THE p-BOHR RADIUS OF A BANACH SPACE

O. BLASCO

ABSTRACT. Following the scalar-valued case considered by Djakow and Ra-
manujan in [20] we introduce, for each complex Banach space X and each
1 < p < 0o, the p-Bohr radius of X as the value

o0
rp(X) =sup{r 2 0: > _ |lz,[[Pr"? < s 1£(2)]17}
z|<

n=0
where x, € X for each n € NU {0} and f(z) = >0° jznz™ € H®(D, X).
We show that for a complex (possibly infinite dimensional) Banach space X
the condition r,(X) > 0 for some p > 2 and is equivalent to X being p-
uniformly C-convex. We analyze the p-Bohr radius in the cases X = L9(u) for
different values of p and ¢ showing that for p < 2 and dim(L9%(p)) > 2 one has
rp(L9(p)) = 0 while for p > 2 one has 7p(L%(p)) = 1 whenever p’ < ¢ < p.
We also provide some lower estimates for ra(L%(p)) for 1 < ¢ < 2.

1. INTRODUCTION AND PRELIMINARIES

Let us start by recalling the remarkable discovery of H. Bohr of a universal
constant r; = 3 (denoted the Bohr radius) satisfying

o0

(11) S lanl(3)" < 1l

n=0

for any f(z) =" ,a,2" € H>®(D,C). The reader is referred to the paper by H.
Bohr [10] which includes Wiener’s proof showing that r; = § is sharp. A bit later
some other proofs of such inequality were obtained (see [22, 26]).

Throughout the decades several variations of Bohr’s inequality (1.1) have ap-
peared. Djakov and Ramanujan in [20] (see also [4] for further considerations
replacing the H*°-norm by the HP-norm) studied, for each 1 < p < oo, the best

constant r, such that

oo

(12) (S taal )" < 17~

n=0

where f(z) =Y anz".

Notice that although Bohr’s result establishes that r1 = 1/3 and clearly r, =1
for p > 2 due to Haussdorf-Young’s inequality, however computing the precise value
of rp for 1 < p < 2 seems to be rather complicated. As far as we know the best
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2 O. BLASCO

known estimates were obtained in [20, Theorem 3] and are given by
2. 1 \52 (1 —ap)l/r
1. (1+CG)77) 7 <rp < in .
(1.3) 1+(p) =T = A (1= a2)P + ar(1 — a?))/»
A bit later V. Paulsen, G. Popescu, D. Singh [22, Corollary 2.7] gave the following
modification of (1.1)

o0
1
(1.4) lao|? + ; janl(5)" <1

whenever f(z) =Y 07 an,z™ and || f||g= < 1. Also the value 1/2 is sharp.
More recently the author (see [6, Proposition 2.4]) extended such a result to
1 < p < 2 showing that if f(z) =Y " a,2z™ and || f||g= < 1 one has

- p
1.5 P =Ly <1
(1.5) |ao ;:1 |a |(2+p) <

Also the value 2% is sharp.

Several authors (see [4, 11, 12, 19, 20, 28]) have found some other extensions
of Bohr’s estimate in different directions. For instance, after the paper by Dineen
and Timoney [18] some multi-dimensional analogues of Bohr’s inequality where the
disc D is replaced by a domain 2 C C™ were considered in [9]. Since then several
applications and connections with local Banach space theory and other topics were
shown by different authors (see for instance [1, 2, 3, 14, 15, 16]).

In this paper we are interested in the vector-valued analogue of (1.2) and to show
its possible connection with Banach space theory. Let us fix our notation and give
some definitions first. Throughout this paper H>°(D, X) stands for the space of
bounded holomorphic functions from the unit disc D into a complex Banach space
X and we write || f|| e, x) = sup|,<1 [ f(2)[|. As usual for 1 <p < oo, H?(D, X)
stands for the space of holomorphic functions from I into X such that

2
; dt
£l = sup ([ e o) < co.
0<r<1 Jo T

In [6] the author defined the Bohr’s radius of a Banach space X as the value

R(X) =sup{r>0: > [len]r™ < || flln=mx)}-
n=0
Embedding C into X we obtain the trivial upper bound R(X) < % for any Banach
space X. However it was shown that R(X) = 0 for X = C} whenever m > 2,
where C', for 1 < p < oo, stands for the space C™ endowed with the norm
lwll, = (327 [wilP)!/P for 1 < p < oo and ||w]le = supiZ; |wi.
This fact led the author to consider the vector-valued analogue of (1.4) and to

introduce for a given Banach space X and parameters 0 < p, ¢ < oo, the quantities
(see [6, Definition 1.3])

(1.6) Rpq(f, X) = sup{r > 0: Jaol” + (Y awalr™)? < 1}
n=1

where f(z) = Y07 xp2™ with || f||gem,x) < 1, and
(1.7) Ry (X) = inf{Rpq(f, X) : [fllrr=m,x) <1}
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Several results concerning the values R, ,(X) for X = C, X = C and X = L?
were analyzed.

Let us consider now the vector-valued analogue of the approach due to Djakov
and Ramanujan.

Definition 1.1. Let 1 < p < 0o and let X be a complex Banach space. We write

(1.8) rp(f, X) =sup{r > 0: Y [lan['r™ < 1}

n=0

where f(z) = > 0" o @n2" with || f|| e (p,x) < 1 and define the p-Bohr radius of X
rp(X) = f{r,(f, X) 2 [|flaex) <1}

0 1/p
sup{r > 0: (ZHCEan?”"p> < flla=mx)}-
n=0

Of course the quantities 7,(X) and R, 4(X) are related. Actually for 1 < p < o0
and 1/p+ 1/p’ =1 we have that
(L9) Ry p(X) < 1p(X) <297 Ry (X)

Indeed, clearly R, ,(X) < r,(X) using the estimate >~ ||, [|Pr"? < (Yoo, |z |lr™)P.
On the other hand, if f € H*(D,X) and we denote 7,(f,X) = r then for each
0 < 5 < 1 one has

© oo
lzol” + (3 llaallr™s™” < Jlaoll? + (3 leal?r?)(
n=1 n=1

’
sP

1— P

i

’

sP
1— s

IA

[[zol[” + (1 = [|zzo[|”)( i
Choosing s = 271/%" one gets 7,(X) < 27 R, ,(X).

In particular using (1.9) and (1.5) we obtain a lower estimate for r,, namely
P
2+p
The reader should notice that (1.10) is sharp for p = 1 while for p = 2 one only
gets ro > %

(1.10) rp > Rpp > Ryt =

Remark 1.2. For any Banach space X the function p — rg(X) is increasing, that
is

(1.11) i (X) <rp2(X), p1 < pe.

Indeed, first recall that ||z,|| < || f|| g ,x) for all n (this can be seen composing
with functionals z* € X* and using the scalar-valued case). Hence if f(z) =
ZZC:O 2p2" € H*®(D, X) has norm 1 and p; < py then

S lwall? (rgy (F, X)/22)52 <37 g [Py, (F, X)" < 1.
n=0 n=0

This gives 751 (f, X) < r02(f, X) and we obtain (1.11).

The estimate (1.11) can be easily improved using interpolation as the following
lemma shows.
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Proposition 1.3. Let X be a complex Banach space, 1 < p; < p < pa < 0o and
L1204 0 Then
p P1 P2
(1.12) rp(X) > 7, (X)) 07, (X))
Proof. Let us show that for each f € H*°(ID, X) with norm 1 we have that
rp(f, X)) 2 1, (F, X)0rp (£, X)°.

Denote 71 = 7, (f, X) and 7o = 7, (f, X). Hence (3200, ||z, [|PrrpPh) /e < 1
and (3200 ||, ||P2ryP?) /P2 < 1. Now setting oy =@ 2 =@ andr = {170y
we can use Holder’s inequality to obtain

n — 1-6 npO
O llalPrmey/e = (37 [P0y O |, PO e
n=0 n=0
< (3 oallP ) 0=/ (S g r2rgPe)olee <1,
n=0 n=0
This shows that r,(f, X) > 7“5179)7“3. O

As a consequence of (1.12) one gets the lower estimate
1
(1.13) rp > (5)2/1’*1, l<p<2.

Note that since 3¥ < 2+y for 0 < y < 1, choosing y = 2/p — 1, we obtain ﬁ <
(3)%/P=1 and then (1.13) improves (1.10). One may wonder whether r, = (1)%/7~1
for 1 < p < 2. However the already known lower estimate given in (1.3) is better
than the one obtained in (1.13). Indeed, the inequality 2* <z +1for0 <z <1
implies, choosing = = p — 1, that (%)ﬁ < 2 and then

1+ (C)™)5 > (5)F 1<p<e.
p 3

Of course 0 < rp(X) < 1 for any Banach space (just take f(z) = zz with
|lz|]| = 1) and r,(X) < r, for any complex Banach space X. Due to (1.9) and [6,
Theorem 2.2] one can not expect r,(X) > 0 for dim(X) > 2. However it is not
difficult to find examples with r,(X) > 0 or even r,(X) = 1 for values p > 2.

We would like to mention two well-known properties which appear naturally
when considering the p-Bohr radius and which allow us to see that if 1 < ¢ < oo
then r,(L%(u)) = 1 for certain values of p > 2 and r,(L>°(n)) = 0 for any p > 1.

We first recall the notion of Fourier type p first introduced by J. Peetre

Definition 1.4. (see [25]) Let 1 < p < 2. A complex Banach space X is said to
have Fourier type p if there exists Fj,(X) > 0 such that for any f € L?(T, X)

oo

(Y IF@IPYY < (X v cmx)

where 1/p+1/p’ = 1.
Proposition 1.5. Let 1 <p <2 and 1/p+1/p' = 1. If X has Fourier type p > 1
with F,,(X) =1 then rp (X) = 1.

In particular

(1.14) rp(Li(p) =1, 1<g<oo, p >max{qq}.
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Proof. The inequality

O Mzl < N fllar@,x) < 1= o,x)
n=0
for any f=>"" jz,2" € H*(D, X), gives that rp (f, X) > 1.
(1.14) follows using that L7(x) has Fourier type p = min{q, ¢’} and F,(L(p)) =
1 (see [25]). O

Besides the notion of Fourier type bigger than one, there is another geometrical
property of the Banach space that plays some important role to have r,(X) > 0.

Definition 1.6. (see [27]) A complex Banach space X is said to satisfy the strong
mazimum modulus theorem if || f(z)|| has no maximum in D for any non-constant
bounded analytic function f: D — X.

Proposition 1.7. Ifr,(X) > 0 for some 1 < p < oo then X does satisfy the strong
mazimum modulus theorem.

In particular X = CZ form > 2, X = ¢p and X = C([0,1]) satisfy that
rp(X) =0 for any 1 <p < 0.

Proof. Assume that there exists a non constant f € H*°(D, X) of norm 1 and
zo € D such that ||f(z0)| = 1. Using a Moebius transformation we may assume
that zo = 0. Hence r,(f, X) = 0 and therefore r,(X) = 0 for any p > 1.

To finish the proof it suffices to recall that C* for m > 2, ¢y and C([0,1]) do
not satisfy the strong maximum modulus theorem (see [27]). O

The strong maximum modulus theorem is related with the strict c-convexity
(see [21, 27]). Let us mention certain notions on C-convexity that are particularly
interesting in our situation.

Definition 1.8. (see [21, 13]) Let 2 < p < 0o. A complex Banach space X is called
p-uniformly C-convex if there exists a constant A > 0 such that

(1.15) (llll” + Ally[P)*/» SmgXllvarewyll
for all z,y € X. Denote A,(X) the supremum of the constants A satisfying (1.15).

There are some equivalent formulations of such a concept. One is the so-called p-
uniformly PL-convexity (we refer to [17, 21, 23, 24] for information on that) where
the maxy || + ey is replaced by (fo% |z + et0y[|742)1/9 for some 1 < g < oo and
another one is given in terms of Littlewood-Paley inequalities (see [7]).

Our main theorem gives another interesting characterization of such a convexity
property.

Theorem 1.9. Let X be a compler Banach space and p > 2. X is p-uniformly
C-convex if and only if the p-Bohr radius r,(X) > 0.

This result is closely related to another description of p-uniformly C-convexity
achieved in [7, Proposition 2.1] which states the existence of a constant A > 0 such
that

(1.16) ULF )P+ AlLF O < (1 f ]| oo (m,x)
for any f € H*(D, X).
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The paper is divided into two sections. In the first one we prove Theorem 1.9
and in the second one we study r,(L9(p) for different values of 1 < p,¢ < oc.
From (1.14) we know that for 1 < ¢ < 2 one has that ry (L%(u)) = 1 and since
L%(p) is 2-uniformly C-convex (see [21, 13]) for 1 < p < 2 Theorem 1.9 gives that
actually ro(L7(p)) > 0. We shall get some lower estimates of r,(L%(u) whenever
1<g<p <2<p<oo.

2. GEOMETRICAL CHARACTERIZATIONS
Let is introduce the following variation of the p-Bohr radius motivated by (1.16).

Definition 2.1. Let X be a complex Banach space and 1 < p < co. We denote
(2.1) p(X) = sup{r > 0+ [FO)[I” + "L f' O)I” < £} m,x)}

According to the result mentioned in the introduction p-uniformly C-convexity
means 7,(X) > 0 for p > 2. Since 7,(X) < 7,(X) one has that spaces with
positive p-Bohr radius are always p-uniformly C-convex. However we shall present
an independent proof of Theorem 1.9 and get the characterization in (1.16) as a
consequence.

Let us first mention that contrary to the situation for 7,(C) a precise value of
7p(C) can be computed for all values of p.

Proposition 2.2. Let 1 < p < oo and define

. (1 —aP)/P
(22) W=l

Then 7,(C) = 7.

Proof. From Schwarz-Pick lemma we have that |f’(0)| < (1 —|f£(0)|?) for any f €
H>(D) with norm 1. Hence for f(z) =Y. janz" and || f|| g~ < 1 we have

|aol” + lar P78 < lao|” + (1 = Jao|*)P7p < 1.

Therefore we obtain 7,(C) > ~,,.
To see the other inequality consider ¢, (2) = == = —a+ 171“2 Yoo a™z"™ which
belongs to the unit ball of H*>°. Then

lal” + 7 (C)" (1 = [al*)? < [|¢all e =1, fal <1

This shows that
5 (C P < 1—aP 0 1
Tp( ) = 7(1 aQ)p7 <a<l.

Hence 7,,(C) < 7,. O
The value of 7, is given in the following formula.
Proposition 2.3. Let p > 1. Then 71(C) = %, 7p(C) =1 forp>2 and

:L,;l/Pl + xl/iﬂ

Fpl€) = LT, 1<p<2
where (1 — x,)%/P~1 = 7 and 0 <z, < 1.
P
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Proof. The case p = 1 and p > 2 are immediate from Proposition 2.2. Let us
consider 1 < p < 2 and denote
(1— (= a)/ry

- .

(2.3) hp(x) =

Clearly 7,7 = supy ;<1 hp(z).
One observes that h,(1) = 1, limy_,+ hp(x) = 0, hy(0F) = lim, o hp(x)

x

(%)p lim,_,o i—z = 0o and h;(l_) = —1. Since for 0 < x < 1 one has
1
Bp(@) = = (1= (L= 2)Pp (A= o) (1 +2) — 1)
the function A, attains it maximum at 0 < x, < 1 such that hj,(z,) = 0 (that is to
say (1 —a,)%/P~1 = 1+1xp)' Moreover
2P pp—1
2.4 P=h =—Lr _
(2.4) Tp »(Tp) 1+,
and the result is achieved. ]

Theorem 2.4. Let p > 1. Then
7p(X)

(2.5) CISSEE < rp(X) < 7p(X).
(26) AT 5 x) < 40, 2

Proof. Let f € H*(D, X) with norm 1 and f(z) = > _,z,2". Let n € N and
consider £ = ¢+ and define g(z) = }LZ;;I f(&§72). Using that 37 & = 0 we
obtain

0(2) = 0 + 202"+ a9 4

Since g € H>°(D, X') with norm ||g|| g ,x) < 1 we have that
lg" () < 7(X) 7P (L = [lg(0)[|)-

This gives the estimate

[zl < 7p(X)7P(1 = [lzol["), n>1.

Therefore
o0 o0
[zoll” + > lzallPr?™ < laoll?” + 7 (X) 7P (1 = 2o P) (O rP™)
n=1 n=1
< ol + 75 (X) 71— flzoll?)
x) "
< 1,7 - .
< max{1,7,(X) P )

Now choosing r such that 7,(X)? = % we obtain (2.5).
Let us now see (2.6). Let f € H*(D,X) with || f| gem,x) < 1 and let  be
in the unit ball of X*. Since (£, f) € H>*(D,C) with (£, f)||g=m,c) < 1 then

Schwarz-Pick lemma gives

€, /(O] < 1= (€, £(0))]* < 2(1 — (€, F(0)))).
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This shows that, for any £ in the unit ball of X*,

6 £O)] + 516, PO < 1.
Therefore, for any 6 € [0, 27),

i0 i0
1£0)+ S £/ () = sup [{&, £(0)) + S-(&, /(0D < 1.
l€lI=1
Hence e
@1 + 2 o) <1
This gives M < 7p(X). 0

Proof of Theorem 1.9
Applying Theorem 2.4 one obtains

AP (X)
— P < (X) < AVP(X).
(A,(00) 27 = 70 = AT
Taking into account that p-uniformly C-convexity means A,(X) > 0 the proof
is complete. O
Combining (2.5) in Theorem 2.4 and Proposition 2.2 one gets the following lower
estimate for r,.

2.7)

Corollary 2.5. Let 1 < p < 2. Then
(2.8) rp > (14+7,7)7".

Combining (2.6) and (2.5) we also obtain the following lower estimate.

Corollary 2.6. If X is 2-uniformly C-convex then ro(X) > ‘/A’j(z)(())i)ﬂl.

3. p-BOHR RADIUS OF L?-SPACES

In this section X = L%(u) where p is a measure space and 1 < g < co. It was
shown (see [6]) that r1(L9(mu)) =0 for 1 < ¢ < oo whenever dim(L%(u)) > 2.

We shall see that r,(L9(p)) = 0 for 1 < p < 2 while r,(L%(n)) > 0 for p > 2 and
I<qg=<p

Next result follows closely the ideas in [6] and it is included for sake of complete-
ness.

Theorem 3.1. Let (2,3, ) a measure space such that there exists a couple of
disjoint measurable sets A, B € ¥ with 0 < p(A), u(B) < co. Then

(L) =0, 1<p<g<ooorl<g<p<2
In particular, if 1 <p <2 then rp(CJ*) =0 for m > 2 and r,(L9(T)) = 0.

Proof. Assume first p < q. Since lim, o, y?/? — (y — 1)P/9 = 0, one has that for
each € > 0 we can find 0 < v < 1 such that
(,y—l)p/q —(y 1= 1)p/q < &P,
Equivalently
(3.1) (1 —)P/7 4 ePyP/a > 1.



THE p-BOHR RADIUS OF A BANACH SPACE 9

Now define zy = (1 —)Y/9—24__ and z; = 71/‘1% and set

(A)l/q
f(z) =20+ 12

Clearly sup|,|<, Ilf(2)lLaquy =1 and

[zoll” + [l [Pe? > 1.

Hence 7, (f, L?(pt)) < € and then 7,(X) = 0.
Assume now p < 2 and ¢ < 2. We argue as above choosing now for each € > 0 a
value 0 < v < 1 satisfying

(3.2) (L—7)P/2 4 ePy?/2 > 1.

We now define

_o—1/q(1 _ \1/2 XA XB
2= (S )
_9—1/q,1/2 XA  XB

n =2 (e~ )

and set
f(2) =0+ 212 =2"YI(\/1 =7+ /72)
Observe that

1 ()l

1/q _ 2
( ) +2 (v/1 — V%) )1/q

2| T= 7+ el + VT 7 - zq)”q
22 (VT3 4 el + VT =7 - vaaP) <

On the other hand, ||zo| = +/1 — v and ||z || = /7. The proof is finished using(3.2)
and arguing as in the previous case. (Il

IN

Let us now analyze the case p > 2 and ¢ < p.
Theorem 3.2. Let2<p < oo and p' < q<p. Then
(3.3) (L)) = 1.

Proof. We first consider p = 2 (hence ¢ = 2). We can use Plancherel’s theorem to
obtain

(3.4) O Mzl Zau)™? = £l 2 .22y

and, then 7o(L?(1)) > 1. The other inequality is always true.
Assume2<p<ooandp’<q<p Select0<9<1suchthat%:1;9and

1 < B < o0 so that % = 9 + 9. Observe first that i
(3.5) mj}XHl’nHLﬂ(H) SN, 25 (u))-
Now we can use complex interpolation, and apply the result (see [8])
[HP(D, L* (1)), HP* (D, L (1))]g = H*(D, L (),
for - = 11)—10 5= =04 %. We then conclude, due to (3.4) and (3.5) by
considering p; = 2, p2 = 1 and @ = 2 (and hence p3 = %9 and v = q)

(D ln )"/ < 1 F 178 0,9 )-
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This shows that for each f(z) = Y.~ z,2™ belonging to the unit ball of H>° (D, L(p))
we have (307, HﬂCnHiq(u))l/p < 1. Hence r,(L%(p)) > 1. O

The only case that is left is 1 < ¢ < p’ < 2 < p. Using Corollary 2.6 and Remark
1.11 one gets that r,(L(p)) > rg/q(Lq(u)) > 0. Let us see that in general also
rp(L9(pw)) < 1.

Proposition 3.3. Let X = LY(T) and 1 < q < 2. Then 0 < ro(X) < 1.

Proof. As mentioned above the fact that r2(X) > 0 follows from Corollary 2.6.

We shall show that there exists f in the unit ball of H>(D, L%(T)) with > ||, |* =
0o. Therefore ro(X) < 1.

It suffices to select F' € HY(T)\H*(T), say F(w) = > apw™, with ||F|| gra(r) =
1, that is supg.,.cy [|Fr | pa(ry < 1 where F.(e'') = F(re') and consider the L9(T)-
valued function

f(2)(e") = F(ze') = Z ane™ 2"
n=0

Hence ,,(e) = ane™ and || f(2)||La(r) = || Fls(|me < 1 for all 0 < |z| <1 and

o0 o0
Do lanl? =Y lanl®
n=0 n=0

O

Our aim is now to find lower estimates for r,(L%(u) in the case 1 < g <p’ <2<
p. We shall need the following lemma.

Lemma 3.4. Let 1 < ¢ <2 and F € HY(D). Then

2, (Lyzma o0\ 12
(3.6) (FOR+QFIFOF) " < IFlmw
Proof. Let us first show that

1 1/2
(IFOP+ZIFOF) " < [Pl ).
Assume that ||F| g1y = 1. Now, using factorization to write F' = gh with
g1 € H*(D) and [l 2) = g2y = 1. Hence F(0) = g(0)h(0),
F'(0) = h(0)g'(0) + 1'(0)g(0)

and
190>+ g (0)* < 1, |h(0)* + R (0)* < 1.

Using that 2zy < 22 4+ y? we have
[E(0)* + %IF'(O)I2 < 9(0)]?|R(0)]% + |g(0)[* |1 (0)|* + |g"(0) |*|h(0) |
g(0)2(|h(0)[* + [1'(0)*) + ¢’ (0)[*|n(0)[*

19(0)]
(Ig(0)[* +1g" ()} (|AO)[* + |1 (0)*) < 1.

IA

Therefore
2 1 /! 2 1/2
(IFOP+3IFOF) " < 1Pl

which combined with

1/2
(IFOP +1FOF) " <Pl
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gives also the case 1 < ¢ < 2 in (3.6) by invoking interpolation (see [5, Theorem
5.6.2]). O

Theorem 3.5. Let (2,%, 1) a measure space and 1 < g < 2. Then 7o(L(u)) >
1 1

227 q,

Proof. Let f : D — L%(p) be a bounded holomorphic function, say f(z) = > oo z,2".

We use Fubini’s theorem and Minkowski’s inequality, together with Lemma 3.4, to

get the following estimates

||f||?{oo(D,Lq(M)) 2 ||f||(}{q(D,Lq(,L))
2m
- db
0\ |19
= su se ()=
s [ 5
2m
) df
= s [ ([ 1) @05 dutw)
0<s<1JQ 0 ™
2 1.2-g 5 2\ /2
> swp [ (o) + () ko (w)Ps?) du(w)
0<s<1JQ
1,229
= swp [ (lmow) ()5 s ()57 ez, duw)
0<s<1Jq ¢
1 2-¢
> swp ([ fenw)ltduw). ()5 [ m@rstda)]
0<s<1 Q Q Carq
1 2—gq
— 2 i S 2 q\q/2
sup (ool + ()7 105"
1, 2-q q/2
= (IeolZagn + G) T IzlEa) -
Hence 7(L9(n)) > (1) 7 . O

Corollary 3.6. Let (2,%, 1) a measure space and 1 < ¢ <p’ <2 <p < oo. Then
2
rp(L(n) = (L+257 1)1/,
In particular r,(L* (1)) > (1/3)'/7.
Proof. Note that ¢,(t) = W
Theorem 3.5 one obtains
ra(L () = $a(Fa( L9 () = ¢a(25 1) = (142071712

Finally use r,,(X) > r2(X)?/? to complete the result.

is increasing. Combining now Theorem 2.4 and
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