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1. INTRODUCTION.

These notes are devoted to present a little survey and overview of the
theory of bilinear multipliers, that was originated with the first attempts
and formulation of several questions in the work by R. Coiffman and C.
Meyer in the eighties and was retaken and pushed in the nineties after the
celebrated result by M. Lacey and C. Thiele, solving the old standing con-
jecture of Calderón on the boundedness of the bilinear Hilbert transform.

This paper mainly contains the lecture notes of a course on this topic
that I gave in the school ”Real Analysis and its applications” organized by
CIMPA at La Falda, Córdoba, Argentina in May of 2008. Some results
appearing here have not appeared anywhere else, but some others are a
recollection of those proved by the author (and his coauthors) and already
published in several journals or books (see [2, 3, 4, 5, 6, 7, 8]).

The bilinear versions of several classical operators appearing in Harmonic
Analysis, such as Hilbert transforms, Hardy-Littlewood maximal functions
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or fractional integrals, have been studied in the last decade. These op-
erators are the starting point in our motivation of the notion of bilinear
multipliers.

Given f, g : R → C belonging to the Schwarzt class S(R) we define the
bilinear Hilbert transform by

H(f, g)(x) = lim
ε→0

1
π

∫
|y|>ε

f(x− y)g(x+ y)
y

dy,

the bisublinear Hardy-Littlewood maximal function by

M(f, g)(x) = sup
ε>0

1
2ε

∫
|y|<ε

|f(x− y)g(x+ y)|dy,

and the bilinear fractional integral by

Iα(f, g)(x) =
∫

R

f(x− y)g(x+ y)
|y|1−α

dy, 0 < α < 1.

These mappings are the bilinear counterparts of the classical operators
(with the same name) and their boundedness in the linear case is very well
understood nowadays in most of the classical function spaces. The corre-
sponding boundedness results on Lp-spaces for the just mentioned bilinear
operators took long time and it is collected in the following theorem.

Theorem 1. Let 1 < p1, p2 < ∞, 0 < α < 1/p1 + 1/p2, 1/q = 1/p1 +
1/p2−α, 1/p3 = 1/p1+1/p2 and 2/3 < p3 <∞. Then there exist constants
A,B and C such that

‖H(f, g)‖p3 ≤ A‖f‖p1‖g‖p2(Lacey-Thiele, [20, 21, 22]), (1)

‖M(f, g)‖p3 ≤ B‖f‖p1‖g‖p2 .(Lacey, [19]), (2)

‖Iα(f, g)‖q ≤ C‖f‖p1‖g‖p2 . (Kenig-Stein [18], Grafakos-Kalton [17] ).
(3)

Throughout the paper S(Rn) denotes the Schwartz class on Rn, i.e. f :
Rn → C such that f ∈ C∞(Rn) and xα ∂|β|f(x)

∂x
β1
1 ...∂xβnn

is bounded for any

β = (β1, ..., βn) and α = (α1, ..., αn) where xα = xα1
1 ...xαnn and |β| =

β1 + ... + βn, the Fourier transform of f ∈ S(Rn) is defined by f̂(ξ) =∫
Rn f(x)e−2πi〈x,ξ〉dx and P(Rn) stands for the set of functions in S(Rn)

such that suppf̂ is compact.
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To handle the previously mentioned operators one needs to understand
first the following ”bilinear convolution”-type operator: For a given K ∈
L1
loc(R) we define

CK(f, g)(x) =
∫

R
f(x− y)g(x+ y)K(y)dy (4)

for f and g compactly supported continuous functions in R. Note that a
bisublinear maximal operator is now defined, for a sequence Kj ∈ L1

loc(R),
as

M(Kj)(f, g) = sup
j
CKj (|f |, |g|)

and a bilinear singular integral is defined as

HK(f, g) = lim
ε→0,δ→∞

CKε,δ(f, g)

where Kε,δ = Kχε<|x|<δ is a Calderón-Zygmund kernel.
Let us first observe that actually the bilinear convolutions CK are special

examples of a wider class of operators.
Assume that K ∈ L1(R) and that f and g ∈ S(R). By writing f(x−y) =∫

R f̂(ξ)e2πi(x−y)ξdξ and g(x+ y) =
∫

R ĝ(η)e2πi(x+y)ηdη we have

CK(f, g)(x) =
∫

R
f(x− y)g(x+ y)K(y)dy

=
∫

R

∫
R

∫
R
f̂(ξ)ĝ(η)K(y)e2πi(x−y)ξe2πi(x+y)ηdξdηdy

=
∫

R

∫
R
f̂(ξ)ĝ(η)(

∫
R
K(y)e−2πi(ξ−η)ydy)e2πi(ξ+η)xdξdη

=
∫

R

∫
R
ĝ(η)f̂(ξ)K̂(ξ − η)e2πi(ξ+η)xdξdη.

This motivates the following extension. Let m(ξ, η) be measurable func-
tion and assume

Bm(f, g)(x) =
∫

R

∫
R
f̂(ξ)ĝ(η)m(ξ, η)e2πi(ξ+η)xdξdη (5)

for “nice” functionsf and g (for instance f, g ∈ S(R) when assuming
|m(ξ, η)| ≤ C(1 + |ξ|2)N (1 + |η|2)N for some constants C > 1 and N ≥ 0
or m ∈ L1

loc(R2) for f, g ∈ P(R).)
Given 1 ≤ p1, p2 ≤ ∞ and 0 < p3 ≤ ∞ we shall say that m is a bilinear

multiplier on R of type (p1, p2, p3) if Bm extends to a bounded bilinear
operator from Lp1(R)× Lp2(R) to Lp3(R).



4 O. BLASCO

The study of bilinear multipliers for smooth symbols (where m(ξ, η) is
a “nice” regular function) goes back to the work by R.R. Coifman and
Y. Meyer in [10]. Note that actually the bilinear multipliers arising from
operators CK given by a kernel correspond to the particular case where
m(ξ, η) = M(ξ − η) for a measurable function M . It was only in the
last decade that the cases M0(x) = 1

|x|1−α was shown to define a bilinear
multiplier of type (p1, p2, p3) for 1/p3 = 1/p1 + 1/p2−α for 1 < p1, p2 <∞
and 0 < α < 1/p1 + 1/p2 (see (3) in Theorem 1) and M1(x) = sign(x)
was shown to define a bilinear multiplier of type (p1, p2, p3) for 1/p3 =
1/p1 + 1/p2 for 1 < p1, p2 <∞ and p3 > 2/3 (see (1) in Theorem 1).

Recall that in the linear caseMp,q(Rn), 1 ≤ p, q ≤ ∞, denotes the space
of distributions u ∈ S ′(Rn) such that u ∗ φ ∈ Lq(Rn) for all φ ∈ Lp(Rn).
Equivalently M̃p,q(Rn) stands for the space of bounded functions m such
that

T̂m(φ)(ξ) = m(ξ)f̂(ξ) (6)

defines a bounded operator from Lp(Rn) to Lq(Rn). We endow the space
with the “norm” of the operator Tm, that is ‖m‖p,q = ‖Tm‖.

We would like to mention some well known properties of the space
of linear multipliers (see [1, 23]): Mp,q(Rn) = {0} whenever q < p,
Mp,q(Rn) =Mq′,p′(Rn) for 1 < p ≤ q <∞ and for 1 ≤ p ≤ 2,

M1,1(Rn) ⊂Mp,p(Rn) ⊂M2,2(Rn),

M̃2,2(Rn) = L∞(Rn),

M1,q(Rn) = {u ∈ S ′(Rn) : u ∈ Lq(Rn)}, 1 < q <∞,

M1,1(Rn) = {u ∈ S ′(Rn) : u = µ ∈M(Rn)}.

In this notes we shall be dealing with their bilinear analogues.

Definition 2. Let m(ξ, η) be a locally integrable function on Rn×Rn.
Define

Bm(f, g)(x) =
∫

Rn

∫
Rn
f̂(ξ)ĝ(η)m(ξ, η)e2πi(〈ξ+η,x〉dξdη

for f, g ∈ P(Rn), i.e. supp(f̂) ∪ supp(ĝ) ⊂ B(0;R) for some R > 0.
Let 1 ≤ p1, p2 ≤ ∞ and 0 < p3 ≤ ∞. m is said to be a bilinear multiplier

on Rn of type (p1, p2, p3) if Bm there exists C > 0 such that

‖Bm(f, g)‖p3 ≤ C‖f‖p1‖g‖p2
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for any f, g ∈ P(Rn), i.e. Bm extends to a bounded bilinear operator from
Lp1(Rn) × Lp2(Rn) to Lp3(Rn) (where we replace L∞(Rn) for C0(Rn) in
the case pi =∞ for i = 1, 2).

We write BM(p1,p2,p3)(Rn) for the space of bilinear multipliers of type
(p1, p2, p3) and ‖m‖p1,p2,p3 = ‖Bm‖.

Among them we distinguish the class of multipliers arising from operators
CK in the following way.

Definition 3. Let 1 ≤ p1, p2 ≤ ∞ and 0 < p3 ≤ ∞. We denote by
M̃(p1,p2,p3)(Rn) the space of measurable functions M : Rn → C such that
m(ξ, η) = M(ξ − η) ∈ BM(p1,p2,p3)(R), that is to say

BM (f, g)(x) =
∫

Rn

∫
Rn
f̂(ξ)ĝ(η)M(ξ − η)e2πi〈ξ+η,x〉dξdη

extends to a bounded bilinear map from Lp1(Rn)×Lp2(Rn) into Lp3(Rn).
We keep the notation ‖M‖p1,p2,p3 = ‖BM‖.

Our objective is to study the basic properties of the classes BM(p1,p2,p3)(R)
and Mp1,p2,p3(R), to find examples of bilinear multipliers in these classes,
and get methods to produce new ones. We shall present some transference
methods and discretization techniques which will allow to show the bound-
edness of the analogue formulations of the bilinear multipliers considered
in Theorem 1 when defined on other groups such as T or Z.

As usual, if f ∈ L1(Rn) we denote the translation by τxf(y) = f(y − x)
for x ∈ Rn, the modulation by Mxf(y) = e2πi〈x,y〉f(y) and, for each 0 <
p, t <∞ the dilation Dp

t f(x) = t−n/pf(xt ).
With this notation out of the way one has, for 1/p+1/p′ = 1, 1 ≤ p ≤ ∞,

(̂τxf)(ξ) = M−xf̂(ξ), (̂Mxf)(ξ) = τxf̂(ξ), (̂Dp
t f)(ξ) = Dp′

t−1 f̂(ξ). (7)

Clearly τx,Mx and Dp
t are isometries on Lp(Rn) for any 0 < p ≤ ∞.

It is elementary to see that if φ, ψ ∈ L1(Rn) and 1
p + 1

q − 1 = 1
s then

Dp
t φ ∗ ψ = Ds

t (φ ∗D
q
t−1ψ), t > 0. (8)

Although most of the results presented in what follows have a formulation
in n ≥ 1 we shall restrict ourselves to the case n = 1 for simplicity.

2. BILINEAR MULTIPLIERS: THE BASICS

Let us start with some elementary properties of the bilinear multipliers
when composing with translations, modulations and dilations.
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Proposition 4. Let m ∈ BM(p1,p2,p3)(R).

(a)If m1 ∈ M̃s1,p1(R) and m2 ∈ M̃s2,p2(R) then m1(ξ)m(ξ, η)m2(η) ∈
BM(s1,s2,p3)(R). Moreover

‖m1mm2‖s1,s2,p3 ≤ ‖m1‖s1,p1‖m‖p1,p2,p3‖m2‖s2,p2

(b)τ(ξ0,η0)m ∈ BM(p1,p2,p3)(R) for each (ξ0, η0) ∈ R2 and

‖τ(ξ0,η0)m‖p1,p2,p3 = ‖m‖p1,p2,p3 .

(c)M(ξ0,η0)m ∈ BM(p1,p2,p3)(R) for each (ξ0, η0) ∈ R2 and

‖M(ξ0,η0)m‖p1,p2,p3 = ‖m‖p1,p2,p3

(d)If 2
q = 1

p1
+ 1
p2
− 1
p3

and 0 < t <∞ then Dq
tm ∈ BM(p1,p2,p3)(R)

and

‖Dq
tm‖p1,p2,p3 = ‖m‖p1,p2,p3 .

Proof. Use (7) to deduce the following formulas

Bm1mm2(f, g) = Bm(Tm1f, Tm2g). (9)

Bτ(ξ0,η0)m(f, g) = Mξ0+η0Bm(M−ξ0f,M−η0g). (10)

BM(ξ0,η0)m(f, g) = Bm(τ−ξ0f, τ−η0g). (11)

Bm(Dp1
t f,D

p2
t g) = Dp3

t BDqtm(f, g). (12)

Let us check only the validity of last one. The other ones follow easily from
the previous facts.

Bm(Dp1
t f,D

p2
t g)(x) =

∫
R2
t

1
p′1 f̂(tξ)t

1
p′2 ĝ(tη)m(ξ, η)e2πi(ξ+η)xdξdη

=
∫

R2
t

1
p′1 f̂(ξ)t

1
p′2 ĝ(η)m(

ξ

t
,
η

t
)e2πi(ξ+η) xt t−2dξdη

= t−
1
p3

∫
R2
f̂(ξ)ĝ(η)t−

1
p1
− 1
p2

+ 1
p3m(

ξ

t
,
η

t
)e2πi(ξ+η) xt dξdη

= Dp3
t BDqtm(f, g)(x).

Let us combine the previous results to get new bilinear multipliers from
a given one.
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Proposition 5. Let p3 ≥ 1 and m ∈ BM(p1,p2,p3)(R).

(a)If Q = [a, b]×[c, d] and 1 < p1, p2 <∞ then mχQ ∈ BM(p1,p2,p3)(R)
and ‖mχQ‖p1,p2,p3 ≤ C‖m‖p1,p2,p3 .

(b)If Φ ∈ L1(R2) then Φ∗m ∈ BM(p1,p2,p3)(R) and ‖Φ∗m‖p1,p2,p3 ≤
‖Φ‖1‖m‖p1,p2,p3 .

(c)If Φ ∈ L1(R2) then Φ̂m ∈ BM(p1,p2,p3)(R) and ‖Φ̂m‖p1,p2,p3 ≤
‖Φ‖1‖m‖p1,p2,p3 .

(d)If ψ ∈ L1(R+, t
1
p3
−( 1

p1
+ 1
p2 ) then mψ(ξ, η) =

∫∞
0
m(tξ, tη)ψ(t)dt ∈

BM(p1,p2,p3)(R). Moreover ‖mψ‖p1,p2,p3 ≤ ‖ψ‖1‖m‖p1,p2,p3 .

Proof. (a) Use that χ[a,b] ∈ M̃p1,p1 for 1 < p1 <∞ and χ[c,d] ∈ M̃p2,p2

for 1 < p2 <∞ together with Proposition 4 part (a).
(b) Note that

BΦ∗m(f, g)(x) =
∫

R2
f̂(ξ)ĝ(η)(

∫
R2
m(ξ − u, η − v)Φ(u, v)dudv)e2πi(ξ+η)xdξdη

=
∫

R2

( ∫
R2
f̂(ξ)ĝ(η)m(ξ − u, η − v)e2πi(ξ+η)xdξdη

)
Φ(u, v)dudv

=
∫

R2
Bτ(u,v)m(f, g)(x)Φ(u, v)dudv.

From the vector-valued Minkowski inequality and Proposition 4 part (b),
we have

‖BΦ∗m(f, g)‖p3 ≤
∫

R2
‖Bτ(u,v)m(f, g)‖p3 |Φ(u, v)|dudv

≤ ‖m‖p1,p2,p3‖f‖p1‖g‖p2‖Φ‖1.

(c) Observe that

BΦ̂m(f, g)(x) =
∫

R2
f̂(ξ)ĝ(η)(

∫
R2
M(−u,−v)m(ξ, η)Φ(u, v)dudv)e2πi(ξ+η)xdξdη

=
∫

R2
BM(−u,−v)m(f, g)(x)Φ(u, v)dudv.

Argue as above, using now Proposition 4 part (c), to conclude the result.
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(d) Use now Proposition 4 part (d), for 1
p3
− ( 1

p1
+ 1

p2
) = − 2

q ,

Bmψ (f, g)(x) =
∫

R2
f̂(ξ)ĝ(η)(

∫ ∞
0

Dq
t−1m(ξ, η)t−2/qψ(t)dt)e2πi(ξ+η)xdξdη

=
∫ ∞

0

BDq
t−1m

(f, g)(x)t−2/qψ(t)dt.

With all these procedures we have several useful methods to produce
multipliers in BM(p1,p2,p3)(R). Let us mention one application of each of
them.

Example 1.

(1)If 1
p1

+ 1
p2

= 1
p3

, m1 ∈ M̃(p1,p1) and m2 ∈ M̃(p2,p2) then
m(ξ, η) = m1(ξ)m2(η) ∈ BMp1,p2,p3 .

(2)If m ∈ BM(p1,p2,p3)(R), p3 ≥ 1 and Q1, Q2 are bounded measur-
able sets in R then

1
|Q1||Q2|

∫
Q1×Q2

m(ξ + u, η + v)dudv ∈ BM(p1,p2,p3)(R).

(3)If Φ ∈ L1(R2) then Φ̂ ∈ BM(p1,p2,p3)(R) for 1
p1

+ 1
p2

= 1
p3

,
p3 ≥ 1.

(4)If m ∈ BM(p1,p2,p3)(R), 0 ≤ 1
p1

+ 1
p2
− 1

p3
< 1 then

m1(ξ, η) =
∫ ∞

0

m(tξ, tη)
dt

1 + t2
∈ BM(p1,p2,p3)(R).

A combination of the previous results gives the following examples of
bilinear multipliers in BM (1,1,p3)(R) whose proof is left to the reader.

Corollary 6. Let Φ ∈ L1(R2), ψ1 ∈ Lp1(R) and ψ2 ∈ Lp2(R) and
1
p1

+ 1
p2

= 1
p3
≤ 1 then

m(ξ, η) = ψ̂1(ξ)Φ̂(ξ, η)ψ̂2(η) ∈ BM (1,1,p3)(R).

Let us point out a characterization, for p3 ≥ 1, in terms of the duality.

Proposition 7. Let 1 ≤ p3 ≤ ∞. m ∈ BM(p1,p2,p3)(R) if and only if
there exists C > 0 such that

|
∫

R2
f̂(ξ)ĝ(η)ĥ(ξ + η)m(ξ, η)dξdη| ≤ C‖f‖p1‖g‖p2‖h‖p′3
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for all f, g, h ∈ P(R).

Let us use the previous duality result and interpolation to get a sufficient
integrability condition to guarantee that m ∈ BM(p1,p2,p3)(R).

Theorem 8.

Let 1 ≤ p1, p2 ≤ p ≤ 2 and p3 ≥ p′ such that 1
p1

+ 1
p2
− 2

p = 1
p3

. If
m ∈ Lp(R2) then m ∈ BM(p1,p2,p3)(R).

Proof. Let us show first that m ∈ BM(p,p,∞)(R). Let f ∈ Lp(R),
g ∈ Lp(R) and h ∈ L1(R). Using Hölder and Hausdorff-Young’s one gets

|
∫

R2
f̂(ξ)ĝ(η)ĥ(ξ + η)m(ξ, η)dξdη| ≤ ‖m‖Lp(R2)‖ĥ‖∞‖f̂‖p′‖ĝ‖p′

≤ ‖m‖Lp(R2)‖h‖1‖f‖p‖g‖p.

Similarly, changing the variables ξ + η = u, ξ = −v, one has∫
R2
f̂(ξ)ĝ(η)ĥ(ξ+η)m(ξ, η)dξdη =

∫
R2
f̂(−v)ĝ(u+v)ĥ(u)m(−v, u+v)dvdu.

An argument as above gives also the estimate

|
∫

R2
f̂(−v)ĝ(u+ v)ĥ(u)m(−v, u+ v)dvdu| ≤ ‖m‖Lp(R2)‖g‖1‖f‖p‖h‖p.

This shows that m ∈ BM(p,1,p′)(R) and similarly m ∈ BM(1,p,p′)(R).
Given 1 ≤ p̃1 ≤ p and p′ ≤ p̃3 ≤ ∞ with 1

p̃1
− 1

p̃3
= 1

p we have 0 ≤ θ ≤ 1
such that 1

p̃1
= 1−θ

p + θ
1 and 1

p̃3
= 1−θ

∞ + θ
p′ . Hence, by interpolation,

m ∈ BM(p̃1,p,p̃3)(R).
Similar argument shows that m ∈ BM(p,p̃2,q̃3)(R) whenever 1 ≤ p̃2 ≤ p

and p′ ≤ q̃3 ≤ ∞ with 1
p̃2
− 1

q̃3
= 1

p .
To finish the proof we observe that if 1 < p1 < p and 1 < p2 < p then

for each 0 < θ < 1 there exist 1 ≤ p̃1 ≤ p1 < p and 1 ≤ p̃2 ≤ p2 < p such
that

1
p1
− 1
p

= (1− θ)( 1
p̃1
− 1
p

),
1
p2
− 1
p

= θ(
1
p̃2
− 1
p

).

Denoting p̃3, q̃3 the values such that 1
p̃2
− 1

p = 1
p̃3

and 1
p̃2
− 1

p = 1
q̃3

one
obtains that

1
p1

=
(1− θ)
p̃1

+
θ

p
,

1
p2

=
(1− θ)
p

+
θ

p̃1
,

1
p3

=
(1− θ)
p̃3

+
θ

q̃3
.
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Hence the result follows again from interpolation between the just men-
tioned ones.

3. THE CASE 1
P1

+ 1
P2

= 1
P3

≤ 1.

We start presenting an elementary example of bilinear multipliers. If µ is
a Borel regular measure in R we denote µ̂(ξ) =

∫
R e
−2πixξdµ(x) its Fourier

transform.

Proposition 9. Let p3 ≥ 1 and 1/p1 + 1/p2 = 1/p3 and let m(ξ, η) =
µ̂(αξ+βη) where µ is a Borel regular measure in R and (α, β) ∈ R2. Then
m ∈ BM(p1,p2,p3)(R) and ‖m‖p1,p2,p3 ≤ ‖µ‖1.

Proof. Let us first rewrite the value Bm(f, g) as follows:

Bm(f, g)(x) =
∫

R2
f̂(ξ)ĝ(η)µ̂(αξ + βη)e2πi(ξ+η)xdξdη

=
∫

R2
f̂(ξ)ĝ(η)(

∫
R
e−2πi(αξ+βη)tdµ(t))e2πi(ξ+η)xdξdη

=
∫

R
(
∫

R2
f̂(ξ)ĝ(η)e2πi(x−αt)ξe2πi(x−βt)ηdξdη)dµ(t)

=
∫

R
f(x− αt)g(x− βt)dµ(t).

Hence, using Minkowski’s inequality, one has

‖Bm(f, g)‖p3 ≤
∫

R
‖f(· − αt)g(· − βt)‖p3d|µ|(t)

≤
∫

R
‖f(· − αt)‖p1‖g(· − βt)‖p2d|µ|(t)

= ‖f‖p1‖g‖p2
∫

R
d|µ|(t) = ‖µ‖1‖f‖p1‖g‖p2 .

This condition is also connected to the homogeneity of the symbol.

Proposition 10. Let m ∈ BM(p1,p2,p3)(R) such that m(tξ, tη) = m(ξ, η)
for any t > 0. Then 1

p1
+ 1

p2
= 1

p3
.
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Proof. From assumption D∞t m = m. Using now Proposition 4 we have
Bm(Dp1

t f,D
p2
t g) = t1/p3−(1/p1+1/p2)Dp3

t Bm(f, g) and therefore

‖Bm(f, g)‖p3 = ‖Dp3
t Bm(f, g)‖p3

= t−1/p3+(1/p1+1/p2)‖Bm(Dp1f,Dp2
t g)‖p3

≤ t−1/p3+(1/p1+1/p2)‖Bm‖‖f‖p1‖g‖p2 .

For this to hold for any 0 < t <∞ one needs 1/p1 + 1/p2 = 1/p3.

Let us now get a new characterization of multipliers following DeLeeuw
ideas (see [12]). It is well known that in the case that µ ∈ M(R) is sup-
ported on a finite set then µ̂ is almost periodic and bounded. For an almost
periodic function g we denote ‖g‖Bp = limT→∞( 1

2T

∫ T
−T |g(t)|pdt)1/p. To

simplify the notation we use φt(x) = D1
tφ(x) = 1

tφ(xt ).

Lemma 2. Let 1 ≤ p < ∞, φ ∈ S(R) be a non-negative, radial, non-
increasing function. If g is almost periodic and bounded in R then

‖g‖pBp ≈ lim sup
T→∞

∫
R
|g(x)|pφT (x)dx.

Proof. Denote C1 = min{φ(u) : |u| ≤ 1} and C2 = max{φ(u) : |u| ≤ 1}.
For T > 1

1
2T

∫ T

−T
|g(x)|pdx ≤ 1

2C1

∫
R
|g(x)|pφT (x)dx

and∫
R
|g(x)|pφT (x)dx ≤

∫
|x|≤T

|g(x)|pφT (x)dx+
‖g‖p∞
T

∫
|x|>T

φ(x)dx

≤ 2C2

2T

∫ T

−T
|g(x)|pdx+

‖φ‖1‖g‖p∞
T

.

Taking limits as T →∞ one gets the result.

Recall that a function m is called regulated if

lim
ε→0

1
4ε2

∫ ε

−ε

∫ ε

−ε
m(x− s, y − t)dsdt = m(x, y)

for all (x, y) ∈ R2.

Theorem 11. (see [2]) Let p3 ≥ 1 and 1/p1 + 1/p2 = 1/p3 and let
m(ξ, η) be a bounded regulated function on R×R. The following are equiv-
alent:



12 O. BLASCO

(i) m ∈ BM(p1,p2,p3)(R).
(ii) There exists a constant K so that

|
∑
t∈R

∑
s∈R

m(t, s)µ({t})ν({s})λ({t+ s})| ≤ K‖µ̂‖Bp1 ‖ν̂‖Bp2 ‖λ̂‖Bp′3

for all measures µ, ν, λ supported on a finite number of points.

Proof. It suffices to show the result for continuous and bounded func-
tion m. The general case follows from this one and Proposition 5 and
Proposition 7.

(i) ⇒ (ii) Denote by φ the Gaussian function φ(x) = e−x
2/2. Then for

any α > 0 and a ∈ R

(τaφ)αε (ξ) = (
1
ε

)αφα(
ξ − a
ε

) = δa ∗ (φε)α(ξ) (13)

Now choose 0 < α, β, γ such that α + β + γ = 2, and µ = δa, ν = δb and
λ = δc for a, b, c ∈ R. It is easily checked that∫

R2

1
ε2
φα(

ξ − a
ε

)φβ(
η − b
ε

)φγ(
ξ + η − c

ε
)m(ξ, η)dξdη =

=
∫

R2
φα(ξ)φβ(η)φγ(ξ + η +

a+ b− c
ε

)m(a+ εξ, b+ εη)dξdη =

=
∫

R2
µ ∗ (φε)α(ξ)ν ∗ (φε)β(η)λ ∗ (φε)γ(ξ + η)m(ξ, η)dξdη.

Since

lim
ε→0

φα(ξ)φβ(η)φγ(ξ + η +
a+ b− c

ε
)m(a+ εξ, b+ εη) =

δc(a+ b)φα(ξ)φβ(η)φγ(ξ + η)m(a, b),

the Lebesgue convergence theorem implies that

lim
ε→0

∫
R2

1
ε2
φα(

ξ − a
ε

)φβ(
η − b
ε

)φγ(
ξ + η − c

ε
)m(ξ, η)dξdη

= Cm(a, b)δc(a+ b) = Cm(a, b)µ({a})ν({b})λ({a+ b}).

where C =
∫

R2 φ
α(ξ)φβ(η)φγ(ξ + η)dξdη.
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Therefore we have that

lim
ε→0

∫
R2
µ ∗ (φε)α(ξ)ν ∗ (φε)β(η)λ ∗ (φε)γ(ξ + η)m(ξ, η)dξdη

= C
∑
t∈R

∑
s∈R

m(t, s)µ({t})ν({s})λ({(t+ s)})

for all measures µ, ν, λ having their supports on finite sets of points.
On the other hand, from (i) and Proposition 7 we have

|
∫

R2
µ ∗ (φε)α(ξ)ν ∗ (φε)β(η)λ ∗ (φε)γ(ξ + η)m(ξ, η)dξdη|

≤ K‖µ̂(̂φε)α‖p1‖ν̂ (̂φε)β‖p2‖λ̂(̂φε)γ‖p′3 .
Let us now choose α = 1

p′1
, β = 1

p′2
and γ = 1

p3
. Since (φε)α =

ε1−α

α1/2 φεα−1/2 , we get (̂φε)α(ξ) = Cαε
1/p1e−

ε2ξ2

2α , (̂φε)β(ξ) = Cβε
1/p2e−

ε2ξ2

2β

and (̂φε)γ(ξ) = Cγε
1/p3e−

ε2ξ2

2γ for some constants Cα, Cβ and Cγ .

Now taking into account that
∫

R e
− ε

2p1ξ
2

2α dξ = C ′αε
−1 we have that

‖µ̂(̂φε)α‖p1 = Cε

∫
R
|µ̂(ξ)|p1e−

p1ε
2ξ2

2α dξ)1/p1 .

Hence, from Lemma 10, lim supε→0 ‖µ̂φ̂αε ‖p1 ≤ C‖µ̂‖Bp1 .
Applying similar procedure for ν and λ we finish this implication.
(ii)⇒(i) From (ii) we can get that the inequality holds for all finite mea-

sures µ, ν, λ with countable support. Let us take φ, ψ and ρ such that φ̂, ψ̂
and ρ̂ have compact support contained in [−N/2, N/2] for N big enough.
Now consider µN , νN and λN the measures with support in (1/N)Z whose
Fourier transform coincide with the periodic extensions of φ̂, ψ̂ and ρ̂ . In
particular we have

µN ({ n
N
}) =

1
N
φ(
n

N
), νN ({ n

N
}) =

1
N
ψ(

n

N
) and λN ({ n

N
}) =

1
N
ρ(
n

N
).

Therefore we have

lim
N→∞

N
∑

(t,s)∈R×R

m(t, s)µN ({t})νN ({s})λN ({t+ s})

= lim
N→∞

∑
(n,m)∈Z×Z

m(
n

N
,
m

N
)φ(

n

N
)ψ(

m

N
)ρ(

n+m

N
)

1
N2

=
∫

R2
m(ξ, ν)φ(ξ)ψ(η)ρ(ξ + η)dξdη.
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Now observe that ‖µ̂N‖Bp1 = ( 1
2N

∫ N
−N |φ̂(ξ)|p1dξ)1/p1 = ( 1

2N )1/p1‖φ̂‖p1
and the same for the others.

Using that ‖µ̂N‖Bp1 .‖ν̂N‖Bp2 ‖λ̂N‖Bp′3 = 1
2N and passing to the limit we

get the result.

Remark 3. Condition (ii) in Theorem 11 means that m defines a bounded
operator from Lp1(D) × Lp2(D) into Lp3(D) where D is the group R with
the discrete topology.

4. A SPECIAL CLASS OF BILINEAR MULTIPLIERS

Let us restrict ourselves to a smaller family of multipliers wherem(ξ, η) =
M(ξ − η) for some M defined in R. As in the introduction we use the
notation M̃p1,p2,p3(R) for the space of functions M : R → C such that
m(ξ, η) = M(ξ − η) ∈ BM(p1,p2,p3)(R), that is to say

BM (f, g)(x) =
∫

R2
f̂(ξ)ĝ(η)M(ξ − η)e2πi(ξ+η)xdξdη,

defined for f̂ and ĝ compactly supported, extends to a bounded bilinear
map from Lp1(R)×Lp2(R) into Lp3(R). We keep the notation ‖M‖p1,p2,p3 =
‖BM‖.

The case M(x) = 1
|x|1−α (and even the n-dimensional case) corresponds

to the bilinear fractional integral and it was first shown by C. Kenig and
E. Stein in [18] to belong to M̃(p1,p2,p3)(R) for any 1 < p1, p2 < ∞, 0 <
α < 1/p1 + 1/p2 and 1/p1 + 1/p2 = 1/p3 − α. Another very important
and non trivial example is the bilinear Hilbert transform, given by M(x) =
−isign(x), which was shown by M. Lacey and C.Thiele in [20, 21, 22] to
belong to M̃(p1,p2,p3)(R) for any 1 < p1, p2 < ∞, 1/p1 + 1/p2 = 1/p3

and p3 > 2/3. These results were extended to other cases in [17] and
[14, 15] respectively. We do not pretend to give a proof of these results
here. We shall concentrate simply in analyzing some properties and results
on the space M̃(p1,p2,p3)(R) that will allow to show new conditions to get
multipliers belonging to this class and to generate more examples from the
known ones.

The reader should be aware that the starting assumption on the function
M is only relevant for the definition of the bilinear mapping to make sense
when acting on certain classes of “nice” functions. Then a density argument
allows to extend functions belonging to Lebesgue spaces. We would like to
point out the following observation.

Remark 4. If Mn ∈ M̃(p1,p2,p3)(R) are functions such that Mn(x) →
M(x) a.e and supn ‖Mn‖ <∞ then M ∈ M̃(p1,p2,p3)(R) and ‖M‖p1,p2,p3 ≤



BILINEAR MULTIPLIERS 15

supn ‖Mn‖p1,p2,p3 . This follows from Fatou’s lemma, since

‖BM (f, g)‖p3 ≤ lim inf ‖BMn
(f, g)‖p3 ≤ sup

n
‖Mn‖p1,p2,p3‖f‖p1‖g‖p2 .

We start reformulating the definition of these bilinear multipliers.

Proposition 12. Let M ∈ L1
loc(R), f, g ∈ P(R). Then

BM (f, g)(x) =
1
2

∫
R2
f̂(
u+ v

2
)ĝ(

u− v
2

)M(v)e2πiuxdudv (14)

BM (f, g)(−x) =
∫

R
(τ̂xg ∗M)(ξ)τ̂xf(ξ)dξ. (15)

̂BM (f, g)(x) =
1
2
CM (D̂1

1/2f, D̂
1
1/2g)(x). (16)

Proof. (14) follows changing variables.
To show (15) observe that

BM (f, g)(−x) =
∫

R2
τ̂xf(ξ)τ̂xg(η)M(ξ − η)dξdη

=
∫

R
(
∫

R
τ̂xg(η)M(ξ − η)dη)τ̂xf(ξ)dξ

=
∫

R
(τ̂xg ∗M)(ξ)τ̂xf(ξ)dξ

Finally, using (14), we have

BM (f, g)(x) =
1
2

∫
R

(∫
R
f̂(
u+ v

2
)ĝ(

u− v
2

)M(v)dv
)
e2πiuxdv

=
1
2

∫
R
CM (D∞1/2f̂ , D

∞
1/2ĝ)(u)e2πiuxdu.

This implies (16).

For symbols M which are integrable we can write BM in terms of a kernel
CK .

Proposition 13. Let M ∈ L1(R) and set K(t) = M̂(−t). Then BM =
CK , i.e

BM (f, g) =
∫

R
f(x− t)g(x+ t)K(t)dt
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Proof.

CK(f, g)(x) =
∫

R
f(x− t)g(x+ t)M̂(−t)dt

=
∫

R
(
∫

R2
f̂(ξ)ĝ(η)e2πi(x−t)ξe2πi(x+t)ηdξdη)M̂(−t)dt

=
∫

R2
f̂(ξ)ĝ(η)(

∫
R
M̂(t)e2πi(ξ−η)tdt)e2πi(ξ+η)xdξdη

= BM (f, g)(x).

This class does have much richer properties than BM(p1,p2,p3)(R). As
above use the notation ft(x) = D1

t f(x) = 1
t f(xt ) for a function f defined

in R. The following facts are immediate.

τyBM (f, g) = BM (τyf, τyg), y ∈ R. (17)

M2yBM (f, g) = BM (Myf,Myg), y ∈ R. (18)

(BM (f, g))t = BD1
t−1M

(ft, gt), t > 0. (19)

When specializing the properties obtained form(ξ, η) to the caseM(ξ−η)
we get the following facts:

BM (τ−yf, τyg) = BMyM (f, g), y ∈ R. (20)

BM (Myf,M−yg) = Bτ2yM (f, g), y ∈ R. (21)

For 1
q = 1

p1
+ 1

p2
− 1

p3
we have

BM (Dp1
t f,D

p2
t g) = Dp3

t BDqtM (f, g), t > 0. (22)

As in the previous section we can generate new multipliers in M̃(p1,p2,p3)(R).

Proposition 14. Let p3 ≥ 1, φ ∈ L1(R) and M ∈ M̃(p1,p2,p3)(R). Then

(a)φ ∗M ∈ M̃(p1,p2,p3)(R) and ‖φ ∗M‖p1,p2,p3 ≤ ‖φ‖1‖M‖p1,p2,p3 .
(b)φ̂M ∈ M̃(p1,p2,p3)(R) and ‖φ̂M‖p1,p2,p3 ≤ ‖φ‖1‖M‖p1,p2,p3 .
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(c)If ψ ∈ L1(R+, t
1
p3
−( 1

p1
+ 1
p2

)) then Mψ(ξ) =
∫∞

0
M(tξ)ψ(t)dt ∈

M̃(p1,p2,p3)(R). Moreover ‖Mψ‖p1,p2,p3 ≤ ‖ψ‖1‖M‖p1,p2,p3 .

Proof. (a) Apply Minkowski’s inequality to the following fact:

Bφ∗M (f, g)(x) =
∫

R2
f̂(ξ)ĝ(η)(

∫
R
M(ξ − η − u)φ(u)du)e2πi(ξ+η)xdξdη

=
∫

R
(
∫

R2
M̂−uf(ξ)ĝ(η)M(ξ − η)e2πi(ξ+η)xdξdη)e2πiuxφ(u)du

=
∫

R
MuBM (M−uf, g)(x)φ(u)du.

(b) Observe that

Bφ̂m(f, g)(x) =
∫

R2
f̂(ξ)ĝ(η)(

∫
R

(M−um)(ξ − η)φ(u)du)e2πi(ξ+η)xdξdη

=
∫

R2
BM−um(f, g)(x)φ(u)du.

Use now Minkowski’s again and (20).
(c) Write 1

p3
− ( 1

p1
+ 1

p2
) = − 1

q ,

BMψ
(f, g)(x) =

∫
R2
f̂(ξ)ĝ(η)(

∫ ∞
0

Dq
t−1M(ξ)t−1/qψ(t)dt)e2πi(ξ+η)xdξdη

=
∫ ∞

0

BDq
t−1M

(f, g)(x)t−1/qψ(t)dt.

The result follows from (22) and Minkowski’s again.

Proposition 15. Let p3 ≥ 1, φ ∈ L1(R) and M ∈ M̃(p1,p2,p3)(R).
Then m(ξ, η) = M(ξ − η)φ̂(ξ + η) ∈ BM(p1,p2,p3)(R) and ‖m‖p1,p2,p3 ≤
‖φ‖1‖M‖p1,p2,p3 .

Proof. Apply Young’s inequality to the following fact:

Bm(f, g)(x) =
∫

R2
f̂(ξ)ĝ(η)M(ξ − η)(

∫
R
φ(y)e−2πi(ξ+η)ydy)e2πi(ξ+η)xdξdη

=
∫

R
(
∫

R2
f̂(ξ)ĝ(η)M(ξ − η)e2πi(ξ+η)(x−y)dξdη)φ(y)dy

= φ ∗BM (f, g)(x).
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Let us show that the classes M̃(p1,p2,p3)(R) are reduced to {0} for some
values of the parameters.

Theorem 16. Let p3 ≥ 1 such that 1
p1

+ 1
p2
< 1

p3
. Then M̃(p1,p2,p3)(R) =

{0}.

Proof. Let M ∈ M̃(p1,p2,p3)(R). Using Proposition 14 we have that
φ ∗M ∈ M̃(p1,p2,p3)(R) for any φ continuous with compact support. Hence
we may assume that M ∈ L1(R). Using Proposition 13 one has that

BM (f, g)(x) =
∫

(x+BR)∩(−x+BR)

f(x− t)g(x+ t)M̂(−t)dt

for any f and g continuous functions supported in a ball BR = {|x| ≤ R}.
Therefore one concludes that supp(BM (f, g)) ⊂ B2R in such a case. On
the other hand for any compactly supported function h, 0 < p <∞ and y
big enough one can say that ‖h± τyf‖p = 21/p‖f‖p.

Consider {rk} the Rademacher system in [0, 1] and observe that, for each
N ∈ N and y ∈ R, the orthonormality of the system gives∫ 1

0

BM (
N∑
k=0

rk(t)τkyf,
N∑
k=0

rk(t)τkyf)dt =
N∑
k=0

BM (τkyf, τkyg)

Therefore, since
∑N
k=0BM (τkyf, τkyg) =

∑N
k=0 τkyBM (f, g), we conclude

that for y big enough

‖
N∑
k=0

τkyBM (f, g)‖p3p3 = (N + 1)‖BM (f, g)‖p3p3 .

On the other hand, for p3 ≥ 1,

‖
∫ 1

0

BM (
N∑
k=0

rk(t)τkyf,
N∑
k=0

rk(t)τkyg)dt‖p3

≤
∫ 1

0

‖BM (
N∑
k=0

rk(t)τkyf,
N∑
k=0

rk(t)τkyg)‖p3dt

≤
∫
‖BM‖‖

N∑
k=0

rk(t)τkyf‖p1‖
N∑
k=0

rk(t)τkyg)‖p2dt

≤ ‖BM‖ sup
0<t<1

‖
N∑
k=0

rk(t)τkyf‖p1 sup
0<t<1

‖
N∑
k=0

rk(t)τkyg‖p2

≤ ‖BM‖(N + 1)1/p1‖f‖p1(N + 1)1/p2‖g‖p2 .
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This implies that (N+1)1/p3‖BM (f, g)‖p3 ≤ C(N+1)1/p1+1/p2‖f‖p1‖g‖p2 .
Hence 1/p1 + 1/p2 ≥ 1/p3.

The following elementary lemma is quite useful to get necessary condi-
tions on multipliers.

Lemma 5. Let M ∈ M̃(p1,p2,p3)(R). If 1
q = 1

p1
+ 1
p2
− 1
p3

then there exists
C > 0 such that

|
∫

R
e−λ

2ξ2M(ξ)dξ| ≤ C‖M‖p1,p2,p3λ
1
q−1

for any λ > 0.

Proof. Let λ > 0 and denote Gλ such that Ĝλ(ξ) = e−2λ2ξ2 . Using (14)
one concludes that

BM (Gλ, Gλ)(x) =
1
2

∫
R2
e−λ

2v2e−λ
2u2

M(v)e2πiuxdudv

=
1
2

(
∫

R
e−λ

2v2M(v)dv)(
1
λ

∫
R
e−u

2
e2πiu xλ du)

= C
1
λ
e−π

2 x2

λ2 (
∫

R
e−λ

2v2M(v)dv).

Since ‖Gλ‖p = Cpλ
1
p−1 and M ∈ M̃(p1,p2,p3)(R) one gets that

‖BM (Gλ, Gλ)‖p3 = C|
∫

R
e−λ

2v2M(v)dv|λ
1
p3
−1 ≤ C‖M‖p1,p2,p3λ

1
p1
−1λ

1
p2
−1.

Therefore |
∫

R e
−λ2ξ2M(ξ)dξ| ≤ C‖M‖p1,p2,p3λ

1
q−1.

Theorem 17. If there exists a non-zero continuous and integrable func-
tion M belonging to M̃(p1,p2,p3)(R) then

1
p3
≤ 1
p1

+
1
p2
≤ 1
p3

+ 1.

Proof. Assume first that 1
p1

+ 1
p2

< 1
p3

. Use Lemma 16 applied to
τ−2yM for any y ∈ R together with (20) to obtain

|λ
∫

R
e−λ

2ξ2M(ξ + 2y)dξ| ≤ C‖M‖p1,p2,p3λ
1
q .



20 O. BLASCO

Therefore, using the continuity of M and q < 0 one gets

lim
λ→∞

|λ
∫

R
e−λ

2ξ2M(ξ + 2y)dξ| = |M(2y)| = 0.

Hence M = 0.
Assume now that 1

p1
+ 1

p2
− 1

p3
> 1. Using again Lemma 16, applied to

MyM , together with (21) we obtain

|
∫

R
e−λ

2ξ2M(ξ)e2πiyξdξ| ≤ C‖M‖p1,p2,p3λ
1
q−1.

Therefore, taking limits again as λ→ 0, since 1/q−1 > 0 we get |M̂(y)| = 0.
Hence M = 0.

Corollary 18. (see [25, Prop 3.1]) Let p3 ≥ 1 such that 1
p1

+ 1
p2
< 1

p3

or 1
p1

+ 1
p2
> 1

p3
+ 1. Then M̃(p1,p2,p3)(R) = {0}.

Proof. Let M ∈ M̃(p1,p2,p3)(R). From Proposition 14 we have that
φ∗M ∈ M̃(p1,p2,p3)(R) for any φ compactly supported and continuous. Now
use Theorem 17 to conclude that φ ∗M = 0 for any compactly supported
and continuous φ. This implies that M = 0.

Let us now use some interpolation methods to get more examples of
multipliers in M̃(p1,p2,p3)(R). First note that, selecting α = 1 and β = −1
in Proposition 9 we obtain the following simple example.

Proposition 19. If µ ∈ M(R) then M = µ̂ ∈ M̃(p1,p2,p3)(R) for 1
p1

+
1
p2

= 1
p3
≤ 1 and ‖M‖ ≤ ‖µ‖1.

Theorem 20. Let 1
p3
≤ 1

p1
+ 1

p2
≤ min{2, 1

p3
+ 1}. If M ∈ L1(R)

and M = K̂ for some K ∈ Lq(R) where 1
p1

+ 1
p2
− 1

p3
= 1 − 1

q then
M ∈ M̃(p1,p2,p3)(R) with ‖M‖p1,p2,p3 ≤ C‖K‖q.

Proof. Consider the trilinear form

T (K, f, g) =
∫

R
f(x− t)g(x+ t)K(t)dt.

From Proposition 13 we have BM (f, g) = T (K, f, g) for M = K̂. Now use
Proposition 19 to conclude that T is bounded in L1(R)×Lq1(R)×Lq2(R)→
Ls1(R) where 1

q1
+ 1

q2
= 1

s1
≤ 1 and it has norm bounded by 1.

Assume first that 1
p1

+ 1
p2
≤ 1. Hence T is bounded in L1(R)×Lp1(R)×

Lp2(R)→ Lp(R) for 1
p1

+ 1
p2

= 1
p .
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On the other hand, using Hölder’s inequality

sup
x
|
∫

R
f(x− t)g(x+ t)K(t)dt| ≤ ‖f‖p1‖g‖p2‖K‖p′ .

This shows that T is also bounded in Lp
′
(R)×Lp1(R)×Lp2(R)→ L∞(R).

Therefore, by interpolation, selecting 0 < θ < 1 such that 1
p3

= 1−θ
p ,

one obtains that T is bounded in Lq(R) × Lp1(R) × Lp2(R) → Lp3(R) for
1
p1

+ 1
p2
− 1

p3
= 1− 1

q .
Assume now that 1 < 1

p1
+ 1

p2
≤ 2.

Using that
∫

R f(x− t)g(x+ t)dt = f ∗ g(2x), Young’s inequality implies
that

‖
∫

R
f(x−t)g(x+t)K(t)dt‖r3 ≤ ‖K‖∞‖D∞1/2(|f |∗|g|)‖r3 ≤ C‖f‖r1‖g‖r2‖K‖∞

whenever 1
r1

+ 1
r2
≥ 1 and 1

r1
+ 1

r2
− 1 = 1

r3
.

Hence T is bounded in L∞(R)× Lp1(R)× Lp2(R)→ Lp(R) where 1
p1

+
1
p2
− 1 = 1

p ≤ 1.
Using duality, 〈T (K, f, g), h〉 = 〈T (h, f̄ , g),K〉, where f̄(x) = f(−x, that

is∫
R2
f(x− t)g(x+ t)K(t)h(x)dtdx =

∫
R

(
∫

R
f̄(t− x)g(x+ t)h(x)dx)K(t)dt.

Therefore T is also bounded in Lp
′
(R)× Lp1(R)× Lp2(R)→ L1(R).

Select 0 ≤ θ ≤ 1 such that 1
p3

= 1
p + θ

p′ . Now using interpolation T will
be bounded in Lq(R)× Lp1(R)× Lp2(R)→ Lp3(R) for 1

q = θ
p′ = 1

p3
− 1

p =
1
p3
− 1

p1
− 1

p2
+ 1.

5. COIFFMAN-WEISS BILINEAR TRANSFERENCE
METHOD

There are several procedures to transfer results from R to T and Z.
A method, which applies to multipliers in BM(p1,p2,p3)(R), following the
DeLeeuw approach ([12]), was obtained by the author in [2] but it will
not be considered here. We would like to present a Coifman-Weiss type
transference method in the bilinear setting that was developed recently (see
[7, 5, 6]) and which applies to multipliers in M̃(p1,p2,p3)(R).

Our aim is to consider the analogues of the bilinear Hilbert transform in
the periodic or the discrete case and to analyze their boundedness in the
corresponding Lp-spaces.
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For the periodic case one defines the bilinear conjugate function as

HT(F,G)(eit) =
∫ 1

0

F (t− s)G(t+ s) cot(πs)ds

where F and G are polynomials on T.
Using Fourier series expansion of the polynomials, it can also be written

as

HT(F,G)(eit) = −i
∑
k

(
∑

n+m=k

sign(n−m)F̂ (n)Ĝ(m))e2πikt

where F (t) =
∑N
−N F̂ (n)e2πint and G(t) =

∑M
−M Ĝ(m)e2πimt.

Question 1: Is the bilinear conjugate transform bounded from Lp1(T)×
Lp2(T) into Lp3(T) for some values of p1, p2, p3?.

As far as I know there is no way to adapt the proof in the real line, where
the dilation plays a very important role, to the periodic situation. However
this result was first observed by A. Bonami and J. Bruna ([9]) to transfer
to the torus from the real line in the case of the bilinear Hilbert transform
and later shown by D. Fan and F. Sato ([13]) using certain transference
techniques for more general multipliers. We will be able to show the result
by representing the group R into the space of bounded linear operators
L(Lp(T), Lp(T)), for any 1 ≤ p ≤ ∞ by the action u → Ru(f)(eit) =
f(ei(t−u)) and then using some the bilinear version of the Coiffman-Weiss
transference methods.

We shall formulate the abstract method to be applied in a general setting.
Let G be a l.c.a group with Haar measure m, let (Ω,Σ, µ) be a measure
space and let Ru be a representation of G in the space of bounded linear
operators on Lp(µ), i.e. R : G → L(Lp(µ), Lp(µ)) such that u → Ru
verifies

• RuRv = Ruv for u, v ∈ G,
• limu→0Ruf = f for f ∈ Lp(µ),
• supu∈G ‖Ru‖ <∞.

Given K ∈ L1(G) with compact support we also use the notation

CK(φ, ψ)(v) =
∫
G

φ(v − u)ψ(v + u)K(u)dm(u)

for φ, ψ simple functions defined on G, and assume that, for 1 ≤ p1, p2 <
∞ and 1/p1 + 1/p2 = 1/p3, the bilinear operator CK is bounded from
Lp1(G)× Lp2(G) to Lp3(G) with “norm“ Np1,p2(CK).

We now consider the transferred operator by the formula

TK(f, g)(w) =
∫
G

R−uf(w)Rug(w)K(u)dm(u)
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for f ∈ Lp1(µ) and g ∈ Lp2(µ).
The reader should be aware that the assumptions in next result can be

weakened (see [7, 5, 6]) but we restrict ourselves to this case for simplicity.

Theorem 21. ([7]) Let G = R, (Ω,Σ, µ) a measure space, 1 ≤ p1, p2 <
∞ and 1/p3 = 1/p1+1/p2. Let R be a representation of R on acting Lpi(µ)
for i = 1, 2 with supu∈R ‖Ru‖L(Lpi ,Lpi ) = 1 for i = 1, 2

Assume that there exists a map u→ L(Lp3(µ), Lp3(µ)) given by u→ Su
such that Su are invertible with supu∈G ‖S−1

u ‖ = 1 and

Sv((R−uf)(Rug)) = (Rv−uf)(Rv+ug)

for u, v ∈ R, f ∈ Lp1(µ) and g ∈ Lp2(µ).
Assume that K ∈ L1(R), supp(K) ⊂ [−A.A] and the bilinear map CK

is bounded from Lp1(R)× Lp2(R) to Lp3(R) with norm Np1,p2(CK).
Then TK is also bounded from Lp1(µ)×Lp2(µ) to Lp3(µ) and with norm

bounded by Np1,p2(CK).

Proof. Write, for each v ∈ R,

TK(f, g) = S−1
v (Sv

∫
R
R−ufRugK(u)du)

= S−1
v (
∫

R
Sv(R−ufRug)K(u)du)

= S−1
v (
∫

R
(Rv−uf)(Rv+ug)K(u)du)

Hence

‖TK(f, g)‖p3Lp3 (µ) ≤ ‖
∫

R
(Rv−uf)(Rv+ug)K(u)du‖p3Lp3 (µ)

Given N ∈ N, integrating over v ∈ [−N,N ],

2N‖TK(f, g)‖p3Lp3 (µ) ≤
∫ N

−N
‖
∫

R
(Rv−uf)(Rv+ug)K(u)du‖p3Lp3 (µ)dm(v).
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Therefore, denoting χ[−A−N,A+N ] = χA,N we have

2N ‖TK(f, g)‖p3Lp3 (µ) ≤
∫ N

−N

∫
Ω

|
∫

R
Rv−uf(w)Rv+ug(w)K(u)du|p3dµ(w)dv

=
∫

Ω

(
∫ N

−N
|
∫ A

−A
Rv−uf(w)Rv+ug(w)K(u)du|p3dv)dµ(w)

=
∫

Ω

(
∫

R
|
∫

R
Rv−uf(w)χA,N (v − u)Rv+ug(w)χA,N (v + u)K(u)du|p3dv)dµ(w)

=
∫

Ω

(
∫

R
|CK(Ruf(w)χA,N , Rug(w)χA,N )(v)|p3dv)dµ(w)

=
∫

Ω

‖CK(Ruf(w)χ[−A−N,A+N ], Rug(w)χA,N )‖p3Lp3 (R)dµ(w)

≤ Np1,p2(CK)p3
∫

Ω

‖Ruf(w)χA,N‖p3Lp1 (R)‖Rug(w)χA,N‖p3Lp2 (R)dµ(w)

≤ Np1,p2(CK)p3(
∫

Ω

‖Ruf(w)χA,N‖p1Lp1 (R)dµ(w))p3/p1

× (
∫

Ω

‖Rug(w)χA,N‖p2Lp2 (R)dµ(w))p3/p2

= Np1,p2(CK)p3(
∫ A+N

−(A+N)

‖Ruf‖p1Lp1 (µ)du)p3/p1

× (
∫ A+N

−(A+N)

‖Rug‖p2Lp2 (µ)du)p3/p2

= Np1,p2(CK)p3(
∫ A+N

−(A+N)

‖f‖p1Lp1 (µ)du)p3/p1

× (
∫ A+N

−(A+N)

‖g‖p2Lp2 (µ)du)p3/p2

≤ Np1,p2(CK)p3(2(A+N))‖f‖p3Lp1 (µ)‖g‖
p3
Lp2 (µ).

Therefore

‖TK(f, g‖Lp3 (µ) ≤ (
A+N

N
)1/p3Np1,p2(CK)‖f‖p3Lp1 (µ)‖g‖

p3
Lp2 (µ).

Note that, in particular, the assumptions in the previous theorem hold
for multiplicative representations, i.e. Ru(fg) = (Ruf)(Rug), selecting
Su = Ru.

We shall apply our transference method answer Question 1, and to pro-
duce another proof of the boundedness of the bilinear Hilbert transform on
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T (first shown in [13] ). For such a purpose take G = R with the Lebesgue
measure, (Ω,Σ, µ) the measure space (T,B(T),m) the Lebesgue measure
on T and

(Ruf)(eiθ) = f(ei(θ−u)).

Recall that a function M ∈ L∞(R) is said to be “regulated” (or “nor-
malized” ) if Mn = φ̂n ∗M is pointwise convergent to M where φn(x) =
1

2nχ[−n,n] ∗ χ[−n,n].

Theorem 22. ([7]) Let 1 ≤ p1, p2 <∞, 1/p1 + 1/p2 = 1/p3 ≤ 1 and let
M(ξ) be a bounded regulated function belonging to M̃(p1,p2,p3)(R). Denote

C̃K(P,Q)(x) =
∑
k∈Z

∑
k′∈Z

P̂ (k)Q̂(k)M(k − k′)e2πix(k+k′),

for P and Q trigonometric polynomials.
Then

C̃K : Lp1(T)× Lp2(T)→ Lp3(T)

is bounded with ‖C̃K‖ ≤ C‖M‖p1,p2,p3 .

Proof. As in Lemma 3.5 of [11], let us take ψ ∈ L2(R) with compact
support such that ψ̂(0) = 1 and let us define Kn(x) = (Mnĥn)̌(x) where
hn(x) = nψ(nx). That is to say

K̂n = (φn ∗M)ĥn.

Then Kn ∈ L1(R), it has compact support and K̂n(x) → M(x) for all
x ∈ R.

From Proposition 14 one has that K̂n ∈ M̃(p1,p2,p3)(R) and ‖K̂n‖p1,p2,p3 ≤
‖ψ‖1. Denoting Tn = CKn , i.e.

Tn(f, g)(x) =
∫

R
f(x− u)g(x+ u)Kn(u)du

we obtain that Tn : Lp1(R)×Lp2(R)→ Lp3(R) are bounded and supn∈N ||Tn|| <
∞.

Observe that

TKn(P,Q)(θ) =
∫

R
P (θ − u)Q(θ + u)Kn(u)du

=
∑
m∈Z

∫ m+1

m

P (θ − u)Q(θ + u)Kn(u)du

=
∫ 1

0

P (θ − u)Q(θ + u)(
∑
m∈Z

Kn(u))du.
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Hence, we can apply Theorem 21 with RuP (θ) = P (θ−u), to get that the
transferred bilinear operator

T̃n(P,Q)(θ) =
∫

T
P (θ − u)Q(θ + u)K̃n(u)du,

where K̃n(u) =
∑
m∈Z Kn(m + u), is bounded from Lp1(T) × Lp2(T) →

Lp3(T) and the norms are uniformly bounded for n ∈ N.
To finish the proof observe that if ek(θ) = e2πikθ then

T̃n(ek, ek′) = ekek′

∫
R
Kn(u)e2πiu(k′−k)du = ek+k′Mn(k − k′)ĥn(k − k′),

and hence,

lim
n→∞

Tn(ek, ek′) = ek+k′M(k − k′) = C̃K(ek, ek′).

Therefore, by linearity, density and Fatou’s lemma, we obtain the re-
sult.

The interested reader is referred to [7] for the details which are left to
cover the case p3 < 1 and to obtain the complete proof of the following
corollary.

Corollary 23. The bilinear Hilbert transform on the torus

HT(f, g)(x) =
∫

T
f(x− y)g(x+ y) cot(πy)dy,

is bounded from Lp1(T) × Lp2(T) into Lp3(T) whenever p1, p2 > 1 and
1/p1 + 1/p2 = 1/p3 < 3/2.

6. DISCRETIZATION THECNIQUES

Our next objective is to analyze the discrete bilinear Hilbert transform.
For each N ∈ N, we define the truncated discrete bilinear Hilbert trans-

form by

HZ,N (a, b)(m) =
∑

k 6=0,|n|≤N

am−nbm+n

n
.

Question 2 Are the discrete bilinear Hilbert transforms bounded uni-
formly in N from `p1(Z)× `p2(Z)→ `p3(Z) for some values of p1, p2, p3?.

There are different techniques to handle the discrete case(see [2, 5, 6, 7]).
We shall use here a “discretization” method initiated in [7] and developed
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in [5]. The techniques in [7] did not cover the case p3 < 1 and we present
here an approach that takes care also of this case.

Throughout this section 0 < p < ∞, I = [−1/4, 1/4], C(I) stands for
the space of continuous functions supported in I and we denote In = n+ I
for n ∈ Z.

Definition 24. We define the vector space

A = {f(x) =
∑
m∈Z

ψm(x−m) : ψm ∈ C(I)}.

For each φ ∈ C(I) we define

Aφ = {f(x) =
∑
m∈Z

amφ(x−m) : (am) ⊂ C} ⊂ A.

We shall use the notation A0 for the case φ = χI .

Note that if f =
∑
m∈Z ψm(x−m) ∈ A then

‖f‖p = (
∑
m∈Z
‖ψm‖pLp(I))

1/p. (23)

In particular, if φ ∈ C(I) then

‖
∑
m∈Z

amφ(x−m)‖p = ‖φ‖p(
∑
m∈Z
|am|p)1/p.

Definition 25. For a given φ ∈ C(I) we define Pφ the map

(am)m∈Z → Pφ(a)(x) =
∑
m∈Z

amφ(x−m),

for finite sequences a = (am)m∈Z.
We shall denote P (a) = Pφ(a) in the case φ = χI .
Of course Pφ is an isometric embedding of `p(Z) into Lp(R) if ‖φ‖p = 1.

Definition 26. Given a bounded sequence (An)n∈Z, let us denote by
T(An) the bilinear map

T(An)(a, b)(m) =
∑
n∈Z

am+nbm−nAn,

defined for finite sequences a and b.
In the case An = K(n) for a given continuous function K defined in R

we write Kn = K(n) and T(Kn) is said to be the discretization of CK given



28 O. BLASCO

by

CK(f, g)(x) =
∫

R
f(x− t)g(x+ t)K(t)dt.

Our objective is to deduce the boundedness of the discretization of T(Kn)

on the spaces `p1(Z) × `p2(Z) → `p3(Z) from the boundedness of CK on
the spaces Lp1(R)× Lp2(R)→ Lp3(R).

Let us start first with the following elementary observation.

Lemma 6. Let (An)n∈Z be a bounded sequence of positive numbers, 0 <
p2, p2 <∞ and 1/q3 ≤ 1/p1 + 1/p2 = 1/p3. If

C = (
∑
n∈Z

Amin{p3,1}
n )1/min{p3,1} <∞ (24)

then T(An) is bounded from `p1(Z)×`p2(Z)→ `q3(Z) and with norm bounded
by C.

Proof. The case q3 ≥ 1 follows from the vector-valued Minkowski’s
inequality that

‖(T(An)(a, b))‖q3 ≤ (
∑
m∈Z

(∑
n∈Z
|am+n||bm−n|An

)q3
)1/q3

≤
∑
n∈Z

(
∑
m∈Z
|am+n|q3 |bm−n|q3)1/q3An

≤
∑
n∈Z

(
∑
m∈Z
|am+n|p3 |bm−n|p3)1/p3An

≤
∑
n∈Z

(
∑
m∈Z
|am+n|p1)1/p1(

∑
m∈Z
|bm−n|p2)1/p2)An

= ‖a‖p1‖b‖p2
∑
n∈Z

An.
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Notice that for q3 ≤ 1 and selecting s such that q3 = sp3 we have s ≥ 1
and p3 ≤ 1. Hence

‖(T(An)(a, b)‖q3q3 ≤
∑
m∈Z

(∑
n∈Z
|am+n||bm−n|An

)sp3
≤ (

∑
m∈Z

(∑
n∈Z
|am+n||bm−n|An

)p3
)s

≤ (
∑
m∈Z

∑
n∈Z
|am+n|p3 |bm−n|p3Ap3n )s

≤ (
∑
n∈Z

(
∑
m∈Z
|am+n|p1)p3/p1(

∑
m∈Z
|bm−n|p2)p3/p2)Ap3n )s

= ‖a‖q3p1‖b‖
q3
p2(
∑
n∈Z

Ap3n )s.

Corollary 27. Taking An = 1
|n|1+α one gets

Iα(a, b)(m) =
∑
n∈N

am+nbm−n
n1+α

defines a bounded operator from `p1(Z)× `p2(Z)→ `p3(Z) for 0 < p1, p2 <
∞, 1/p3 = 1/p1 + 1/p2 whenever 1

1+α < p3.

Our main contribution is the observation that CK(P (a), P (b)) ∈ A for
finite sequences a, b. This will allows us to estimate the norms in `p(Z) of
the discretization operators.

Theorem 28. Let K ∈ L1
loc(R) and let a, b be finite sequences. Then

CK(P (a), P (b))(x) =
∑
m∈Z

Hm(a, b)(x−m),

where

Hm(a, b)(u) =
∑
n∈Z

am+nbm−n

∫ 1/4−|u|

−1/4+|u|
K(n+ y)dy ∈ C(I).

In particular CK(P (a), P (b)) ∈ A.
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Proof.

CK(P (a), P (b))(x) =
∑
i,j∈Z

aibjCK(χIi , χIj )(x)

=
∑
i,j∈Z

aibj

∫
(x−i+I)∩(−x+j+I)

K(y)dy

=
∑
m∈Z

∑
n∈Z

am+nbm−n

∫
(x−m+I)∩(−x+m+I)

K(n+ y)dy

Note that if (x−m+ I) ∩ (−x+m+ I) = ∅ then∫
(x−m+I)∩(−x+m+I)

K(n+ y)dy = 0.

Therefore, denoting

Φn(u) =
∫

(u+I)∩(−u+I)

K(n+ y)dy =
∫ 1/4−|u|

−1/4+|u|
K(n+ y)dy,

one has that suppΦn ⊂ I. Indeed, (u+ I)∩ (−u+ I) 6= ∅ implies u+ u1 =
−u+ u2 for u1, u2 ∈ I and, hence |u| ≤ 1/4.

We have shown that

CK(P (a), P (b))(x) =
∑
m∈Z

∑
n∈Z

am+nbm−nΦn(x−m).

Define Hm(a, b)(u) =
∑
n∈Z am+nbm−nΦn(u).

Hence Hm(a, b)(u) = Hm(a, b)(−u), suppHm(a, b) ⊂ I, Hm(a, b) ∈ C(I)
and the result is complete.

Lemma 7. Let K ∈ C1(R) and compactly supported and let a, b be finite
sequences. Denote

An = An(K) = sup
ξ∈In
|K ′(ξ)|,

φ0(u) = 2(1/4− |u|)χI(u) and φ1(u) = (1/4− |u|)2χI(u). Then

|Pφ0(T(Kn)(a, b))| ≤ |CK(P (a), P (b))|+ |Pφ1(T(An)(|a|, |b|)|. (25)
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Proof. Write for m ∈ Z and u ∈ I

Hm(a, b)(u) =
∑
n∈Z

am+nbm−n

∫ 1/4−|u|

−1/4+|u|
K(n+ y)dy

=
∑
n∈Z

am+nbm−nK(n)φ0(u)

+
∑
n∈Z

am+nbm−n

∫ 1/4−|u|

−1/4+|u|
[K(n+ y)−K(n)]dy

= T(Kn)(a, b)(m)φ0(u) + H̃m(a, b)(u)

Using the Mean Value Theorem we write

|H̃m(a, b)(u)| ≤
∑
n∈N
|am+n||bm−n|

∫ 1/4−|u|

−1/4+|u|
|K(n+ y)−K(n)|dy

≤
∑
n∈Z
|am+n||bm−n|An(1/4− |u|)2

= T(An)(|a|, |b|)(m)φ1(u).

From Theorem 28

CK(P (a), P (b))(x) =
∑
m∈Z

Hm(a, b)(x−m)

=
∑
m∈Z

T(Kn)(a, b)(m)φ0(x−m) +
∑
m∈Z

H̃m(a, b)(x−m)

= Pφ0(T(Kn)(a, b))(x) +
∑
m∈Z

H̃m(a, b)(x−m)

From this and the previous estimate one gets the result.

We are now ready to present the main result of this section.

Theorem 29. Let 0 < p1, p2, q3 < ∞ and 1/q3 ≤ 1/p1 + 1/p2 = 1/p3.
Assume that M = K̂ ∈M(p1,p2,q3) for some K ∈ C1(R\{0}) with compact
support and

C = (
∑
n 6=0

An(K)min{p3,1})1/min{p3,1} <∞
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where An(K) = supξ∈In |K
′(ξ)|.

Then T(Kn) is bounded from `p1(Z)×`p2(Z)→ `q3(Z) with norm bounded
by C ′(‖CK‖+ C) for some constant C ′ > 0 .

Proof. Using (25) for finite sequences a, b and the triangular inequality
in Lq3(R) (denoting C(q3) = 1 if q3 ≥ 1 and C(q3) = 21/q3) implies

‖φ0‖q3‖T(Kn)(a, b)‖q3 = ‖Pφ0(T(Kn)(a, b))‖q3
≤ C(q3)(‖CK(P (a), P (b))‖q3 + ‖Pφ1(T(An)(|a|, |b|)‖q3)
≤ C(q3)(‖CK‖‖P (a)‖p1‖P (b)‖p2 + ‖Pφ1‖q3‖(T(An)(|a|, |b|)‖q3).

Now apply Lemma 26 to conclude the result.

We can now give the following discrete version, which extends the trivial
estimates given in Corollary 27.

Corollary 30. Let 1 < p1, p2 < ∞, 0 < α < 1 and 1
α+2 < p3 < 1.

Then

Iα(a, b)(m) =
∑
n∈N

am+nbm−n
n1+α

maps boundedly `p1(Z)× `p2(Z)→ `q3(Z) for 1/q3 = 1/p1 + 1/p2 − α.

Proof. Consider K(t) = 1
|t|1+α for t 6= 0. Observe that An(K) ≤

C 1
|n|2+α . Hence the assumption 1

α+2 < p3 < 1 allows us to conclude the
result invoking Theorem 29.

Corollary 31. The bilinear discrete Hilbert transforms HZ,N are bounded
from `p1(Z)×`p2(Z) to `p3(Z) whenever 1 < p1, p2 <∞, 1/p1+1/p2 = 1/p3

and p3 > 2/3. with the norm bounded by a constant independent of N .

Proof. Consider K(t) = 1
t for t 6= 0. Observe that An(K) ≤ C 1

n2 .
Hence the assumption 2/3 < p3 allows us to conclude the result invoking
again Theorem 29.
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