(k) = l and
ψ(l) = k. This gives either k ∈ NJinter and φ(k) ∈ NIinter (and hence I = Ĵk)
or k ∈ NJinter and Φ(k) ∈ NIinter (and hence I = J̌k).
⊇) Let k ∈ NJinter with φ(k) ∈ NIinter and consider Ĵk = Jk∩Iφ(k) ∈ Ĩ ∩ J .

Then Ĵk ( Jk (hence Ĵk /∈ J ) and Ĵk ( Iφ(k) (hence Ĵk /∈ I). Similarly for
J̌k in the case k ∈ NJinter with Φ(k) ∈ NIinter
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Remark 3.14. Note that Ĵk = Jk ∩ Il if and only if Ǐl = Il ∩ Jk. Therefore

H = {Îl : l ∈ NIinter, ψ(l) ∈ NJinter} ∪ {Ǐl : k ∈ NIinter,Ψ(l) ∈ NJinter}.

Lemma 3.15.
˜I ′′ ∩ J ′′ ⊆ Is ∪ Js ∪ Ie ⊆ I ′′ ∪ J ′′.

Proof. Let I ∈ I ′ ∪ Is and J ∈ J ′ ∪Js with I ∩ J 6= ∅. The case I ∈ Is and
J ∈ Js can not hold. If I ∈ Is and J ∈ J ′ then I ∩ J = I ∈ Is. Similarly if
I ∈ I ′ and J ∈ Js then I ∩ J = J ∈ Js. Finally if I ∈ I ′ and J ∈ J ′ then
I = J ∈ Ie = Je.

Theorem 3.16. λ ∈ (`I(r, s), `J (u, v)) if and only if (λn)n satisfies(
(
∑
i∈Jk

|λi|u	r)1/u	r
)
k∈NJequal

∈ `v	s (17)

(
(
∑
i∈Il

|λi|u	r)1/u	r
)
l∈NIsmall

∈ `F(u	 s, v 	 s) (18)

(
(
∑
i∈Jk

|λi|u	r)1/u	r
)
k∈NJsmall

∈ `G(v 	 r, v 	 s) (19)

(
(
∑
i∈J̌k

|λi|u	r)1/u	r
)
k∈Λr

+
(

(
∑
i∈Ĵk

|λi|u	r)1/u	r
)
k∈Λl
∈ `v	s (20)

where

Λr = {k ∈ NJinter,Φ(k) ∈ NIinter} and Λl = {k ∈ NJinter, φ(k) ∈ NIinter},

G = {Gl : l ∈ NIbig ∪NIinter,#Gl > 0}

and
F = {Fk : k ∈ NJbig ∪N

J
inter,#Fk > 0}.

Proof. Using Jk = J ′k ∪ Ĵk ∪ J̌k and Lemma 3.13 one obtains Jnew ≤ J
and Inew ≤ I. Clearly #Fl(Inew, I) ≤ 3 and #Fk(Jnew,J ) ≤ 3 for all
k. Therefore, using Proposition 2.11, we have `Jnew(p, q) = `J (p, q) and
`Inew(p, q) = `I(p, q), which gives

(`I(r, s), `J (u, v)) = (`Inew(r, s), `Jnew(u, v)). (21)

Taking into account Lemma 3.13 and Remark 3.14 we observe that ΛH =
Λr ∪ Λl and ΛI′′ = ΛJ ′′ .
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Since Jnew = J ′′∪H and Inew = I ′′∪H we can apply Lemma 3.10 to con-
clude that λ ∈ (`I(r, s), `J (u, v)) if and only if (λn)n∈ΛH ∈ (`H(r, s), `H(u, v))
and (λn)n/∈ΛH ∈ (`I

′′
(r, s), `J

′′
(u, v)).

Now apply Theorem 3.1 to obtain (λn)n∈ΛH ∈ `H(u 	 r, v 	 s) which
corresponds to (20).

On the other hand, comparing I ′′ and J ′′ we notice that I ∈ I ′′big corre-
sponds to I = I ′l for some l ∈ NIbig ∪ NIinter and #Gl ≥ 1. Hence we obtain
that G = {GI : I ∈ I ′′big} and similarly F = {FJ : J ∈ J ′′big}.

We now use Lemma 3.15 together with Theorem 3.11 to obtain the equiv-
alence with (17), (18) and (19) and (λn)n/∈ΛH ∈ (`I

′′
(r, s), `J

′′
(u, v)).

4 An application
Let ρ : [0, 1) → [0,∞) be a non-decreasing function such that ρ(0) = 0 and
ρ(t)/t ∈ L1([0, 1)) we define the weighted Bergman-Besov space B1(ρ) as
those analytic functions F in the unit disk such that∫

D
|F ′(z)|ρ(1− |z|)

1− |z|
dA(z) <∞.

An analytic function F is called lacunary if F (z) =
∑

n∈ΛL
anz

n where
L = {{nk} : k ∈ N0} for some (nk) such that infk nk+1/nk > 1.

Recently weights with the following condition had been considered in
[KD-SAA]: There exist C1, C2 > 0 such that

C1

∫ 1

0

r2n−1ρ(1− r)
1− r

dr ≤ K(n, ρ) ≤ C2

∫ 1−2−(n+1)

1−2−n
r2n+1−1ρ(1− r)

1− r
dr (22)

and the following result has been shown.

Theorem 4.1. (see [KD-SAA]) Let F (z) =
∑

n∈ΛL
anz

n be a lacunary func-
tion and let ρ be a weight satisfying (22). Then F belongs to B1(ρ) if and
only if

∞∑
k=0

(
∑
n∈Jk

|an|2)1/22kK(k, ρ) <∞ (23)

where Jk = {n : 2k − 1 ≤ k < 2k+1 − 1}.

We shall extend the previous result for more general classes of weight
functions and families of intervals J .
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Definition 4.2. Let 0 < q < ∞, J be a collection of disjoint intervals in
N0, say Jk = N0 ∩ [mk,mk+1) where m0 = 0 and (mk) is some increasing
sequence in N0. and let ρ : [0, 1) → [0,∞) be a measurable function such
that ρ(t)/t ∈ L1([0, 1)).

We say that ρ is q-adapted to J whenever there exists C > 0 such that∫ 1

0

rqmn
ρ(1− r)

1− r
dr ≤ C

∫
An

rqmn+1
ρ(1− r)

1− r
dr (24)

for all n ≥ 0 where A0 = [0, 1− 1
m1

) and An = [1− 1
mn
, 1− 1

mn+1
) for n ≥ 1.

We denote

µρ(s) =

∫ 1

0

rs
ρ(1− r)

1− r
dr, s ≥ 0. (25)

In particular, from condition (24) if ρ is q-adapted to J we get that

µρ(qmn) ≈ µρ(qmn+1) (26)

Note also that condition (22) means that ρ is 1/2-adapted for J where mn =
2n − 1.

Proposition 4.3. Let ρα(t) = tα with α > 0 and J = {[mn,mn+1) ∩ N0 :
n ∈ N0}. The following statements are equivalent:

(i) ρα is q-adapted to J for all q > 0.
(ii) ρα is q-adapted to J for some q > 0.
(iii) supnmn+1/mn <∞.

Proof. (i) =⇒ (ii) Obvious.
(ii) =⇒ (iii) It is well known that B(n+ 1, α) =

∫ 1

0
rn(1− r)α−1dr ≈ n−α

and therefore µρα(qmn) ≈ m−αn .
Hence it follows from (26) thatmn+1 ≈ mn. therefore supmn+1/mn <∞.
(iii) =⇒ (i) Let supmn+1/mn = δ and take q > 0. Now observe that∫ 1− 1

mn+1

1− 1
mn

rqmn+1(1− r)α−1dr ≥ (1− 1

mn

)qmn+1

∫ 1
mn

1
mn+1

sα−1ds

≥ 1

α
(1− 1

mn

)qmn+1m−αn (1− (
mn

mn+1

)α)

≥ 1

α
((1− 1

mn

)mn)δqm−αn (1− (
1

δ
)α)

≥ Cµρα(qmn).
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We now modify the proof of Lemma 3 in [B2] to obtain the following
result.

Lemma 4.4. Let 0 < q ≤ 1, let J be a collection of disjoint intervals in N0

and assume ρ is a weight q-adapted to J . If (αn) ≥ 0 then∫ 1

0

(
∞∑
n=0

αnr
n)q

ρ(1− r)
1− r

dr ≈
∞∑
n=0

(
∑
k∈Jn

αk)
qµρ(qmn)

where Jn = {k : mn ≤ k < mn+1}

Proof. As above A0 = [0, 1 − 1
m1

) and An = [1 − 1
mn
, 1 − 1

mn+1
) for n ≥ 1.

Then ∫ 1

0

(
∞∑
n=0

αnr
n)q

ρ(1− r)
1− r

dr =
∞∑
n=0

∫
An

(
∞∑
n=0

αnr
n)q

ρ(1− r)
1− r

dr

≥
∞∑
n=0

∫
An

(
∑
k∈Jn

αkr
k)q

ρ(1− r)
1− r

dr

≥
∞∑
n=0

∫
An

(
∑
k∈Jn

αk)
qrqmn+1

ρ(1− r)
1− r

dr

≥ C−1

∞∑
n=0

(
∑
k∈Jn

αk)
qµρ(qmn).

Conversely, since q ≤ 1,∫ 1

0

(
∞∑
n=0

αnr
n)q

ρ(1− r)
1− r

dr ≤
∫ 1

0

∞∑
n=0

(
∑
k∈Jn

αkr
k)q

ρ(1− r)
1− r

dr

≤
∞∑
n=0

(
∑
k∈Jn

αk)
q(

∫ 1

0

rqmn
ρ(1− r)

1− r
dr)

≤
∞∑
n=0

(
∑
k∈Jn

αk)
qµρ(qmn).

We first note that for lacunary functions F and 0 < p <∞ we have (see
[Z])

Mp(F, r) = (

∫ 2π

0

|F (reiθ)|p dθ
2π

)1/p ≈M2(F, r) = (

∫ 2π

0

|F (reiθ)|2 dθ
2π

)1/2.
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Therefore for lacunary functions F one has that F ∈ B1(ρ) if and only if∫ 1

0

M2(F ′, r)
ρ(1− r)

1− r
dr <∞.

Therefore invoking Plancherel’s theorem and Lemma 4.4 we recover Theorem
4.1.

Recall that an analytic function F : D → C with F (z) =
∑∞

n=0 anz
n is

said to belong to H(p, q, ρ) (see [B2, Definition 2]) whenever

‖F‖H(p,q,ρ) = (

∫ 1

0

M q
p (F, r)

ρ(1− r2)

1− r2
rdr)1/q <∞.

We use the notation H(p, q, α) if ρ(t) = tα.
A consequence of Lemma 4.4 is the following result.

Corollary 4.5. Let 0 < q ≤ 2, let J be a collection of disjoint intervals in
N0 and ρ be a weight q/2-adapted to J . Then

‖F‖H(2,q,ρ) ≈
( ∞∑
n=0

(
∑
k∈Jn

|ak|2)q/2µρ((qmn)/2)
)1/q

.

Moreover if F is lacunary and 0 < p <∞ then

‖F‖H(p,q,ρ) ≈
( ∞∑
n=0

(
∑

k∈Jn∩ΛL

|ak|2)q/2µρ((qmn)/2)
)1/q

.

Theorem 4.6. Let 0 < q <∞, let J be a collection of disjoint intervals in
N0 and assume ρ is a weight q-adapted to J . Define λ = (λk)k such that

λk = (

∫ 1

0

rqmn
ρ(1− r)

1− r
)1/q, k ∈ Jn

and λk = 0 otherwise. Then (λk)k ∈ (H(1, q, ρ), `J (∞, q)).

Proof. We shall show that( ∞∑
n=0

(sup
k∈Jn
|ak|)qµρ(qmn)

)1/q

≤ C‖F‖H(1,q,ρ).

Recall that
sup

k∈Jn−1

|ak|rk ≤M1(F, r)
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and therefore, if A0 = [0, 1− 1
m1

) and An = [1− 1
mn
, 1− 1

mn+1
) for n ≥ 1 then

∞∑
n=0

(sup
k∈Jn
|ak|)qµρ(qmn) ≤ C

∞∑
n=0

(sup
k∈Jn
|ak|)q

∫
An

rqmn+1
ρ(1− r)

1− r
dr

≤ C
∞∑
n=0

∫
An

(sup
k∈Jn
|ak|rk)q

ρ(1− r)
1− r

dr

≤ C
∞∑
n=0

∫
An

M q
1 (F, r)

ρ(1− r)
1− r

dr

= C‖F‖qH(1,q,ρ).

Theorem 4.7. Let 1 ≤ q2 < q1 ≤ 2 and let J and I be collections of
disjoint intervals in N0, generated by sequences mk and nk respectively, such
that I ≤ J . Assume that ρ1 is a weight q1/2-adapted to I and ρ2 is a weight
q2/2-adapted to J . Denote

µρ1,ρ2(k) =
(

(µρ2((q2mk)/2))1/q2(µρ1((q1nk)/2))−1/q1
)1/q2	q1

Then

(H(2, q1, ρ1), H(2, q2, ρ2)) = {(λn)n; (sup
k∈In

µρ1,ρ2(k)|λk|) ∈ `J /I(∞, q2 	 q1)}.

Proof. Let

FI(z) =
∞∑
k=0

(µρ1(q1nk/2))1/q1(
∑
j∈Ik

zj),

F̃I(z) =
∞∑
k=0

(µρ1(q1nk/2))−1/q1(
∑
j∈Ik

zj),

and

GJ (z) =
∞∑
k=0

(µρ2(q2mk/2))1/q2(
∑
j∈Jk

zj)

Using Corollary 4.5 one has that f ∈ H(2, q1, ρ1) if and only if f ∗ FI ∈
`I(2, q1) and g ∈ H(2, q2, ρ2) if and only if g ∗GJ ∈ `J (2, q2)

We use that λ ∈ (H(2, q1, ρ1), H(2, q2, ρ2)) is equivalent to λ ∗ GJ ∈
(H(2, q1, ρ1), `J (2, q2)) and also equivalent to λ∗GJ ∗F̃I ∈ (`I(2, q1), `J (2, q2)).

Making use of Theorem 3.8 we have

(`I(2, q1), `J (2, q2)) = {(γn)n; (sup
k∈In
|γk|)n ∈ `J /I(∞, q2 	 q1)}.

This concludes the result.

27



Let us finish by observing some examples to apply the above results.

Example 4.8. Let λ > 1 and denote m0(λ) = 0 and mk(λ) = [λk] for k ∈ N0

and J (λ) the partition of intervals Jk(λ) = [mk(λ),mk+1(λ)) ∩ N0. In this
case µρα(qmn) ≈ λ−αn, and then, from Proposition 4.3, ρα is q-adapted to
J (λ) for any value of q > 0.

Let λ > γ > 1 with λ = γN with N ∈ N0. Then J (γ) ≤ J (λ) because

mk(λ) = [λk] = [γNk] = mNk(γ)

and therefore
Jk(λ) = ∪l∈FkJl(γ)

where Fk = {l : Nk ≤ l < Nk + N}. Hence J (λ)/J (γ) = I where
Ik = [Nk,N(k + 1)) ∩ N0, that is mk(I) = Nk.
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