Fourier Analysis for vector-measures.

Oscar Blasco*

Abstract

We analyze the Fourier transform of vector measures v as well as
the convolution between scalar and vector-valued regular measures de-
fined on the Borel sets of a compact abelian group. We make special
emphasis on the Riemann-Lebesgue lemma and Young’s convolution
type results in this setting. Applications to Fourier transform and con-
volutions between functions in LP(v) and, particularly, for translation
invariant type measures v are given.
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1 Introduction

Let G be a compact abelian group,we write B(G) for the Borel o-algebra of
G and mg for the Haar measure of the group. We denote by L°(G) the space
of Borel measurable functions defined on G and LP(G) the space of functions
in L(G) such that [, |f[Pdmeg < co.

Given 1 < p < 00, a non-negative measure A on 5(G), a Banach space X
and a vector measure v : B(G) — X we denote by

[vlI(A) = sup [{v,z)[(A)

ll="ll=1
the semivariation on a Borel set A and write ||v|| for ||v||(G), by

lv|(A) = Sup{z |lv(E)|| : 7 finite partition of A}
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*Partially supported by Project MTM2011-23164(MECC). Spain



the variation of v, by ||v[|, the p-semivariation of v with respect to A (see
(6, Page 246]) defined, for 1 < p < oo, by

[1[px = sup { > aav(4)

Aerm
and

: 7 partition , || Z aaXallp 1} (1)
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We shall use the notation M (G, X) for the space of regular vector measures,
M,.(G, X) for those which are absolutely continuous with respect mg, i.e.
v << mg,M,(G,X) for those with bounded p-semivariation with respect
to mg, i.e. ||[V]lpme < 00, M(G,X) for those with bounded variation, and
finally we write My.(G, X) = M.(G, X) N M(G, X).

As usual, for a given vector measure v, we write L. (v) for the space of
functions in L(G) such that [, |f|d|(v,2')| < oo for any 2’ € X’ and we
write L(v) for the subspace of L! (v) satisfying that for any A € B(G) there
exists x4 € X for which (2, z4) = [, fd{v,2’).

For each f € L'(v) we denote

A):xA:/Afdu

given as above. Then vy is a vector measure and ||v¢|| = || f||1). We denote
I, the integration operator, i.e. I, : L'(v) — X is defined by

L(f) = vs(G /fdv

and satisfies that ||| < ||v]|. In the case f € L. (v) we can look of v; as
X"-valued measure, using (vy(A = [, fd{v,a’) for each A € B(G). As
usual, for 1 < p < oo we denote L”( ) ={f € L°G) : |f]P € L'(v)} and
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The Fourier transform of functions in L'(v) was introduced in [3] as the
X-valued function defined on the dual group of I" by
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where f € L'(v) and v is any vector measure. The validity of the Riemann-
Lebesgue lemma in this setting was considered and it was shown, under the
assumption v << mg, that the fact f” € ¢o(T, X) for any f € L'(v) reduces
to consider the case f = x¢ (see [3, Teo 2.5]). The following problems were
left open:

(a) Does it hold that f” € (I, X) whenever v << mg and f € L'(v),
for any Banach space X7

(b) Are there natural subclasses of vector measures for which this version
of the Riemann-Lebesgue lemma holds?

(c) Are there classes of operators that transform vector measures in vector
measures satisfying this formulation of the Riemann-Lebesgue lemma?

They also introduce the Fourier transform F,(f) of functions f € L. (v)
in the case v << mg as bounded operators in £(X’, (>°(I")) given by

Fo)() = Tha 3)

where d(v, z') = hydmg with hy € LY(G).
We shall understand these cases as particular ones of the Fourier trans-
form of a vector measure v defined by

v(y) = 1,(7) (4)

when dealing with v¢. The paper is organized into six sections. In Section 2
we give some preliminaries on vector measures to be used in the sequel. We
shall study some versions of Riemann-Lebesgue lemma in our context and
give answers to the above problems in section 3. In Section 4 we introduce
the convolution of a vector measure v and another complex-valued regular
measure p € M(G) by means of the formula

pxv(A) = /GM(A —t)dv(t), A € B(G)

where the map t — (A — t) is shown first to be measurable and bounded
(and hence in L'(v)). This notion is seen to coincide with the symmetric
formulation

Vs p(A) = /Gy(A — )du(t), A € B(G)

for regular measures v € M(G; X) and p € M(G).



This concept is when restricted to measures duy = fdme becomes
fxv(A) = L(f % xa), A € B(G) (5)

where f (t) = f(—t). Our point of view actually extends the two different
convolution maps considered in [3, Def 4.1, Def 4.5]: If v be a vector measure
such that v << mg, f € L'(G) and g € L!(v) the authors introduced
f*,9: X — LYG) as

fxg@)=fx(ghy), 2’ € X' (6)

where h, = dflﬁ:.
In the case that g € L'(v) and f(t —-)g € L'(v) for mg-almost all t € G

they also defined

£ 90 = [ rt=s)als)ivs). 7)
Using the fact that v, € M(G, X"”) we actually have
d{f *vy,a') = f %, g(z")dmg, 2’ € X'

and also, in the case g € L'(v) and f € C(G), we obtain v, € M(G, X) and
[y (t)=f+"g(t), ted.

Different formulations of Young’s convolution theorems will be provided
which will extend several results in [3] when restricted to measures v¢. In
particular we show that for 1 < p,q < oo and 1/p+1/¢ > 1if v € M,(G, X)
and f € LY(G) then v f € P.(G,X) for 1/p+1/q—1 = 1/r (see definition
in Section 2).

Section 5 is devoted to analyze the cases where v is a translation invariant-
type measure. In the paper [7] the notion of “norm integral translation
invariant” vector measure was introduced, by the condition

1, (rap) | = [ (9)], ¢ € S(G),a € G (8)

where 7,(¢)(s) = ¢(s — a). For norm integral translation invariant measures
v such that v << mg they showed that L. (v) C L'(G) and therefore the
convolution and the Fourier transform of functions in L. (v) are well defined.
One of their main theorems establishes that if f € L'(G) and g € LP(v)
then f*g € LP(v) for 1 < p < co. Later in [3] this notion was generalized
and used for more general homeomorphisms H : G — G, and the particular

4



case of reflection invariant ones (i.e. H(s) = —s) played an important role
when considering convolution of functions in L'(v). In this paper we shall
introduce a weaker but still useful notion to be denoted “semivariation H-
invariant” by

sl = l(wa)sll, f e SG) (9)
where vy(A) = v(H(A)) for A € B(G). This definition will be shown to

be different to the “norm integral H-invariant”. However for semivariation
translation invariant measures v we will still have L'(v) C L'(G). Hence
similar results as those in [7] for such a weaker notion will remain valid.
We finally include in Section 6 several applications of our general theory
for vector measures to the study of convolution and Fourier transform of
functions in L(v).

2 Preliminaries on vector measures

Let us start by recalling that a vector measure v defined on the Borel o-
algebra B(G) is called regular if for any € > 0 and A € B(G) there exists a
compact set K and an open set O such that K C A C O and ||v[[(O\K) < e.
It is clear that if v << A for some finite regular Borel measure A then
v € M(G,X). In particular v € M(G,X) if and only if any Rybakov
control measure |(v, z()| is regular.

As usual we denote S(G, X) the space of X-valued simple functions and,
as usual, we keep the notation LP(G, X) for the completion of S(G, X) under
the norm

Isllzoax = ( / Is[Pdme)?

in the case 1 < p < oo and write LP(G, X) the closure of S(G,X) in
L>(G, X). It is well known that L'(G, X) C M,.(G, X). Actually, for each
f € L'(G, X) we define

ve(A) = /A fdme.

One has that vg € M,.(G, X) since v << mg and [vg|(A) = [, ||f]|dme (see
[4, Page 46]).

We also have that M(G, X) endowed with the norm given by the semi-
variation becomes a Banach space and that M,.(G, X) is a closed subspace
of M(G, X). It is well known (see [4, Page 159]) that M(G, X) is isometric



to the space to weakly compact linear operators. To each v € M(G, X) cor-
responds a weakly compact operator T, : C(G) — X such that ||7,| = ||v||
and we shall write [, ¢dv = T,(¢) for each ¢ € C(G). We also recall
that M (G, X) is isometric to the space of absolutely summing operators
II,(C(G), X)(see [4, Page 162]). For 1 < p < oo, let us also mention
that M, (G, X) can be identified with L(L¥(G), X) (see [6, Page 259]).
In other words, if v € M,(G, X) then T, extends to a bounded operator
in L(LP(G), X) with ||[v|lpme = 1Tl 220 (), x)» and, conversely, for each
T : L”(G) — X we associate the vector measure v, : B(G) — X given by
v, (A) = T(xa) satisfying that v, € M,(G,X) and ||v,|lpme = [|T||- This
allows to produce easy examples in M, (G, X). For instance, for X = LP(G)
the LP(G)-valued measure

my(A) = xa, AeB(G)

belongs to M, (G, LP(G)). Another important example is produced using
Pettis integrable functions, namely if f : G — X is Pettis integrable and
(f,2') € LP(G) for each 2’ € X’ then the vector measure

me(A) = (P) / fdu, € B(G),

(where the integral denotes the Pettis integral of f over the set A) belongs
to My(G, X) and [[mellpme = supj =1 [, 2 || r(c).
For each 1 < p < 0o and s € §(G, X) and denote

Isllz @0 = Ivsllpane = sup s 2@ (10)

We define P,(G, X) the closure of S(G,X) in M,(G,X) for 1 < p < o
where we understand M, (G, X) = M(G, X). Since C(G) is dense in LP(G)
for 1 < p < 0o and closed for p = co we easily see that C'(G, X) is dense in
P,(G,X) for 1 <p < oo and C(G, X) is closed in Py (G, X).

It is elementary to see that LP(G, X) C P,(G,X),1 <p < o0, L’(G, X) C
Po(G,X) and P,,(G,X) C P, (G,X),p1 < po. Using that for each s €
S(G, X) the measure vg defines a finite rank operator on L'(G) into X one
sees that Py (G, X) C L>®(G, X) (see[4, Page 68]).

Let us finish this preliminary section by showing, for the sake of com-
pleteness, that C(G) is dense in L'(v) for regular measures v.



Lemma 2.1 Let v € M(G,X) and 1 < p < co. Then C(G) is dense in
LP(v). Moreover

L) = T,(5,)
for any (f,) € C(G) with lim f,, = f in L'(v).

Proof. Assume v is regular and let us prove that C(G) is dense in LP(v).
Since simple functions are dense in LP(v) it suffices to see that for any € > 0
and A € B(G) there exists ¢ € C(G) such that ||x4 — ¢||r) < €. Using
the regularity of v we first select a compact set K and an open set O such
that K C A C O with ||v||(O\ K) < . Then use Uryshon’s lemma to find
¢ € C(G) such that 0 < ¢ < 1 and ¢(t) = 1 for t € K and ¢(t) = 0 for
t ¢ O. Finally observe that

x4 — lley = sup ( /G A — BlPdl{, ')

ll="ll=1

- (] | xa = oPdln ) < (w0 )" <<

[l2']|=1

Let (f,) be any sequence of continuous functions converging to f in L'(v).
Since I,(f,) = T,(f,) we have

11(f) = T.(f)l < 1 = fullrw
and the proof is finished. m
Corollary 2.2 Let v € M(G,X) and A € B(G). Then the map
f(t)=v(A—1t)
is (strongly)-measurable and bounded.

Proof. It is obviously bounded by ||v||. We shall show that f(¢) = lim,, f,,(¢)
for some sequence f,, € C(G, X). For each t € G we write v; for the regular
measure such that

[ ot +0uts) = [ os)du(s). 0 € €@,
G G

From Lemma 2.1 select ¢,, € C'(G) such that limy, ||xa —¢n |1 ) = 0. Define
f.(t) = [, &n(s +t)dv(s) and observe that

1£(2) = £ ()] < sup |6n(s + 1) = dnl(s + )[[[v].
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Hence f, € C(G, X) and we have

f(t) = /GXA(S)th(S) = liTan/Gan(s)dyt(s) = liqgn £.(1).

3 Fourier transform and the Riemann-Lebesgue
lemma

Definition 3.1 Let v be a vector measure. We define the Fourier transform
by
o) = [ 30 =1,3), 7eT.
a

In the case that v € M(G,X) and T, : C(G) — X is the corresponding
weakly compact operator representing the measure we have (y) = T,,(%).

Of course f*(7) = Uy(v) whenever f € L'(v) and, in the case f € LL(v)
and v << mg, we can consider vf(A) € X” given by

(v (A), 2"} = / fd{v, 2"

as a X"-valued vector measure and then F,(f)(2')(y) = (7y(y),2"), v €
IxeX'.

It is straightforward to see that o € (>°(I', X) with sup p [|P(7)]] <
|lv]|. Due to the Radon-Nikodym theorem in the case X = C (or even for
finite dimensional spaces X) we can say that the Riemman-Lebesgue lemma
establishes that © € ¢y(I", X') whenever v << mg.

We would like to study the validity of the Riemann-Lebesgue lemma for
measures in M,.(G, X). In other words, if we denote

Mo(G,X)={r e M(G,X): 0 € co(I', X)}

we ask ourselves whether or not M,.(G, X) C My(G, X).

As expected the answer is negative in general as the following easy ex-
ample shows: Let G = T, X = (*(Z) and v(A) = (Xa(n))nez. Clearly
T, : C(T) — (2(Z) corresponds T(f) = (f(1n))nez . Hence o(n) = e, where
(e,) is the canonical basis and ||2(n)|| = 1 for each n € Z.
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However, from the classical Riemann-Lebesgue lemma we have the fol-
lowing weak version in the vector-valued setting.

vE MG, X)= (0,2') € ¢,(I'), 2’ € X" (11)

Answering question (a) we show now that My(G, X) C M,.(G, X) if and
only if X is finite dimensional.

Proposition 3.2 Let X be an infinite dimensional Banach space and G =
T. There exists a regular vector measure v : B(T) — X such that v << mrg
and v & ¢o(Z, X).

Proof. Let us first take a sequence x,, € X such that 1/2 < ||z,]| < 1
satisfying

1 anaall < CO o) (12)
n=1 n

=1

(see [5, Lemma 1.3]). Define v : B(T) — X by

Since >77 [Xa(n)|* < [[xallZ2() = mr(A) we have that v is well defined.
Actually we have v(A) = T(mo(A)) where T : L*(T) — X is given by
T(p) => ", d(n)x, and my : B(T) — L2(T) is given by my(A) = x4 for
A € B(T). Hence v € M.(T, X), but ©(n) = z,, does not belong to ¢o(Z, X)
since ||z,|| > 1/2. =

Next question is to find some natural classes of measures in My(G, X).

Proposition 3.3 Ifv € M..(G, X) and v has relatively compact range then
Ve Mo(G, X)

Proof. Using that v << mg we conclude that T : X' — L'(G) is given by
T*(2") = hy where d(v,z') = hydmg for each 2’ € X’. Using now that the
unit ball of L>(G) is the closed absolutely convex hull of {x4 : A € B(G)}
and v(A) = T*™*(xa) we obtain that T))* : L>(G) — X" is compact (and
hence so it is 7,,). This implies that {(y) = T,(7) : v € T'} is relatively
compact and, according to (11) also weakly null. Therefore () € ¢o(T, X).
|



Corollary 3.4 P(G,X) C My(G, X).

Let us now study the question of finding classes of bounded operators T :
X — Y that transform measures in M,.(G, X) into measures in My(G,Y).
Recall that an operator 7" : X — Y is said to be completely continuous,
or Dunford-Pettis, if it maps weakly convergent sequences in X into norm
convergent sequences in Y. Hence a simple consequence of (11) and the above
definition gives the following result.

Proposition 3.5 Let T : X — Y be a completely continuous operator and
v E Mu(G,X). Then T(v) € My(G,Y).

Let us restrict ourselves to study the version of Riemann-Lebesgue lemma
for measures of bounded variation. In general M,.(G, X) is not contained in
Mo(G, X) as it can be seen in the following example: Let G = T, X = L'(T)
and v(A) = xa. Clearly T, : C(T) — L'(T) corresponds to the inclusion
map then (n) = ¢, where ¢,(t) = ™ and ||#(n)|| = 1 for each n € Z.

However there are conditions which allow to have such a version of the
Riemann-Lebesgue lemma. For instance, if X has the Radon Nikodym
property then M,.(G,X) C My(G,X). Under the RNP we have that
v € Myo(G, X) gives dv = fdmg for some f € L'(G, X) and o(n) = f(n) =
Jpf(e™)e~™dt for n € Z, which belongs to co(Z, X).

Definition 3.6 We say that a Banach space satisfies the Riemann-Lebesque
property for measures on G (in short, X € (RLP)¢q) if any vector measure
v satisfying v << mg and |v|(G) < oo satisfies that v € (T, X), i.e.
M..(G, X) C My(G,X) .

We would like to show that this notion in the case G = T implies the
Riemann-Lebesgue property introduced and considered by S. Bu and R. Chill
in [1] for the case G = T. They worked in the spaces

L (T, X") = {f : T — X"weak* — meas. : sup |[(f,2')| =™ ¢ L'(T)}

ll='[|=1

and
LY (T, X") = {f € LT*(T, X") : f(n) e X}

where, for a given weak*-measurable function f : T — X" such that (f,2') €
LY(T) for any o’ € X', the Fourier coefficient f(n) € X” is given by

(E(n). ') = / T emimtg(eity, oy &

%.
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The Riemann-Lebesgue property of a complex Banach space X was intro-

A

duced in [1] by the condition (f(n))nez € co(Z, X) for any f € L7 (T, X”).

Proposition 3.7 Let X be a Banach space. If X € (RLP)t then X has the
Riemann-Lebesgue property.

Proof. Let f € LT'¢(T, X”). We first observe that or any trigonometric
polynomial 1)

M M
1> dmim)| = Sup | ) b)), o)

n=—N =1 =N

21 “ . . dt

= su f(e), 2"V p(e ™) —

s | [ Fe.ao)]

2 “ . . dt

< sup [(f(e™), e | —

< [ s 1 o5

< lelloo Il

Let us define T¢(v)) = Zﬁi_N@ZJ(n)f(n) € X for any trigonometric poly-
nomial ¢¥. We can use the density of the trigonometric polynomials in
C(T), to extend Ty : C(T) — X as a bounded operator. The assump-
tion that supj,_; [(f,2)] € L'(T) guarantees not only that Ty is weakly
compact (hence there exists a regular measure v with 7,, = T¢) but also
that Ty is absolutely summing (hence v € M,.(G, X)). Finally using that
v(n) = f(n) for n € Z we conclude that (f(n))nez € ¢o(Z), from the assump-
tion X € (RLP)r. m

Remark 3.1 It was shown (see [1, Prop.3.}]) that the Riemann-Lebesque
property holds for not only spaces X having RNP but also for spaces satisfying
the weak RNP (see [9]) o even the "complete continuity property” (see [10,
2]). The reader is referred to [1] for further results.

4 Convolution for vector measures

From Corollary 2.2 we have that t — (A —t) is measurable and bounded for
each u € M(G) (and hence in L'(v)) for any vector measure v. This allows
us to give the following definition.
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Definition 4.1 Let v be a vector valued measure and € M(G) we define
the vector valued set function px v(A) given by

J (A) = / 1A — t)du(t), A € B(G).
e}
Let us see that p x v is always a vector measure.

Proposition 4.2 If v is a vector measure and n € M(G) then p v is a
vector measure. Moreover

[l vl < [ul (@) (13)

Proof. Let (A,) pairwise disjoint sets in B(G) with A = U, A, andt € G. To
show that p*v(A) = pu*xv(A,), due to the Orlicz-Pettis theorem (see [4,
Page 7]), we simply need to see that ) *v(A,) is weakly unconditionally
convergent to 4 * v(A). Let 2/ € X’ and note that for A € B(G),

(v, ') (A) = /G WA — iy, ') (1) = i+ (v, 2/)(A),
On the one hand

Dl v(4n),2)]

IN

D lulx (v 2)(An)

= |ul* (v, 2")|(4)
< [ul(G)[{v, 2)(G).
On the other hand

m

> (uxv(Ap)a’) = (uxv(A), )] = | /GM(UZ"mHAn — H)d{v, 2)(t)|

< /G (Ui An — )] (1,27 (2).

Let ¢, (t) = || (Us2,s1 A —t). We have that limy, .o ¢, (t) = O for each
t € G and ¢,,(t) < |p|(G) for each m € N and ¢t € G. Hence the Lebesgue
dominated convergence theorem shows that ) | (usv(A4,), ") = (uxv(A),z').
To show (13) we use that

(o x v, 2D)(G) < |l + [(v, )(G) < |pl(G) v, 2)(G).

Now taking supremum over the unit ball of X’ we get the desired estimate.
|
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Lemma 4.3 Ifv € M(G,X) and p 6 M(G) then pxv € M(G,X). More-
over Ty (g) = T, o Cy, where C,(g)(t) = [, 9(t + s)du(s) for g € C(G)
and

[Tl < T[] (G-

Proof. It is immediate to see that C, is continuous from C(G) into itself
and the composition 7T}, o C), defines a weakly compact operator from C(G)
into X whose representing measure is given by

n(A) = (T, 0 Cu)" (xa) = T 0 €7 (xa).

Let us show that 7 = u * v. Recall that for each A € M(G) we have that
p* XA € M(G) which is defined by

/Gg( d(p* ) (u // (t + s)dp(s)d(t /C

Therefore C7;(A) = A * p.
We also have that C*(xa) € (M(G))" with

C OO = A ld) = [ (A= nare).

We conclude that the element C}*(xa) is represented by the measurable
function ¢t — u(A — t), and taking into account that M(G)" C L'(v) we
obtain n(A) = T;*(u(A —-)) = L((A = ) = pxv(A).

Finally using that ||C,|| < |u|(G) the proof is completed. m

Making use again of Corollary 2.2 we can also define the convolution as
follows.

Definition 4.4 Letv € M(G,X) and u € M(G) we define the vector valued
set function v x pu(A) given by

Vs p(A) = /GV<A — dp(t), A € B(G)

where the map t — v(A—1t) is (strongly)-measurable and bounded (and hence
in L (1)),

Proposition 4.5 If v € M(G,X) and p € M(G) then v pu= puxv.
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Proof. Tt suffices to show that (v*xu(A), ') = (uxv(A), 2’) for any A € B(G)
and 2/ € X’'. This now follows from the scalar-valued case: Recall that if
1, o € M(G) then, for each g € C(G),

Lot = [ ([ o+ (o)) drats)
- /G ( /G gt + 3)dis(s) ) dyn (1)

= / gdps * .
G

Now use that

(v % p(A), o) = / (A — 1), 2')dpu(t) = (v, 2') * p(A)

G
and
(s 4).2) = [ WA= 0dlo.2)e) = o ) (A)
||

Following the classical argument we obtain the following easy fact.

Proposition 4.6 Let € M(G) and v € M(G,X) . Then

—

pxv(y) =py)o(y), ~verl. (14)
Proof. Let v € I'. Then

P0) = TG =Tl [ 3+ 9)dn(s)

_ G /G (s)du(s)) = A1) ().

n
Let us now restrict to some classes of measures in M(G) and M(G, X).

Remark 4.1 For f € L*(GQ) and g € L'(G, X) we write duy = fdmg and
dvg = gdmg. Then d(uy * vg) = (f * g§)dmg where fx g € L'(G, X). Here
we use the notation g(u) = g(—u) and

fxg(s) = /Gf(s —t)g(t)dmg(t), mg— a.e.
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Indeed

pyx dvg(A) = /

/A s+ t)dme(s) ) g(t)dme (1)
[ 7o+ tgt)dme(t) Jamals)

G

([ 16 = wgtwdma(u))dma(s)

Remark 4.2 For f € L'(G) and a vector measure v we have that
ppxv(A) = L(xax f), A € B(G),

Indeed

ppxv(A) =

( N (s)dmg(s))dl/(t)

(

= [ (] xatt =i (s)amats) vt

G

u(XA*f)-

If v is a vector measure and f € L'(G) we denote s * v = f * v and we
say that f x v € C(G,X) whenever there exists f, € C(G,X) such that
d(f *v) =f,dmg.

[
S
S~

Yals + 0)f(s)dma(s) ) du()

Il
~

Proposition 4.7 Let v be a vector measure.

(a) If f € C(G) then fxv e C(G,X) and
1f* viiewx) < [ flle@lv- (15)

(b) If f € LY(G) then fxv € P(G,X) and

1 viipexy < [l v (16)
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Proof. We define f,(t) € X by

£, (1) = / F(t+ 5)du(s) = L(rof).t € G. (17)
G
Let us see first that f, € C(G, X). For each t,# € G we have

I1£,(t) = £, () = 11 (7] = 7o ) < IVlll7=f = 7= fllcio)-

Now the result follows using that the map G — C(G) given by t — 7_f is
uniformly continuous.

Let us now show that d(f * v) = f,dmg. Let A € B(G) and 2’ € X’ and
note that

( /A £dma,a’) — | /A ( /G (b + s)du(s) ) dme () o)
= [ ([ s+ sy ametr

- /G ( /A F(t+ s)dma(t) )dw, /) s)
= ([ (] remen)aw. )
= (FulA), )

Finally (15) follows trivially since

sup £, () = sup | /G £t + 8)d,2Ys) < [fle@lv.

teG teq |2’ ||=1

(b) Assume now that f € L'(G). We first find f, € C(G) such that
|f = fallLi@ey — 0. Using the previous case, the estimate (13) and the
fact |pf|(G) = || f|l1 (@) We conclude that

g v = pp vl < o = Fllve -

Then f+v e P(G,X) and ||f x| pcx) = s *v| < [ flloelv]. =

Let us now look for some Young’s convolution result when assuming that
either v € M, (G, X) or f € LP(G). Let us mention first that any measure
v with bounded p-semivariation with respect to m¢g for some 1 < p < 00
necessarily belongs to M,.(G, X). This is due to the fact that it satisfies
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[v(A)|| < ma(A)Y/? for each A € B(G) which implies v << mg and, in
particular v is automatically regular.

To work with measures in M, (G, X) we shall use some lemmas whose
proofs we include for the sake of completeness.

Lemma 4.8 Let 1 < p < oo and let v be a vector measure. Then v &
M, (G, X) if and only if v € M,.(G; X) and T;(X') C LP(G).

Proof. Assume v € M, (G, X). Now (1) gives that T}, extends to a bounded
operator from L¥ (G) into X. Hence T* is bounded from X’ into L?(G) and
therefore T)¥(X') C L*(G).

Assume now that v € M,.(G,X) and T(X') C LP(G). Use now that
(v, 2’y = T(2') and then d|(v,2')| = |hy|dmg for some h, € LP(G). This
implies that for || 3, aaxallps ng) < 1 we have

< sup /(Z|QA|XA)|hz'|de: sup ||hm’||LP(G)'

+ G hen o'} =1

Hence we have v is of bounded p-semivariation. m
Next result extends [3, Thm 3.9] to the case 1 < p < 0.

Proposition 4.9 Let 1 < p < 0o and let v € My (G, X). The following
statements are equivalent:

(1) v e My(G, X).

(i) LP' (G) C L*(v).

(iii) LP (G) C L (v).

Moreover ||V||p.mG = ||]d||LP’(G)—>L1(V)’

Proof. (i) = (ii) Assume that v has bounded p-semivariation with respect
to mqg. Hence

l / bdv]| < Wlpmall 8l oy & Simple

This gives, due to the density of simple functions in L*' (G) and L'(v), that
LP(G) C L*(v).

(ii) = (iii) It is obvious.

(iii) = (i) Assume LP (G) C L% (v). Since v << mg, using Radon-
Nikodym theorem we have, for each 2/ € X' the existence of h,, € L'(G) for
which

d{v,z") = hydmg. (18)
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Therefore for each f € L” (G) we have

Hﬂhum=:ﬁm‘AJﬂmemcéfﬂUﬂmuw

ll2'[|=1
This implies that h, € LP(G) for all 2’ € X’ and

Sup 1ol r(c) < K. (19)
z/||=1

This gives ||[V]|pme < K. =

Theorem 4.10 Let 1 < p < oo and let v be a vector measure.
(a) If v € M,(G,X) and f € L”(G) then fxv € C(G, X) and

1 * vllewx) < If e @)l llpme: (20)
(b) If v € Muo(G, X) and f € L*(G) then fxv € C(G,X) and
Lf # vllewx) < 1 f eVl (21)

(c) If f € LP(G) then f v € P,(G,X). Moreover

1 * vllpcxy < [ flleee V] (22)

(d) If f € LYG) and v € M,(G, X) with ¢ > p then fxv € P.(G,X)
for1/r=1/p—1/q". Moreover

1f * vl ex) < I fllzaellvllpme- (23)

Proof. (a) Using Proposition 4.9 we have L? (G) C L'(v). Hence that I, is
well defined on L”' (G) and, denoting f,(s) = f(t +s) = 7_,f(s), we observe
that f,(¢) = I,(f;) makes sense for each value of ¢ € G. Repeating the
argument in Proposition 4.7 part (a) and using now that G — L¥'(G) given
by t — f; is uniformly continuous we obtain that f, is continuous. And also
we have

Lf* v @O < Ml x| fell 2o oy = N lpme 11l o )-

(b) If f € L*>(G) then value I,(f;) makes sense for any ¢ € G. Observe
that if v € M,.(G, X) and f = x4 we have

/XMHﬂMW®=MA—ﬂ
G
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is continuous. Hence fxv € C(G, X) for any simple function f and it satisfies
L)l < |Ifllzellv|. Finally using the density of simple functions in
L>(G) we have the desired result.

(c) From Proposition 4.7 and f € C(G) we know that d(f % v) = f,dmg
with f, € C(G, X). Moreover, for each 2/ € X' |

Liwaramae < [ ([ 15+ slaea)is) ane)

Lwann@p( [ i+ pae.a)is) dmo)

= (waley [ ([ 1+ s)pdmo(o)dla)io
171y (2 )(@))

This shows (22) for continuous functions.
Let f € LP(G). We first find f,, € C(G) such that ||f — f|lLr(¢) — 0 and
denote v, = f, * v. From the previous case conclude that

IN

10 = Vinllpme = [1fon = £l o) < W Fn = Finllzooy V]

Therefore v, is a Cauchy sequence in M, (G, X). Since it converges to f * v
in M(G, X) we conclude that f v € P,(G,X) and

I\f*vlpcx) = ligﬂ |fo*v]pyax) < ﬁT{H I fallzeay 1PNl = 1 £l e [1V]]-

(d) Since v € M,(G, X), using Lemma 4.8 we have d(v,2’) = hydmg
with hy € LP(G). Assume again first that f € C(G) and ||2|| = 1. Hence

(f = v(t) /ft+s (s)dme(s) = f % ha ().

Therefore |(f*v(t),2')| < |f|*|hw|(t) and we can apply the classical Young’s
inequality

111 [Pl 2

<
< |[fllza@)llharll o)
< N fllze@ 1Vlpme

([ 10w wtt). ) ama0)

This gives (23) for continuous functions. The argument is finished using
density as above. m
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5 Invariance under homomorphisms

Throughout this section H : G — G denotes a homeomorphism and we write
R(s) = —s for the reflection and 7,(s) = s + a for the translation.

If f € L°(G) we shall use the notation fg(s) = f(H 's) and, in particu-
lar, 7,f(s) = f(s — a) and f(s) = f(—s).

If v is a vector measure we denote vy (A) = v(H(A)) for A € B(G), in
particular, 7,v(A) = V(A + a) and P(A) = v(—A). It is elementary to see
that vy is also a vector measure with ||vy|| = ||v]|. If v € M(G, X) then
vg € M(G,X) and T,,, =T, o @y where & : C(G) — C(G) is the induced
operator g — gy = go H 1.

Let us point out some useful formulae to be used later on. From the fact
(xa)m = xma) and I, (xa) = vu(A) = v(H(A)) = I,((xa)u) we conclude

[I/H(f) :IV(fH)7-f ES(G) (24)
Also we have
(vir)y = (Vpy)w and (vg)u = (vi)y,_, for any f € S(G). (25)

This follows by linearity and the obvious case

(vi)r(A) = /Afdz/H = /G(fXA)Hdu— /H(A) fudv = (v, )u(A).

In particular
vr =10z Tu(vf) = (TalV)r_p, @€ G. (26)

Taking into account (25) we conclude that f € L'(vg) if and only if fg €
L*(v). Moreover with

[z @y = 1)l = vl = 1 fullow),  feSG). (27)

Definition 5.1 Let v be a vector measure and H a family of homeomor-
phisms H : G — G. We say that v is H- invariant whenever vy = v for
any H € H. In particular, we say that v is translation invariant (respect.
reflection invariant) whenever T,v = v for any a € G (respect. v =v.)

Given a vector measure v € M(G, X) we can define
Vino(A) = / T (A)dme(t).
e
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It is not difficult to show that v;,, € M(G, X). Clearly v, is translation
invariant. Actually case of translation invariant measures, as in the scalar
valued case, reduces to the rmg for some x € X.

Proposition 5.2 Let v € M(G, X) with v(G) # 0. Then v is translation
invariant if and only if v = v(G)mg.

Proof. Only the direct implication needs a proof. Assume that v is transla-
tion invariant, that is v = v;,,,. We shall show that

Vinw(A) = v(G)mg(A), VA€ B(G).

It suffices to see that T, (¢9) = ([, gdme)v(G) for all g € C(G). This follows
by noticing that

T,.(9) = /G T, (g)dme(t) = / T, (rig)dmel(?)

G

— TV(/G(Ttg)dmg(t)) = TV(</C¥ gdme)xa)
= y(G)(/ngmg).

n
Using (24) we easily formulate the H-invariance as follows:

Remark 5.1 Let v be a vector measure and H : G — G an homomorphism.
The following statements are equivalent.

(i) v is H-invariant.

(ii) Ly (f) = L,(f) for any [ € S(G).

(iii) L*(v) = L (vy) and L,(fy) = L(f) for any f € L'(v).

Definition 5.3 (see [7, 3]) Given an homeomorphism H : G — G and
f € L°%G) a vector measure v is said to be a "norm integral H-invariant”
whenever

[ (DI = [, f € S(G). (28)

Given a family of homeomorphisms on G, say H, we shall say that v is
"norm integral H-invariant” whenever it is norm integral H-invariant for
any H € H. We say "norm integral reflection invariant” and “norm integral
translation invariant” in the cases of H = {R} and H = {7, : a € G}
respectively.
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Proposition 5.4 Let H : G — G be an homeomorphism and v € M(G, X).
The following are equivalent.

(i) v is norm integral H-invariant.

(ii) |1, (fa)ll = I L(F)].Vf € L'(v).

(iii) | T, (NI = 1T ()N, VS € C(G).

(iv) L'(v) = L'(va) and |1, (/)| = IL(F)I for any f € L' (v).

Proof. (i) = (ii). It was shown in [3, Thm 3.3], due to the fact I, (fy) =
L, (f) for all f € S(G).

(i) = (iii) It follows using that C'(G) C L'(v) and I,(f) = T,(f) for
feC(q).

(iii) == (iv) Let us show that ||f| ;1) = ||fllz1() for any f € C(G).
Indeed, for each f € C(G) we can write

Ifllzrwy = Ml =T,
sup{ (|7, (9l : lglle = 13 = supdI T (f9)ll - lglloe = 1}
= sup{|| T, (f9)ll : lglloe) = 13 = sup{|Tiwn), ()1l = llgllew =1}
= Nl = 12w

Finally use Lemma 2.1 to extend ||1,,,(f)|| = [|L.(f)|,Vf € C(G) to all
fe L (v).

(iv) = (i) It is immediate. m

Let us also consider some weaker notions still good enough for our pur-
poses.

Definition 5.5 Let v be a vector measure and let H be a family of homeo-
morphisms H : G — G. Then v is said to be "semivariation H-invariant”
whenever

el = lva)ell,  feSG),HeH. (29)

In particular v is said to be "semivariation translation invariant” and ”semi-
variation reflection invariant” in the cases of H = {1, : a € G} and H = {R}
respectively.

Remark 5.2 If v is norm integral translation invariant or semivariation
translation invariant then so it is v.

Assume first that v is norm integral translation invariant, f € S(G) and
a € G. Then

12 (ra )l = 1L (7o /)l = I LI = [ 1()]I-
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Assume now that v is semivariation translation invariant, f € S(G) and

—_—

a € G. Then applying (26) we obtain (7,0); = (T_v); = (T-av); and
therefore
1(7a?)¢ll = [ (m—a) £l = llvsll = [lV7l] = [[(@)£]l-

Proposition 5.6 Let v be a vector measure and let H : G — G be an
homeomorphism. The following statements are equivalent:

(i) v is semivariation H-invariant.

(1) LY (v) = L' (vy) isometrically.

(iii) ||T,, o Ms|| = ||T, o My||,Vf € C(G) where My : C(G) — C(G)
stands for the multiplication operator g — fg.

Proof. (i) <= (ii) follows using that [|f|;10) = |lvfll = [[(va)fl =
|| fll21(vy) and the density of simple functions in Ll(u) and L' (vy).

(i) <= (iii) follows observing that |7, o M¢|| = ||v¢|| whenever f € C(G)
and Lemma 2.1. =

In Theorem 3.3 [3] (see also Proposition 3.5 [7]) it was shown that if v is
norm integral H-invariant then it is semivariation H-invariant. We shall see
now that the converse is not true in general.

Proposition 5.7 Let G =T and X = L'(T). For eachn € Z\ {0} denote
On(t) =t" fort € T and define

V) (A) = Xa(n)gn, A € B(T).

Then vy, is semivariation reflection invariant but not norm integral reflection-
mvariant.

Proof. To see that v(,) is not norm integral reflection-invariant we use an
argument similar to that of example 3.6 (c) in [3]. Note that T, (g9) =
g(n)¢y, for any g € C(T) and Ty (9) = g(—n)¢, for any g € C(T). Hence

Tu(n)<¢n) = ¢, and TV<n> (¢n) = 0. Hence HTV(m(én)H # HTll(n>(¢n)H~
We shall see that |[(v() [l = [|f][1 for any f € C(T). Due to (26) this

gives |[(vm) ¢l = 1)) ¢l for any f € C(T).
First we notice that 1f f,g € C(T) we have

T, (9) = f9(n)én.
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Hence for each ¢ € X’ = L*>°(T) we obtain

(T, (9):0) = Ty = [ ) (d07(0)6,(0)) dm ().

T

This shows that d{(vw)),, V) = (n) fopdmy and

lvw) = sup {Ww), T = sup  [Ifuld(n)] = || £lh-

[l oo (my=1 1l Loo (my=1

Proposition 5.8 Let vg(A) = [, f(s)dme(s) with £ € L>(G, X) non con-
stant function satisfying that

£ =1, teG
and there exists A € B(G) and a € G for which
ve(A) =0, ve(A+a)#D0.

Then vg is semivariation translation invariant but not norm integral transla-
tion tnvariant.

Proof. Note that n,vg = v and 7f € L>®°(G,X) for each t € G. In
particular 7y¢ is of bounded variation and d|rv¢| = 7||f||dme = dmg. Hence
L'(v) = LY (rv) = L'(mg) for any ¢t € G. Invoking now Proposition 5.6 we
obtain that v is semivariation translation invariant.

On the other hand 1, (g9) = [, gfdm¢ and we have ||I,(7.xa)| # 0 while
II1,(x4)|| = 0, showing that v¢ is not norm integral translation invariant. m

Remark 5.3 Select X = C, G = T, f(s) = xp,1/2)(€*™) — xp1/2,1)(e*™),
A ={e* . 1/4 < s < 1/2} and a = ¢™/?) to have an exzample satisfying
conditions of Proposition 5.8.

One of the basic properties of semivariation translation invariant measures
is the following fact.

Lemma 5.9 Let 1 < p < oo, let v € M(G,X) be a semivariation transla-
tion invariant measure and f € LP(v). Then a — 7,f is uniformly continu-
ous from G into LP(v).
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Proof. Invoking Lemma 2.1, for each ¢ > 0 we find g € C(G) such that
|f — gllerw) < €. Now use the standard argument

I7af = 1o fllzrey < 17a(f = Dllzew) + 176(f = 9)lrw) + (1709 — 79l Lr ()
= If = gllerwe) + If = 9llrw) + 179 — 709l o)

Hence, using Proposition 5.6, we conclude

I7af = 1f o) < 26+ 1|7ag = Bgllce V)17
and the proof finishes using that ¢ is uniformly continuous. m

Theorem 5.10 Let 1 < p < oo and let v € M(G,X) be semivariation
translation invariant with v(G) # 0. Then LP(v) C LP(G) and

2oy < I llzowllr (G717

Proof. Using that v;,, = v(G)mg, in particular we know that LP(v,,) =
LP(G) and || f|| 2o i) = IV(G)|MP|| f|| 2o(c)- Therefore it suffices to show that
LP(v) C LP(Vinw) and || f]l 2o @ine) < ||l zr(vy- We first point out the following
trivial estimate between positive measures

(Vi )] < /G (v, 'Y dmes(2)

for any 2’ € X'. Hence, for each f € LP(v) = LP(ryv) for all t € G, we have

1l = sup ( /G PP (Vo ) )P

ll2']|=1

< sup ( /G ( /G PP d)(m, Y ) dme (1)

ll='[|=1

< (/G( Sup /G’f’deTtl/,x')\)de(t))l/p

l[=']I=1

= (] W pdmat)
= | fllzee)-
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Proposition 5.11 Let v € M(G, X) a semivariation translation invariant
measure and f € L*(v). Then f*xv € C(G,X) and

1 * vllo@x) < 1 fllere vl (30)
Proof. Recall that
0 = [ 1(t+ 5)v(s) = L) = T o)
which it is well defined for each ¢ € G using that L'(v) = L'(7_;v). Moreover

If vl < 7 f e 17l = 1A 2ol ]l-

Using now Lemma 5.9 we have that ¢ — 7_,f is continuous from G into L'(v)
which shows that fxv € C(G,X). m

Corollary 5.12 Let v € M(G,X). Then v is norm integral translation
invariant if and only if for each f € L*(v) one has that fxv € C(G, X) with

|VMWW—WLMN Vi € G.

Proof. Assume that v is norm integral translation invariant. From Propo-
sition 5.11 we have f xv € C(G, X). Moreover in this case

|wawzwwunwﬂmum=mLMN VieG.

The converse is immediate because any simple function f belongs to L'(v)
and by assumption

11, (e Il = [1f *v(=)] = II/GdeII = [[L(NII

6 Applications to Fourier Analysis on L'(v)

In this section we analyze the properties of vy, where v;(A) = [, fdv for
each A € B(G), in terms of those of v and f € L'(v) and apply them to
recover and improve the results in [3] and [7].
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Proposition 6.1 Let v be vector measure.

(i) If v € M(G, X) and f € L*(v) then vy € M(G, X).

(i)) If 1 <p < o0, ve MyG,X) and f € LYG) for some p' < q < 00
then vy € M, (G, X) for % + é =1

Proof. (i) Note from Lemma 2.1 we have that T,, = lim, T,, where f, €
C(G) for each n. It suffices to see that T,,, : C'(G) — X given by ¢ — [ pgdv
is weakly compact for any g € C(G). On the other hand T, = T, o M, where
M, stands for the multiplication operator on C(G) given by My(¢) = g¢.
Therefore, since v is regular, hence T, is weakly compact and then we obtain
that v is regular.

(ii) We use Proposition 4.9 to have that LY(G) c LP (G) C L'(v). Hence
vy is well defined. Now use the fact that T, = My oT; where My : LP(G) —
L7(G) is the multiplication operator M;(g) = fg and the fact that vy €
M,(G, X) is equivalent to T € L(X', L"(G)) to finish the proof. m

Corollary 6.2 Let 1 < p < oo and v € M(G, X).
(i) If f € LP(G) and g € L*(v) then f * g € P,(G, X). Moreover

1f " gllppiex) < [ fller@ 9]l (seel ).
(i) If v € M, (G, X), g € LP*(G) and f € LP*(G) with p% + L <1 and

p2

1%1+z%2+1%321thenf*ygepr(GaX>f07’i+z%2+]%3Z%. Moreover

If *" glle.c.x) < N Vlprmell fllzee @) gl zes @)

Proof. As mentioned in the introduction f *” g = f * 1, Now both cases
follow combining Proposition 6.1 and Theorem 4.10. m

From Theorem 5.10 when assuming that v € M(G, X) is semivariation
translation invariant we have LP(v) C LP(G) for any p > 1. Hence, as pointed
out in [7], we can consider the classical convolution

frog(t)= [ £t = gl)dma(s
e
between f € L'(G) and g € LP(v) and between f € LP(v) and g € Li(v).

Theorem 6.3 Let 1 < p < 0o and let v € M(G, X) semivariation transla-
tion invariant.
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(1) If f € L'(G) and g € LP(v) then f xg g € LP(v). Moreover
1S *c gllzew) < 1f o llgllere)- (31)
(ii) If f € LP(G) and g € L'(v) then f g g € L*(v). Moreover
1 *¢ gllrw) < 1 F e lgllw)- (32)

Proof. We first analyze the case p = 1. Note that for f,g € C(G) we
have s — 7,9 is continuous function with values in L'(v). We write the
L'(v)-valued Riemann integral

f*GQZ/Gngf(S)de(S)-

Using Minkowsky’s inequality and Proposition 5.6 we get

If *a g9l < /G I 7sgllLr | f(s)|dma(s) = | fllLva)llgllorw)-

To extend to general functions, we use that C'(G) is dense in L'(v) and
in L'(G).
Assume now p > 1. As above we start with ¢ € C'(G) and use Hélder’s
inequality together with L'(v) C L'(G) to have
|f e 9O < min{ | F17: i) (I e [9)(0), 91172, (1P *6 19D (D)}
Therefore (i) follow from the case p = 1. Indeed,
146911200y < MG I Bxalal ) < I gl lzrw) = 111 ) lalne)-

The case (ii) is analogue. =
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