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Abstract

We analyze the Fourier transform of vector measures ν as well as
the convolution between scalar and vector-valued regular measures de-
fined on the Borel sets of a compact abelian group. We make special
emphasis on the Riemann-Lebesgue lemma and Young’s convolution
type results in this setting. Applications to Fourier transform and con-
volutions between functions in Lp(ν) and, particularly, for translation
invariant type measures ν are given.
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1 Introduction

Let G be a compact abelian group,we write B(G) for the Borel σ-algebra of
G and mG for the Haar measure of the group. We denote by L0(G) the space
of Borel measurable functions defined on G and Lp(G) the space of functions
in L0(G) such that

∫
G
|f |pdmG <∞.

Given 1 < p ≤ ∞, a non-negative measure λ on B(G), a Banach space X
and a vector measure ν : B(G)→ X we denote by

‖ν‖(A) = sup
‖x′‖=1

|〈ν, x′〉|(A)

the semivariation on a Borel set A and write ‖ν‖ for ‖ν‖(G), by

|ν|(A) = sup{
∑
E∈π

‖ν(E)‖ : π finite partition of A}
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the variation of ν, by ‖ν‖p,λ the p-semivariation of ν with respect to λ (see
[6, Page 246]) defined, for 1 < p <∞, by

‖ν‖p,λ = sup

{∥∥∥∥∥∑
A∈π

αAν(A)

∥∥∥∥∥
X

: π partition , ‖
∑
A∈π

αAχA‖Lp′ (λ) ≤ 1

}
, (1)

and

‖ν‖∞,λ = sup
λ(A)>0

‖ν(A)‖
λ(A)

.

We shall use the notationM(G,X) for the space of regular vector measures,
Mac(G,X) for those which are absolutely continuous with respect mG, i.e.
ν << mG,Mp(G,X) for those with bounded p-semivariation with respect
to mG, i.e. ‖ν‖p,mG

< ∞, M(G,X) for those with bounded variation, and
finally we write Mac(G,X) =Mac(G,X) ∩M(G,X).

As usual, for a given vector measure ν, we write L1
w(ν) for the space of

functions in L0(G) such that
∫
G
|f |d|〈ν, x′〉| < ∞ for any x′ ∈ X ′ and we

write L1(ν) for the subspace of L1
w(ν) satisfying that for any A ∈ B(G) there

exists xA ∈ X for which 〈x′, xA〉 =
∫
A
fd〈ν, x′〉.

For each f ∈ L1(ν) we denote

νf (A) = xA =

∫
A

fdν

given as above. Then νf is a vector measure and ‖νf‖ = ‖f‖L1(ν). We denote
Iν the integration operator, i.e. Iν : L1(ν)→ X is defined by

Iν(f) = νf (G) =

∫
G

fdν

and satisfies that ‖Iν‖ ≤ ‖ν‖. In the case f ∈ L1
w(ν) we can look of νf as

X ′′-valued measure, using 〈νf (A), x′〉 =
∫
A
fd〈ν, x′〉 for each A ∈ B(G). As

usual, for 1 < p < ∞ we denote Lp(ν) = {f ∈ L0(G) : |f |p ∈ L1(ν)} and

‖f‖Lp(ν) = ‖|f |p‖1/p

L1(ν).

The Fourier transform of functions in L1(ν) was introduced in [3] as the
X-valued function defined on the dual group of Γ by

f̂ ν(γ) =

∫
G

f(t)γ(t)dν(t), γ ∈ Γ (2)
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where f ∈ L1(ν) and ν is any vector measure. The validity of the Riemann-
Lebesgue lemma in this setting was considered and it was shown, under the
assumption ν << mG, that the fact f̂ ν ∈ c0(Γ, X) for any f ∈ L1(ν) reduces
to consider the case f = χG (see [3, Teo 2.5]). The following problems were
left open:

(a) Does it hold that f̂ ν ∈ c0(Γ, X) whenever ν << mG and f ∈ L1(ν),
for any Banach space X?

(b) Are there natural subclasses of vector measures for which this version
of the Riemann-Lebesgue lemma holds?

(c) Are there classes of operators that transform vector measures in vector
measures satisfying this formulation of the Riemann-Lebesgue lemma?

They also introduce the Fourier transform Fν(f) of functions f ∈ L1
w(ν)

in the case ν << mG as bounded operators in L(X ′, `∞(Γ)) given by

Fν(f)(x′) = f̂hx′ (3)

where d〈ν, x′〉 = hx′dmG with hx′ ∈ L1(G).
We shall understand these cases as particular ones of the Fourier trans-

form of a vector measure ν defined by

ν̂(γ) = Iν(γ̄) (4)

when dealing with νf . The paper is organized into six sections. In Section 2
we give some preliminaries on vector measures to be used in the sequel. We
shall study some versions of Riemann-Lebesgue lemma in our context and
give answers to the above problems in section 3. In Section 4 we introduce
the convolution of a vector measure ν and another complex-valued regular
measure µ ∈M(G) by means of the formula

µ ∗ ν(A) =

∫
G

µ(A− t)dν(t), A ∈ B(G)

where the map t → µ(A − t) is shown first to be measurable and bounded
(and hence in L1(ν)). This notion is seen to coincide with the symmetric
formulation

ν ∗ µ(A) =

∫
G

ν(A− t)dµ(t), A ∈ B(G)

for regular measures ν ∈M(G;X) and µ ∈M(G).
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This concept is when restricted to measures dµf = fdmG becomes

f ∗ ν(A) = Iν(f̃ ∗ χA), A ∈ B(G) (5)

where f̃(t) = f(−t). Our point of view actually extends the two different
convolution maps considered in [3, Def 4.1, Def 4.5]: If ν be a vector measure
such that ν << mG, f ∈ L1(G) and g ∈ L1

w(ν) the authors introduced
f ∗ν g : X ′ → L1(G) as

f ∗ν g(x′) = f ∗ (ghx′), x
′ ∈ X ′ (6)

where hx′ = d〈ν,x′〉
dmG

.

In the case that g ∈ L1(ν) and f(t− ·)g ∈ L1(ν) for mG-almost all t ∈ G
they also defined

f ∗ν g(t) =

∫
G

f(t− s)g(s)dν(s). (7)

Using the fact that νg ∈M(G,X ′′) we actually have

d〈f ∗ νg, x′〉 = f ∗ν g(x′)dmG, x
′ ∈ X ′

and also, in the case g ∈ L1(ν) and f ∈ C(G), we obtain νg ∈M(G,X) and
f ∗ νg(t) = f ∗ν g(t), t ∈ G.

Different formulations of Young’s convolution theorems will be provided
which will extend several results in [3] when restricted to measures νf . In
particular we show that for 1 ≤ p, q ≤ ∞ and 1/p+1/q ≥ 1 if ν ∈Mp(G,X)
and f ∈ Lq(G) then ν ∗ f ∈ Pr(G,X) for 1/p+ 1/q− 1 = 1/r (see definition
in Section 2).

Section 5 is devoted to analyze the cases where ν is a translation invariant-
type measure. In the paper [7] the notion of “norm integral translation
invariant” vector measure was introduced, by the condition

‖Iν(τaφ)‖ = ‖Iν(φ)‖, φ ∈ S(G), a ∈ G (8)

where τa(φ)(s) = φ(s− a). For norm integral translation invariant measures
ν such that ν << mG they showed that L1

w(ν) ⊂ L1(G) and therefore the
convolution and the Fourier transform of functions in L1

w(ν) are well defined.
One of their main theorems establishes that if f ∈ L1(G) and g ∈ Lp(ν)
then f ∗ g ∈ Lp(ν) for 1 ≤ p < ∞. Later in [3] this notion was generalized
and used for more general homeomorphisms H : G→ G, and the particular
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case of reflection invariant ones (i.e. H(s) = −s) played an important role
when considering convolution of functions in L1(ν). In this paper we shall
introduce a weaker but still useful notion to be denoted “semivariation H-
invariant” by

‖νf‖ = ‖(νH)f‖, f ∈ S(G) (9)

where νH(A) = ν(H(A)) for A ∈ B(G). This definition will be shown to
be different to the “norm integral H-invariant”. However for semivariation
translation invariant measures ν we will still have L1(ν) ⊂ L1(G). Hence
similar results as those in [7] for such a weaker notion will remain valid.
We finally include in Section 6 several applications of our general theory
for vector measures to the study of convolution and Fourier transform of
functions in L1(ν).

2 Preliminaries on vector measures

Let us start by recalling that a vector measure ν defined on the Borel σ-
algebra B(G) is called regular if for any ε > 0 and A ∈ B(G) there exists a
compact set K and an open set O such that K ⊂ A ⊂ O and ‖ν‖(O\K) < ε.
It is clear that if ν << λ for some finite regular Borel measure λ then
ν ∈ M(G,X). In particular ν ∈ M(G,X) if and only if any Rybakov
control measure |〈ν, x′0〉| is regular.

As usual we denote S(G,X) the space of X-valued simple functions and,
as usual, we keep the notation Lp(G,X) for the completion of S(G,X) under
the norm

‖s‖Lp(G,X) = (

∫
G

‖s‖pdmG)1/p

in the case 1 ≤ p < ∞ and write L∞0 (G,X) the closure of S(G,X) in
L∞(G,X). It is well known that L1(G,X) ⊂ Mac(G,X). Actually, for each
f ∈ L1(G,X) we define

νf (A) =

∫
A

fdmG.

One has that νf ∈ Mac(G,X) since ν << mG and |νf |(A) =
∫
A
‖f‖dmG (see

[4, Page 46]).
We also have that M(G,X) endowed with the norm given by the semi-

variation becomes a Banach space and that Mac(G,X) is a closed subspace
of M(G,X). It is well known (see [4, Page 159]) that M(G,X) is isometric
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to the space to weakly compact linear operators. To each ν ∈M(G,X) cor-
responds a weakly compact operator Tν : C(G) → X such that ‖Tν‖ = ‖ν‖
and we shall write

∫
G
φdν = Tν(φ) for each φ ∈ C(G). We also recall

that M(G,X) is isometric to the space of absolutely summing operators
Π1(C(G), X)(see [4, Page 162]). For 1 < p ≤ ∞, let us also mention
that Mp(G,X) can be identified with L(Lp

′
(G), X) (see [6, Page 259]).

In other words, if ν ∈ Mp(G,X) then Tν extends to a bounded operator
in L(Lp

′
(G), X) with ‖ν‖p,mG

= ‖Tν‖L(Lp′ (G),X), and, conversely, for each

T : Lp
′
(G) → X we associate the vector measure ν

T
: B(G) → X given by

ν
T
(A) = T (χA) satisfying that ν

T
∈ Mp(G,X) and ‖ν

T
‖p,mG

= ‖T‖. This
allows to produce easy examples inMp(G,X). For instance, for X = Lp(G)
the Lp(G)-valued measure

mp(A) = χA, A ∈ B(G)

belongs to Mp′(G,L
p(G)). Another important example is produced using

Pettis integrable functions, namely if f : G → X is Pettis integrable and
〈f , x′〉 ∈ Lp(G) for each x′ ∈ X ′ then the vector measure

mf (A) = (P )

∫
A

fdµ, ∈ B(G),

(where the integral denotes the Pettis integral of f over the set A) belongs
to Mp(G,X) and ‖mf‖p,mG

= sup‖x′‖=1 ‖〈f , x′〉‖Lp(G).
For each 1 ≤ p ≤ ∞ and s ∈ S(G,X) and denote

‖s‖Pp(G,X) = ‖νs‖p,mG
= sup
‖x′‖=1

‖〈s, x′〉‖Lp(G). (10)

We define Pp(G,X) the closure of S(G,X) in Mp(G,X) for 1 ≤ p ≤ ∞
where we understand M1(G,X) =M(G,X). Since C(G) is dense in Lp(G)
for 1 ≤ p < ∞ and closed for p = ∞ we easily see that C(G,X) is dense in
Pp(G,X) for 1 ≤ p <∞ and C(G,X) is closed in P∞(G,X).

It is elementary to see that Lp(G,X) ⊆ Pp(G,X), 1 ≤ p <∞, L∞0 (G,X) ⊆
P∞(G,X) and Pp2(G,X) ⊆ Pp1(G,X), p1 ≤ p2. Using that for each s ∈
S(G,X) the measure νs defines a finite rank operator on L1(G) into X one
sees that P∞(G,X) ⊆ L∞(G,X) (see[4, Page 68]).

Let us finish this preliminary section by showing, for the sake of com-
pleteness, that C(G) is dense in L1(ν) for regular measures ν.
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Lemma 2.1 Let ν ∈ M(G,X) and 1 ≤ p < ∞. Then C(G) is dense in
Lp(ν). Moreover

Iν(f) = lim
n
Tν(fn)

for any (fn) ∈ C(G) with lim fn = f in L1(ν).

Proof. Assume ν is regular and let us prove that C(G) is dense in Lp(ν).
Since simple functions are dense in Lp(ν) it suffices to see that for any ε > 0
and A ∈ B(G) there exists φ ∈ C(G) such that ‖χA − φ‖Lp(ν) < ε. Using
the regularity of ν we first select a compact set K and an open set O such
that K ⊂ A ⊂ O with ‖ν‖(O \K) < εp. Then use Uryshon’s lemma to find
φ ∈ C(G) such that 0 ≤ φ ≤ 1 and φ(t) = 1 for t ∈ K and φ(t) = 0 for
t /∈ O. Finally observe that

‖χA − φ‖Lp(ν) = sup
‖x′‖=1

(

∫
G

|χA − φ|pd|〈ν, x′〉|)1/p

= sup
‖x′‖=1

(

∫
O\K
|χA − φ|pd|〈ν, x′〉|)1/p ≤

(
‖ν‖(O \K)

)1/p

< ε.

Let (fn) be any sequence of continuous functions converging to f in L1(ν).
Since Iν(fn) = Tν(fn) we have

‖Iν(f)− Tν(fn)‖ ≤ ‖f − fn‖L1(ν)

and the proof is finished.

Corollary 2.2 Let ν ∈M(G,X) and A ∈ B(G). Then the map

f(t) = ν(A− t)

is (strongly)-measurable and bounded.

Proof. It is obviously bounded by ‖ν‖. We shall show that f(t) = limn fn(t)
for some sequence fn ∈ C(G,X). For each t ∈ G we write νt for the regular
measure such that∫

G

φ(s+ t)dν(s) =

∫
G

φ(s)dνt(s), φ ∈ C(G).

From Lemma 2.1 select φn ∈ C(G) such that limn ‖χA−φn‖L1(νt) = 0. Define
fn(t) =

∫
G
φn(s+ t)dν(s) and observe that

‖fn(t)− fn(t′)‖ ≤ sup
s∈G
|φn(s+ t)− φn(s+ t′)|‖ν‖.
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Hence fn ∈ C(G,X) and we have

f(t) =

∫
G

χA(s)dνt(s) = lim
n

∫
G

φn(s)dνt(s) = lim
n

fn(t).

3 Fourier transform and the Riemann-Lebesgue

lemma

Definition 3.1 Let ν be a vector measure. We define the Fourier transform
by

ν̂(γ) =

∫
G

γ̄dν = Iν(γ̄), γ ∈ Γ.

In the case that ν ∈ M(G,X) and Tν : C(G) → X is the corresponding
weakly compact operator representing the measure we have ν̂(γ) = Tν(γ̄).

Of course f̂ ν(γ) = ν̂f (γ) whenever f ∈ L1(ν) and, in the case f ∈ L1
w(ν)

and ν << mG, we can consider νf (A) ∈ X ′′ given by

〈νf (A), x′〉 =

∫
A

fd〈ν, x′〉

as a X ′′-valued vector measure and then Fν(f)(x′)(γ) = 〈ν̂f (γ), x′〉, γ ∈
Γ, x ∈ X ′.

It is straightforward to see that ν̂ ∈ `∞(Γ, X) with supγ∈Γ ‖ν̂(γ)‖ ≤
‖ν‖. Due to the Radon-Nikodym theorem in the case X = C (or even for
finite dimensional spaces X) we can say that the Riemman-Lebesgue lemma
establishes that ν̂ ∈ c0(Γ, X) whenever ν << mG.

We would like to study the validity of the Riemann-Lebesgue lemma for
measures in Mac(G,X). In other words, if we denote

M0(G,X) = {ν ∈M(G,X) : ν̂ ∈ c0(Γ, X)}

we ask ourselves whether or not Mac(G,X) ⊂M0(G,X).
As expected the answer is negative in general as the following easy ex-

ample shows: Let G = T, X = `2(Z) and ν(A) = (χ̂A(n))n∈Z. Clearly
Tν : C(T) → `2(Z) corresponds T (f) = (f̂(n))n∈Z . Hence ν̂(n) = en where
(en) is the canonical basis and ‖ν̂(n)‖ = 1 for each n ∈ Z.
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However, from the classical Riemann-Lebesgue lemma we have the fol-
lowing weak version in the vector-valued setting.

ν ∈Mac(G,X) =⇒ 〈ν̂, x′〉 ∈ co(Γ), x′ ∈ X ′. (11)

Answering question (a) we show now thatM0(G,X) ⊂Mac(G,X) if and
only if X is finite dimensional.

Proposition 3.2 Let X be an infinite dimensional Banach space and G =
T. There exists a regular vector measure ν : B(T) → X such that ν << mT
and ν̂ /∈ c0(Z, X).

Proof. Let us first take a sequence xn ∈ X such that 1/2 ≤ ‖xn‖ ≤ 1
satisfying

‖
∞∑
n=1

αnxn‖ ≤ C(
∞∑
n=1

|αn|2)1/2 (12)

(see [5, Lemma 1.3]). Define ν : B(T)→ X by

ν(A) =
∞∑
n=1

χ̂A(n)xn.

Since
∑∞

n=1 |χ̂A(n)|2 ≤ ‖χA‖2
L2(T) = mT(A) we have that ν is well defined.

Actually we have ν(A) = T (m2(A)) where T : L2(T) → X is given by
T (φ) =

∑∞
n=1 φ̂(n)xn and m2 : B(T) → L2(T) is given by m2(A) = χA for

A ∈ B(T). Hence ν ∈Mac(T, X), but ν̂(n) = xn does not belong to c0(Z, X)
since ‖xn‖ ≥ 1/2.

Next question is to find some natural classes of measures in M0(G,X).

Proposition 3.3 If ν ∈Mac(G,X) and ν has relatively compact range then
ν ∈M0(G,X).

Proof. Using that ν << mG we conclude that T ∗ν : X ′ → L1(G) is given by
T ∗ν (x′) = hx′ where d〈ν, x′〉 = hx′dmG for each x′ ∈ X ′. Using now that the
unit ball of L∞(G) is the closed absolutely convex hull of {χA : A ∈ B(G)}
and ν(A) = T ∗∗(χA) we obtain that T ∗∗ν : L∞(G) → X ′′ is compact (and
hence so it is Tν). This implies that {ν̂(γ) = Tν(γ̄) : γ ∈ Γ} is relatively
compact and, according to (11) also weakly null. Therefore ν̂(γ) ∈ c0(Γ, X).
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Corollary 3.4 P1(G,X) ⊂M0(G,X).

Let us now study the question of finding classes of bounded operators T :
X → Y that transform measures inMac(G,X) into measures inM0(G, Y ).
Recall that an operator T : X → Y is said to be completely continuous,
or Dunford-Pettis, if it maps weakly convergent sequences in X into norm
convergent sequences in Y . Hence a simple consequence of (11) and the above
definition gives the following result.

Proposition 3.5 Let T : X → Y be a completely continuous operator and
ν ∈Mac(G,X). Then T (ν) ∈M0(G, Y ).

Let us restrict ourselves to study the version of Riemann-Lebesgue lemma
for measures of bounded variation. In general Mac(G,X) is not contained in
M0(G,X) as it can be seen in the following example: Let G = T, X = L1(T)
and ν(A) = χA. Clearly Tν : C(T) → L1(T) corresponds to the inclusion
map then ν̂(n) = φn where φn(t) = eint and ‖ν̂(n)‖ = 1 for each n ∈ Z.

However there are conditions which allow to have such a version of the
Riemann-Lebesgue lemma. For instance, if X has the Radon Nikodym
property then Mac(G,X) ⊂ M0(G,X). Under the RNP we have that
ν ∈ Mac(G,X) gives dν = fdmG for some f ∈ L1(G,X) and ν̂(n) = f̂(n) =∫
T f(eit)e−intdt for n ∈ Z, which belongs to c0(Z, X).

Definition 3.6 We say that a Banach space satisfies the Riemann-Lebesgue
property for measures on G (in short, X ∈ (RLP )G) if any vector measure
ν satisfying ν << mG and |ν|(G) < ∞ satisfies that ν̂ ∈ c0(Γ, X), i.e.
Mac(G,X) ⊂M0(G,X) .

We would like to show that this notion in the case G = T implies the
Riemann-Lebesgue property introduced and considered by S. Bu and R. Chill
in [1] for the case G = T. They worked in the spaces

Lmax1 (T, X ′′) = {f : T→ X ′′weak∗ −meas. : sup
‖x′‖=1

|〈f , x′〉| = fmax ∈ L1(T)}

and
Lmax1,X (T, X ′′) = {f ∈ Lmax1 (T, X ′′) : f̂(n) ∈ X}

where, for a given weak∗-measurable function f : T→ X ′′ such that 〈f , x′〉 ∈
L1(T) for any x′ ∈ X ′, the Fourier coefficient f̂(n) ∈ X ′′ is given by

〈f̂(n), x′〉 =

∫ 2π

0

e−int〈f(eit), x′〉 dt
2π
.
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The Riemann-Lebesgue property of a complex Banach space X was intro-
duced in [1] by the condition (f̂(n))n∈Z ∈ c0(Z, X) for any f ∈ Lmax1,X (T, X ′′).

Proposition 3.7 Let X be a Banach space. If X ∈ (RLP )T then X has the
Riemann-Lebesgue property.

Proof. Let f ∈ Lmax1,X (T, X ′′). We first observe that or any trigonometric
polynomial ψ

‖
M∑

n=−N

ψ̂(n)f̂(n)‖ = sup
‖x′‖=1

|
M∑

n=−N

ψ̂(n)〈f̂(n), x′〉|

= sup
‖x′‖=1

|
∫ 2π

0

〈f̂(eit), x′〉φ(e−it)
dt

2π
|

≤
∫ 2π

0

sup
‖x′‖=1

|〈f̂(eit), x′〉||φ(e−it)| dt
2π

≤ ‖φ‖∞‖fmax‖1.

Let us define Tf (ψ) =
∑M

n=−N ψ̂(n)f̂(n) ∈ X for any trigonometric poly-
nomial ψ. We can use the density of the trigonometric polynomials in
C(T), to extend Tf : C(T) → X as a bounded operator. The assump-
tion that sup‖x′‖=1 |〈f , x′〉| ∈ L1(T) guarantees not only that Tf is weakly
compact (hence there exists a regular measure ν with Tν = Tf ) but also
that Tf is absolutely summing (hence ν ∈ Mac(G,X)). Finally using that
ν(n) = f̂(n) for n ∈ Z we conclude that (f̂(n))n∈Z ∈ c0(Z), from the assump-
tion X ∈ (RLP )T.

Remark 3.1 It was shown (see [1, Prop.3.4]) that the Riemann-Lebesgue
property holds for not only spaces X having RNP but also for spaces satisfying
the weak RNP (see [9]) o even the ”complete continuity property” (see [10,
2]). The reader is referred to [1] for further results.

4 Convolution for vector measures

From Corollary 2.2 we have that t→ µ(A−t) is measurable and bounded for
each µ ∈ M(G) (and hence in L1(ν)) for any vector measure ν. This allows
us to give the following definition.
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Definition 4.1 Let ν be a vector valued measure and µ ∈ M(G) we define
the vector valued set function µ ∗ ν(A) given by

µ ∗ ν(A) =

∫
G

µ(A− t)dν(t), A ∈ B(G).

Let us see that µ ∗ ν is always a vector measure.

Proposition 4.2 If ν is a vector measure and µ ∈ M(G) then µ ∗ ν is a
vector measure. Moreover

‖µ ∗ ν‖ ≤ |µ|(G)‖ν‖. (13)

Proof. Let (An) pairwise disjoint sets in B(G) with A = ∪nAn and t ∈ G. To
show that µ ∗ ν(A) =

∑
n µ ∗ ν(An), due to the Orlicz-Pettis theorem (see [4,

Page 7]), we simply need to see that
∑

n µ ∗ ν(An) is weakly unconditionally
convergent to µ ∗ ν(A). Let x′ ∈ X ′ and note that for A ∈ B(G),

〈µ ∗ ν, x′〉(A) =

∫
G

µ(A− t)d〈ν, x′〉(t) = µ ∗ 〈ν, x′〉(A).

On the one hand∑
n

|〈µ ∗ ν(An), x′〉| ≤
∑
n

|µ| ∗ |〈ν, x′〉|(An)

= |µ| ∗ |〈ν, x′〉|(A)

≤ |µ|(G)|〈ν, x′〉|(G).

On the other hand

|
m∑
n=1

〈µ ∗ ν(An), x′〉 − 〈µ ∗ ν(A), x′〉| = |
∫
G

µ(∪∞n=m+1An − t)d〈ν, x′〉(t)|

≤
∫
G

|µ|(∪∞n=m+1An − t)d|〈ν, x′〉|(t).

Let φm(t) = |µ|(∪∞n=m+1An− t). We have that limm→∞ φm(t) = 0 for each
t ∈ G and φm(t) ≤ |µ|(G) for each m ∈ N and t ∈ G. Hence the Lebesgue
dominated convergence theorem shows that

∑
n 〈µ∗ν(An), x′〉 = 〈µ∗ν(A), x′〉.

To show (13) we use that

|〈µ ∗ ν, x′〉|(G) ≤ |µ| ∗ |〈ν, x′〉|(G) ≤ |µ|(G)|〈ν, x′〉|(G).

Now taking supremum over the unit ball of X ′ we get the desired estimate.
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Lemma 4.3 If ν ∈M(G,X) and µ ∈M(G) then µ ∗ ν ∈M(G,X). More-
over Tµ∗ν(g) = Tν ◦ Cµ, where Cµ(g)(t) =

∫
G
g(t + s)dµ(s) for g ∈ C(G)

and
‖Tµ∗ν‖ ≤ ‖Tν‖|µ|(G).

Proof. It is immediate to see that Cµ is continuous from C(G) into itself
and the composition Tν ◦ Cµ defines a weakly compact operator from C(G)
into X whose representing measure is given by

η(A) = (Tν ◦ Cµ)∗∗(χA) = T ∗∗ν ◦ C∗∗µ (χA).

Let us show that η = µ ∗ ν. Recall that for each λ ∈ M(G) we have that
µ ∗ λ ∈M(G) which is defined by∫

G

g(u)d(µ ∗ λ)(u) =

∫
G

∫
G

g(t+ s)dµ(s)dλ(t) =

∫
G

Cµ(g)(t)dλ(t).

Therefore C∗µ(λ) = λ ∗ µ.
We also have that C∗∗µ (χA) ∈ (M(G))′ with

C∗∗µ (χA)(λ) = λ ∗ µ(A) =

∫
G

µ(A− t)dλ(t).

We conclude that the element C∗∗µ (χA) is represented by the measurable
function t → µ(A − t), and taking into account that M(G)′ ⊂ L1(ν) we
obtain η(A) = T ∗∗ν (µ(A− ·)) = Iν(µ(A− ·)) = µ ∗ ν(A).

Finally using that ‖Cµ‖ ≤ |µ|(G) the proof is completed.
Making use again of Corollary 2.2 we can also define the convolution as

follows.

Definition 4.4 Let ν ∈M(G,X) and µ ∈M(G) we define the vector valued
set function ν ∗ µ(A) given by

ν ∗ µ(A) =

∫
G

ν(A− t)dµ(t), A ∈ B(G)

where the map t→ ν(A− t) is (strongly)-measurable and bounded (and hence
in L1(µ)).

Proposition 4.5 If ν ∈M(G,X) and µ ∈M(G) then ν ∗ µ = µ ∗ ν.

13



Proof. It suffices to show that 〈ν∗µ(A), x′〉 = 〈µ∗ν(A), x′〉 for any A ∈ B(G)
and x′ ∈ X ′. This now follows from the scalar-valued case: Recall that if
µ1, µ2 ∈M(G) then, for each g ∈ C(G),∫

G

gdµ1 ∗ µ2 =

∫
G

(∫
G

g(t+ s)dµ1(t)
)
dµ2(s)

=

∫
G

(∫
G

g(t+ s)dµ2(s)
)
dµ1(t)

=

∫
G

gdµ2 ∗ µ1.

Now use that

〈ν ∗ µ(A), x′〉 =

∫
G

〈ν(A− t), x′〉dµ(t) = 〈ν, x′〉 ∗ µ(A)

and

〈µ ∗ ν(A), x′〉 =

∫
G

µ(A− t)d〈ν, x′〉(t) = µ ∗ 〈ν, x′〉(A).

Following the classical argument we obtain the following easy fact.

Proposition 4.6 Let µ ∈M(G) and ν ∈M(G,X) . Then

µ̂ ∗ ν(γ) = µ̂(γ)ν̂(γ), γ ∈ Γ. (14)

Proof. Let γ ∈ Γ. Then

µ̂ ∗ ν(γ) = Tν(Cµ(γ̄)) = Tν(

∫
G

γ̄(·+ s)dµ(s))

= Tν(γ̄

∫
G

γ̄(s)dµ(s)) = µ̂(γ)ν̂(γ).

Let us now restrict to some classes of measures in M(G) and M(G,X).

Remark 4.1 For f ∈ L1(G) and g ∈ L1(G,X) we write dµf = fdmG and
dνg = gdmG. Then d(µf ∗ νg) = (f ∗ g̃)dmG where f ∗ g̃ ∈ L1(G,X). Here
we use the notation g̃(u) = g(−u) and

f ∗ g̃(s) =

∫
G

f(s− t)g̃(t)dmG(t), mG − a.e.

14



Indeed

µf ∗ dνg(A) =

∫
G

µf (A− t)dνg(t)

=

∫
G

(∫
A−t

f(s)dmG(s)
)
g(t)dmG(t)

=

∫
G

(∫
A

f(s+ t)dmG(s)
)
g(t)dmG(t)

=

∫
A

(∫
G

f(s+ t)g(t)dmG(t)
)
dmG(s)

=

∫
A

(∫
G

f(s− u)g̃(u)dmG(u)
)
dmG(s),

Remark 4.2 For f ∈ L1(G) and a vector measure ν we have that

µf ∗ ν(A) = Iν(χA ∗ f̃), A ∈ B(G).

Indeed

µf ∗ ν(A) =

∫
G

(∫
A−t

f(s)dmG(s)
)
dν(t)

=

∫
G

(∫
G

χA(s+ t)f(s)dmG(s)
)
dν(t)

=

∫
G

(∫
G

χA(t− s)f̃(s)dmG(s)
)
dν(t)

= Iν(χA ∗ f̃).

If ν is a vector measure and f ∈ L1(G) we denote µf ∗ ν = f ∗ ν and we
say that f ∗ ν ∈ C(G,X) whenever there exists fν ∈ C(G,X) such that
d(f ∗ ν) = fνdmG.

Proposition 4.7 Let ν be a vector measure.
(a) If f ∈ C(G) then f ∗ ν ∈ C(G,X) and

‖f ∗ ν‖C(G,X) ≤ ‖f‖C(G)‖ν‖. (15)

(b) If f ∈ L1(G) then f ∗ ν ∈ P1(G,X) and

‖f ∗ ν‖P1(G,X) ≤ ‖f‖L1(G)‖ν‖. (16)
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Proof. We define fν(t) ∈ X by

fν(t) =

∫
G

f(t+ s)dν(s) = Iν(τ−tf), t ∈ G. (17)

Let us see first that fν ∈ C(G,X). For each t, t′ ∈ G we have

‖fν(t)− fν(t
′)‖ = ‖Iν(τ−tf − τ−t′f)‖ ≤ ‖ν‖‖τ−tf − τ−t′f‖C(G).

Now the result follows using that the map G → C(G) given by t → τ−tf is
uniformly continuous.

Let us now show that d(f ∗ ν) = fνdmG. Let A ∈ B(G) and x′ ∈ X ′ and
note that

〈
∫
A

fνdmG, x
′〉 = 〈

∫
A

(∫
G

f(t+ s)dν(s)
)
dmG(t), x′〉

=

∫
A

(∫
G

f(t+ s)d〈ν, x′〉(s)
)
dmG(t)

=

∫
G

(∫
A

f(t+ s)dmG(t)
)
d〈ν, x′〉(s)

= 〈
∫
G

(∫
A−s

f(t)dmG(t)
)
d〈ν, x′〉(s)

= 〈f ∗ ν(A), x′〉

Finally (15) follows trivially since

sup
t∈G
‖fν(t)‖ = sup

t∈G,‖x′‖=1

|
∫
G

f(t+ s)d〈ν, x′〉(s)| ≤ ‖f‖C(G)‖ν‖.

(b) Assume now that f ∈ L1(G). We first find fn ∈ C(G) such that
‖f − fn‖L1(G) → 0. Using the previous case, the estimate (13) and the
fact |µf |(G) = ‖f‖L1(G) we conclude that

‖µfn ∗ ν − µf ∗ ν‖ ≤ ‖fn − f‖L1(G)‖ν‖.

Then f ∗ ν ∈ P1(G,X) and ‖f ∗ ν‖P1(G,X) = ‖µf ∗ ν‖ ≤ ‖f‖L1(G)‖ν‖.
Let us now look for some Young’s convolution result when assuming that

either ν ∈ Mp(G,X) or f ∈ Lp(G). Let us mention first that any measure
ν with bounded p-semivariation with respect to mG for some 1 < p ≤ ∞
necessarily belongs to Mac(G,X). This is due to the fact that it satisfies
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‖ν(A)‖ ≤ mG(A)1/p′ for each A ∈ B(G) which implies ν << mG and, in
particular ν is automatically regular.

To work with measures in Mp(G,X) we shall use some lemmas whose
proofs we include for the sake of completeness.

Lemma 4.8 Let 1 < p ≤ ∞ and let ν be a vector measure. Then ν ∈
Mp(G,X) if and only if ν ∈Mac(G;X) and T ∗ν (X ′) ⊂ Lp(G).

Proof. Assume ν ∈Mp(G,X). Now (1) gives that Tν extends to a bounded
operator from Lp

′
(G) into X. Hence T ∗ν is bounded from X ′ into Lp(G) and

therefore T ∗ν (X ′) ⊂ Lp(G).
Assume now that ν ∈ Mac(G,X) and T ∗ν (X ′) ⊂ Lp(G). Use now that

〈ν, x′〉 = T ∗ν (x′) and then d|〈ν, x′〉| = |hx′|dmG for some hx′ ∈ Lp(G). This
implies that for ‖

∑
A∈π αAχA‖Lp′ (mG) ≤ 1 we have∥∥∥∥∥∑

A∈π

αAν(A)

∥∥∥∥∥
X

≤ sup
‖x′‖=1

∫
G

(
∑
A∈π

|αA|χA)|hx′|dmG = sup
‖x′‖=1

‖hx′‖Lp(G).

Hence we have ν is of bounded p-semivariation.
Next result extends [3, Thm 3.9] to the case 1 < p <∞.

Proposition 4.9 Let 1 < p ≤ ∞ and let ν ∈ Mac(G,X). The following
statements are equivalent:

(i) ν ∈Mp(G,X).
(ii) Lp

′
(G) ⊂ L1(ν).

(iii) Lp
′
(G) ⊂ L1

w(ν).
Moreover ‖ν‖p.mG

= ‖Id‖Lp′ (G)→L1(ν).

Proof. (i) =⇒ (ii) Assume that ν has bounded p-semivariation with respect
to mG. Hence

‖
∫
G

φdν‖ ≤ ‖ν‖p,mG
‖φ‖Lp′ (G), φ simple .

This gives, due to the density of simple functions in Lp
′
(G) and L1(ν), that

Lp
′
(G) ⊂ L1(ν).
(ii) =⇒ (iii) It is obvious.
(iii) =⇒ (i) Assume Lp

′
(G) ⊂ L1

w(ν). Since ν << mG, using Radon-
Nikodym theorem we have, for each x′ ∈ X ′ the existence of hx′ ∈ L1(G) for
which

d〈ν, x′〉 = hx′dmG. (18)
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Therefore for each f ∈ Lp′(G) we have

‖f‖L1
w(ν) = sup

‖x′‖=1

∫
G

|f ||hx′|dmG ≤ K‖f‖Lp′ (G).

This implies that hx′ ∈ Lp(G) for all x′ ∈ X ′ and

sup
‖x′‖=1

‖hx′‖Lp(G) ≤ K. (19)

This gives ‖ν‖p,mG
≤ K.

Theorem 4.10 Let 1 < p <∞ and let ν be a vector measure.
(a) If ν ∈Mp(G,X) and f ∈ Lp′(G) then f ∗ ν ∈ C(G,X) and

‖f ∗ ν‖C(G,X) ≤ ‖f‖Lp′ (G)‖ν‖p,mG
. (20)

(b) If ν ∈Mac(G,X) and f ∈ L∞(G) then f ∗ ν ∈ C(G,X) and

‖f ∗ ν‖C(G,X) ≤ ‖f‖L∞(G)‖ν‖. (21)

(c) If f ∈ Lp(G) then f ∗ ν ∈ Pp(G,X). Moreover

‖f ∗ ν‖Pp(G,X) ≤ ‖f‖Lp(G)‖ν‖. (22)

(d) If f ∈ Lq(G) and ν ∈ Mp(G,X) with q′ > p then f ∗ ν ∈ Pr(G,X)
for 1/r = 1/p− 1/q′. Moreover

‖f ∗ ν‖Pr(G,X) ≤ ‖f‖Lq(G)‖ν‖p,mG
. (23)

Proof. (a) Using Proposition 4.9 we have Lp
′
(G) ⊂ L1(ν). Hence that Iν is

well defined on Lp
′
(G) and, denoting ft(s) = f(t + s) = τ−tf(s), we observe

that fν(t) = Iν(ft) makes sense for each value of t ∈ G. Repeating the
argument in Proposition 4.7 part (a) and using now that G→ Lp

′
(G) given

by t→ ft is uniformly continuous we obtain that fν is continuous. And also
we have

‖f ∗ ν(t)‖ ≤ ‖Iν‖Lp′→X‖ft‖Lp′ (G) = ‖ν‖p,mG
‖f‖Lp′ (G).

(b) If f ∈ L∞(G) then value Iν(ft) makes sense for any t ∈ G. Observe
that if ν ∈Mac(G,X) and f = χA we have∫

G

χA(t+ s)dν(s) = ν(A− t)
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is continuous. Hence f ∗ν ∈ C(G,X) for any simple function f and it satisfies
‖Iν(f)‖ ≤ ‖f‖L∞(G)‖ν‖. Finally using the density of simple functions in
L∞(G) we have the desired result.

(c) From Proposition 4.7 and f ∈ C(G) we know that d(f ∗ ν) = fνdmG

with fν ∈ C(G,X). Moreover, for each x′ ∈ X ′ ,∫
G

|〈fν(t), x′〉|pdmG(t) ≤
∫
G

(∫
G

|f(t+ s)|d|〈ν, x′〉|(s)
)p
dmG(t)

≤
∫
G

(|〈ν, x′〉|(G))p−1
(∫

G

|f(t+ s)|pd|〈ν, x′〉|(s)
)
dmG(t)

= (|〈ν, x′〉|(G))p−1

∫
G

(∫
G

|f(t+ s)|pdmG(t)
)
d|〈ν, x′〉|(s)

= ‖f‖pLp(G)(|〈ν, x
′〉|(G))p.

This shows (22) for continuous functions.
Let f ∈ Lp(G). We first find fn ∈ C(G) such that ‖f − fn‖Lp(G) → 0 and

denote νn = fn ∗ ν. From the previous case conclude that

‖νn − νm‖p,mG
= ‖fνn − fνm‖Pp(G,X) ≤ ‖fn − fm‖Lp(G)‖ν‖.

Therefore νn is a Cauchy sequence in Mp(G,X). Since it converges to f ∗ ν
in M(G,X) we conclude that f ∗ ν ∈ Pp(G,X) and

‖f ∗ ν‖Pp(G,X) = lim
n
‖fn ∗ ν‖Pp(G,X) ≤ lim

n
‖fn‖Lp(G)‖ν‖ = ‖f‖Lp(G)‖ν‖.

(d) Since ν ∈ Mp(G,X), using Lemma 4.8 we have d〈ν, x′〉 = hx′dmG

with hx′ ∈ Lp(G). Assume again first that f ∈ C(G) and ‖x′‖ = 1. Hence

〈f ∗ ν(t), x′〉 =

∫
G

f(t+ s)hx′(s)dmG(s) = f ∗ h̃x′(t).

Therefore |〈f ∗ν(t), x′〉| ≤ |f |∗|h̃x′|(t) and we can apply the classical Young’s
inequality

(

∫
G

|〈f ∗ ν(t), x′〉|rdmG(t))1/r ≤ ‖|f | ∗ |h̃x′|‖Lr(G)

≤ ‖f‖Lq(G)‖hx′‖Lp(G)

≤ ‖f‖Lq(G)‖ν‖p,mG

This gives (23) for continuous functions. The argument is finished using
density as above.
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5 Invariance under homomorphisms

Throughout this section H : G→ G denotes a homeomorphism and we write
R(s) = −s for the reflection and τa(s) = s+ a for the translation.

If f ∈ L0(G) we shall use the notation fH(s) = f(H−1s) and, in particu-
lar, τaf(s) = f(s− a) and f̃(s) = f(−s).

If ν is a vector measure we denote νH(A) = ν(H(A)) for A ∈ B(G), in
particular, τaν(A) = ν(A + a) and ν̃(A) = ν(−A). It is elementary to see
that νH is also a vector measure with ‖νH‖ = ‖ν‖. If ν ∈ M(G,X) then
νH ∈M(G,X) and TνH = Tν ◦ΦH where ΦH : C(G)→ C(G) is the induced
operator g → gH = g ◦H−1.

Let us point out some useful formulae to be used later on. From the fact
(χA)H = χH(A) and IνH (χA) = νH(A) = ν(H(A)) = Iν((χA)H) we conclude

IνH (f) = Iν(fH), f ∈ S(G). (24)

Also we have

(νH)f = (νfH )H and (νf )H = (νH)fH−1 for any f ∈ S(G). (25)

This follows by linearity and the obvious case

(νH)f (A) =

∫
A

fdνH =

∫
G

(fχA)Hdν =

∫
H(A)

fHdν = (νfH )H(A).

In particular
ν̃f = ν̃f̃ , τa(νf ) = (τaν)τ−af , a ∈ G. (26)

Taking into account (25) we conclude that f ∈ L1(νH) if and only if fH ∈
L1(ν). Moreover with

‖f‖L1(νH) = ‖(νH)f‖ = ‖νfH‖ = ‖fH‖L1(ν), f ∈ S(G). (27)

Definition 5.1 Let ν be a vector measure and H a family of homeomor-
phisms H : G → G. We say that ν is H- invariant whenever νH = ν for
any H ∈ H. In particular, we say that ν is translation invariant (respect.
reflection invariant) whenever τaν = ν for any a ∈ G (respect. ν̃ = ν.)

Given a vector measure ν ∈M(G,X) we can define

νinv(A) =

∫
G

τtν(A)dmG(t).

20



It is not difficult to show that νinv ∈ M(G,X). Clearly νinv is translation
invariant. Actually case of translation invariant measures, as in the scalar
valued case, reduces to the xmG for some x ∈ X.

Proposition 5.2 Let ν ∈ M(G,X) with ν(G) 6= 0. Then ν is translation
invariant if and only if ν = ν(G)mG.

Proof. Only the direct implication needs a proof. Assume that ν is transla-
tion invariant, that is ν = νinv. We shall show that

νinv(A) = ν(G)mG(A), ∀A ∈ B(G).

It suffices to see that Tνinv
(g) = (

∫
G
gdmG)ν(G) for all g ∈ C(G). This follows

by noticing that

Tνinv
(g) =

∫
G

Tτtν(g)dmG(t) =

∫
G

Tν(τtg)dmG(t)

= Tν(

∫
G

(τtg)dmG(t)) = Tν((

∫
G

gdmG)χG)

= ν(G)(

∫
G

gdmG).

Using (24) we easily formulate the H-invariance as follows:

Remark 5.1 Let ν be a vector measure and H : G→ G an homomorphism.
The following statements are equivalent.

(i) ν is H-invariant.
(ii) IνH (f) = Iν(f) for any f ∈ S(G).
(iii) L1(ν) = L1(νH) and Iν(fH) = Iν(f) for any f ∈ L1(ν).

Definition 5.3 (see [7, 3]) Given an homeomorphism H : G → G and
f ∈ L0(G) a vector measure ν is said to be a ”norm integral H-invariant”
whenever

‖IνH (f)‖ = ‖Iν(f)‖, f ∈ S(G). (28)

Given a family of homeomorphisms on G, say H, we shall say that ν is
”norm integral H-invariant” whenever it is norm integral H-invariant for
any H ∈ H. We say ”norm integral reflection invariant” and ”norm integral
translation invariant” in the cases of H = {R} and H = {τa : a ∈ G}
respectively.

21



Proposition 5.4 Let H : G→ G be an homeomorphism and ν ∈M(G,X).
The following are equivalent.

(i) ν is norm integral H-invariant.
(ii) ‖Iν(fH)‖ = ‖Iν(f)‖,∀f ∈ L1(ν).
(iii) ‖TνH (f)‖ = ‖Tν(f)‖,∀f ∈ C(G).
(iv) L1(ν) = L1(νH) and ‖IνH (f)‖ = ‖Iν(f)‖ for any f ∈ L1(ν).

Proof. (i) =⇒ (ii). It was shown in [3, Thm 3.3], due to the fact Iν(fH) =
IνH (f) for all f ∈ S(G).

(ii) =⇒ (iii) It follows using that C(G) ⊂ L1(ν) and Iν(f) = Tν(f) for
f ∈ C(G).

(iii) =⇒ (iv) Let us show that ‖f‖L1(ν) = ‖f‖L1(ν) for any f ∈ C(G).
Indeed, for each f ∈ C(G) we can write

‖f‖L1(ν) = ‖νf‖ = ‖Tνf‖
= sup{‖Tνf (g)‖ : ‖g‖C(G) = 1} = sup{‖Tν(fg)‖ : ‖g‖C(G) = 1}
= sup{‖TνH (fg)‖ : ‖g‖C(G) = 1} = sup{‖T(νH)f (g)‖ : ‖g‖C(G) = 1}
= ‖(νH)f‖ = ‖f‖L1(νH).

Finally use Lemma 2.1 to extend ‖IνH (f)‖ = ‖Iν(f)‖, ∀f ∈ C(G) to all
f ∈ L1(ν).

(iv) =⇒ (i) It is immediate.
Let us also consider some weaker notions still good enough for our pur-

poses.

Definition 5.5 Let ν be a vector measure and let H be a family of homeo-
morphisms H : G → G. Then ν is said to be ”semivariation H-invariant”
whenever

‖νf‖ = ‖(νH)f‖, f ∈ S(G), H ∈ H. (29)

In particular ν is said to be ”semivariation translation invariant” and ”semi-
variation reflection invariant” in the cases of H = {τa : a ∈ G} and H = {R}
respectively.

Remark 5.2 If ν is norm integral translation invariant or semivariation
translation invariant then so it is ν̃.

Assume first that ν is norm integral translation invariant, f ∈ S(G) and
a ∈ G. Then

‖Iν̃(τaf)‖ = ‖Iν(τ−af̃)‖ = ‖Iν(f̃)‖ = ‖Iν̃(f)‖.
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Assume now that ν is semivariation translation invariant, f ∈ S(G) and

a ∈ G. Then applying (26) we obtain (τaν̃)f = (τ̃−aν)f = ˜(τ−aν)f̃ and
therefore

‖(τaν̃)f‖ = ‖(τ−aν)f̃‖ = ‖νf̃‖ = ‖ν̃f̃‖ = ‖(ν̃)f‖.

Proposition 5.6 Let ν be a vector measure and let H : G → G be an
homeomorphism. The following statements are equivalent:

(i) ν is semivariation H-invariant.
(ii) L1(ν) = L1(νH) isometrically.
(iii) ‖TνH ◦ Mf‖ = ‖Tν ◦ Mf‖,∀f ∈ C(G) where Mf : C(G) → C(G)

stands for the multiplication operator g → fg.

Proof. (i) ⇐⇒ (ii) follows using that ‖f‖L1(ν) = ‖νf‖ = ‖(νH)f‖ =
‖f‖L1(νH) and the density of simple functions in L1(ν) and L1(νH).

(i)⇐⇒ (iii) follows observing that ‖Tν ◦Mf‖ = ‖νf‖ whenever f ∈ C(G)
and Lemma 2.1.

In Theorem 3.3 [3] (see also Proposition 3.5 [7]) it was shown that if ν is
norm integral H-invariant then it is semivariation H-invariant. We shall see
now that the converse is not true in general.

Proposition 5.7 Let G = T and X = L1(T). For each n ∈ Z \ {0} denote
φn(t) = tn for t ∈ T and define

ν(n)(A) = χ̂A(n)φn, A ∈ B(T).

Then ν(n) is semivariation reflection invariant but not norm integral reflection-
invariant.

Proof. To see that ν(n) is not norm integral reflection-invariant we use an
argument similar to that of example 3.6 (c) in [3]. Note that Tν(n)

(g) =
ĝ(n)φn for any g ∈ C(T) and Tν̃(n)

(g) = ĝ(−n)φn for any g ∈ C(T). Hence

Tν(n)
(φn) = φn and Tν(n)

(φ̃n) = 0. Hence ‖Tν(n)
(φ̃n)‖ 6= ‖Tν(n)

(φn)‖.
We shall see that ‖(ν(n))f‖ = ‖f‖1 for any f ∈ C(T). Due to (26) this

gives ‖(ν(n))f‖ = ‖(ν̃(n))f‖ for any f ∈ C(T).

First we notice that if f, g ∈ C(T) we have

T(ν(n))f
(g) = f̂ g(n)φn.
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Hence for each ψ ∈ X ′ = L∞(T) we obtain

〈T(ν(n))f
(g), ψ〉 = f̂ g(n)ψ̂(n) =

∫
T
g(t)

(
ψ̂(n)f(t)φ̄n(t)

)
dmT(t).

This shows that d〈(ν(n))f , ψ〉 = ψ̂(n)fφ̄ndmT and

‖(ν(n))f‖ = sup
‖ψ‖L∞(T)=1

|〈(ν(n))f , ψ〉|(T) = sup
‖ψ‖L∞(T)=1

‖f‖1|ψ̂(n)| = ‖f‖1.

Proposition 5.8 Let νf (A) =
∫
A

f(s)dmG(s) with f ∈ L∞(G,X) non con-
stant function satisfying that

‖f(t)‖ = 1, t ∈ G

and there exists A ∈ B(G) and a ∈ G for which

νf (A) = 0, νf (A+ a) 6= 0.

Then νf is semivariation translation invariant but not norm integral transla-
tion invariant.

Proof. Note that τtνf = ντtf and τtf ∈ L∞(G,X) for each t ∈ G. In
particular τtνf is of bounded variation and d|τtνf | = τt‖f‖dmG = dmG. Hence
L1(ν) = L1(τtν) = L1(mG) for any t ∈ G. Invoking now Proposition 5.6 we
obtain that ν is semivariation translation invariant.

On the other hand Iν(g) =
∫
G
gfdmG and we have ‖Iν(τaχA)‖ 6= 0 while

‖Iν(χA)‖ = 0, showing that νf is not norm integral translation invariant.

Remark 5.3 Select X = C, G = T, f(s) = χ[0,1/2)(e
2πis) − χ[1/2,1)(e

2πis),
A = {e2πis : 1/4 ≤ s < 1/2} and a = eiπ/2) to have an example satisfying
conditions of Proposition 5.8.

One of the basic properties of semivariation translation invariant measures
is the following fact.

Lemma 5.9 Let 1 ≤ p < ∞, let ν ∈ M(G,X) be a semivariation transla-
tion invariant measure and f ∈ Lp(ν). Then a→ τaf is uniformly continu-
ous from G into Lp(ν).
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Proof. Invoking Lemma 2.1, for each ε > 0 we find g ∈ C(G) such that
‖f − g‖Lp(ν) < ε. Now use the standard argument

‖τaf − τbf‖Lp(ν) ≤ ‖τa(f − g)‖Lp(ν) + ‖τb(f − g)‖Lp(ν) + ‖τag − τbg‖Lp(ν)

= ‖f − g‖Lp(νa) + ‖f − g‖Lp(νb) + ‖τag − τbg‖Lp(ν)

Hence, using Proposition 5.6, we conclude

‖τaf − τbf‖Lp(ν) ≤ 2ε+ ‖τag − τbg‖C(G)‖ν‖1/p

and the proof finishes using that g is uniformly continuous.

Theorem 5.10 Let 1 ≤ p < ∞ and let ν ∈ M(G,X) be semivariation
translation invariant with ν(G) 6= 0. Then Lp(ν) ⊂ Lp(G) and

‖f‖Lp(G) ≤ ‖f‖Lp(ν)‖ν(G)‖−1/p.

Proof. Using that νinv = ν(G)mG, in particular we know that Lp(νinv) =
Lp(G) and ‖f‖Lp(νinv) = ‖ν(G)‖1/p‖f‖Lp(G). Therefore it suffices to show that
Lp(ν) ⊂ Lp(νinv) and ‖f‖Lp(νinv) ≤ ‖f‖Lp(ν). We first point out the following
trivial estimate between positive measures

|〈νinv, x′〉| ≤
∫
G

|〈τtν, x′〉|dmG(t)

for any x′ ∈ X ′. Hence, for each f ∈ Lp(ν) = Lp(τtν) for all t ∈ G, we have

‖f‖Lp(νinv) = sup
‖x′‖=1

(

∫
G

|f |pd|〈νinv, x′〉|)1/p

≤ sup
‖x′‖=1

(

∫
G

(

∫
G

|f |pd|〈τtν, x′〉|)dmG(t))1/p

≤ (

∫
G

( sup
‖x′‖=1

∫
G

|f |pd|〈τtν, x′〉|)dmG(t))1/p

= (

∫
G

‖f‖pLp(τtν)dmG(t))1/p

= ‖f‖Lp(ν).
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Proposition 5.11 Let ν ∈ M(G,X) a semivariation translation invariant
measure and f ∈ L1(ν). Then f ∗ ν ∈ C(G,X) and

‖f ∗ ν‖C(G,X) ≤ ‖f‖L1(ν)‖ν‖. (30)

Proof. Recall that

fν(t) =

∫
G

f(t+ s)dν(s) = Iν(τ−tf) = Iτ−tν(f)

which it is well defined for each t ∈ G using that L1(ν) = L1(τ−tν). Moreover

‖f ∗ ν(t)‖ ≤ ‖τ−tf‖L1(ν)‖ν̃‖ = ‖f‖L1(ν)‖ν‖.

Using now Lemma 5.9 we have that t→ τ−tf is continuous from G into L1(ν)
which shows that f ∗ ν ∈ C(G,X).

Corollary 5.12 Let ν ∈ M(G,X). Then ν is norm integral translation
invariant if and only if for each f ∈ L1(ν) one has that f ∗ν ∈ C(G,X) with

‖f ∗ ν(t)‖ = ‖
∫
G

fdν‖ ∀t ∈ G.

Proof. Assume that ν is norm integral translation invariant. From Propo-
sition 5.11 we have f ∗ ν ∈ C(G,X). Moreover in this case

‖f ∗ ν(t)‖ = ‖Iν(τ−tf)‖ = ‖Iν(f)‖ = ‖
∫
G

fdν‖ ∀t ∈ G.

The converse is immediate because any simple function f belongs to L1(ν)
and by assumption

‖Iν(τtf)‖ = ‖f ∗ ν(−t)‖ = ‖
∫
G

fdν‖ = ‖Iν(f)‖.

6 Applications to Fourier Analysis on L1(ν)

In this section we analyze the properties of νf , where νf (A) =
∫
A
fdν for

each A ∈ B(G), in terms of those of ν and f ∈ L1(ν) and apply them to
recover and improve the results in [3] and [7].
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Proposition 6.1 Let ν be vector measure.
(i) If ν ∈M(G,X) and f ∈ L1(ν) then νf ∈M(G,X).
(ii) If 1 < p ≤ ∞, ν ∈ Mp(G,X) and f ∈ Lq(G) for some p′ ≤ q ≤ ∞

then νf ∈Mr(G,X) for 1
p

+ 1
q

= 1
r
.

Proof. (i) Note from Lemma 2.1 we have that Tνf = limn Tνfn where fn ∈
C(G) for each n. It suffices to see that Tνg : C(G)→ X given by ϕ→

∫
ϕgdν

is weakly compact for any g ∈ C(G). On the other hand Tνg = Tν ◦Mg where
Mg stands for the multiplication operator on C(G) given by Mg(φ) = gφ.
Therefore, since ν is regular, hence Tν is weakly compact and then we obtain
that νf is regular.

(ii) We use Proposition 4.9 to have that Lq(G) ⊂ Lp
′
(G) ⊂ L1(ν). Hence

νf is well defined. Now use the fact that T ∗νf = Mf ◦T ∗ν where Mf : Lp(G)→
Lr(G) is the multiplication operator Mf (g) = fg and the fact that νf ∈
Mr(G,X) is equivalent to T ∗νf ∈ L(X ′, Lr(G)) to finish the proof.

Corollary 6.2 Let 1 ≤ p <∞ and ν ∈M(G,X).
(i) If f ∈ Lp(G) and g ∈ L1(ν) then f ∗ν g ∈ Pp(G,X). Moreover

‖f ∗ν g‖Pp(G,X) ≤ ‖f‖Lp(G)‖g‖L1(ν)(see[3]).

(ii) If ν ∈ Mp1(G,X), g ∈ Lp2(G) and f ∈ Lp3(G) with 1
p1

+ 1
p2
≤ 1 and

1
p1

+ 1
p2

+ 1
p3
≥ 1 then f ∗ν g ∈ Pr(G,X) for 1

p1
+ 1

p2
+ 1

p3
= 1

r′
. Moreover

‖f ∗ν g‖Pr(G,X) ≤ ‖ν‖p1,mG
‖f‖Lp2 (G)‖g‖Lp3 (G).

Proof. As mentioned in the introduction f ∗ν g = f ∗ νg. Now both cases
follow combining Proposition 6.1 and Theorem 4.10.

From Theorem 5.10 when assuming that ν ∈ M(G,X) is semivariation
translation invariant we have Lp(ν) ⊂ Lp(G) for any p ≥ 1. Hence, as pointed
out in [7], we can consider the classical convolution

f ∗G g(t) =

∫
G

f(t− s)g(s)dmG(s)

between f ∈ L1(G) and g ∈ Lp(ν) and between f ∈ Lp(ν) and g ∈ Lq(ν).

Theorem 6.3 Let 1 ≤ p < ∞ and let ν ∈ M(G,X) semivariation transla-
tion invariant.
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(i) If f ∈ L1(G) and g ∈ Lp(ν) then f ∗G g ∈ Lp(ν). Moreover

‖f ∗G g‖Lp(ν) ≤ ‖f‖L1(G)‖g‖Lp(ν). (31)

(ii) If f ∈ Lp(G) and g ∈ L1(ν) then f ∗G g ∈ Lp(ν). Moreover

‖f ∗G g‖Lp(ν) ≤ ‖f‖Lp(G)‖g‖L1(ν). (32)

Proof. We first analyze the case p = 1. Note that for f, g ∈ C(G) we
have s → τsg is continuous function with values in L1(ν). We write the
L1(ν)-valued Riemann integral

f ∗G g =

∫
G

τsgf(s)dmG(s).

Using Minkowsky’s inequality and Proposition 5.6 we get

‖f ∗G g‖L1(ν) ≤
∫
G

‖τsg‖L1(ν)|f(s)|dmG(s) = ‖f‖L1(G)‖g‖L1(ν).

To extend to general functions, we use that C(G) is dense in L1(ν) and
in L1(G).

Assume now p > 1. As above we start with g ∈ C(G) and use Hölder’s
inequality together with L1(ν) ⊂ L1(G) to have

|f ∗G g(t)|p ≤ min{‖f‖p−1
L1(G)(|f | ∗G |g|

p)(t), ‖g‖p−1
L1(ν)(|f |

p ∗G |g|)(t)}.

Therefore (i) follow from the case p = 1. Indeed,

‖f∗Gg‖pLp(ν) ≤ ‖f‖
p−1
L1(G)‖|f |∗G|g|

p‖pL1(ν) ≤ ‖f‖
p
L1(G)‖|g|

p‖L1(ν) = ‖f‖pL1(G)‖g‖
p
Lp(ν).

The case (ii) is analogue.
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