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Abstract

We define a set of projections on the Bergman space A% parameter-
ized by an affine closed space of a Banach space. This family is defined
from an affine space of a Banach space of holomorphic functions in the
disk and includes the classical Forelli-Rudin projections.
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1 Introduction

Recall that the Bergman projection of L?(ID) onto the holomorphic Bergman
space A = L*(D) N 'H(D), where H(D) denotes the space of holomorphic
functions in the unit disk, is given by

Pea) = [ (“‘)ﬂcm(w),

1 —zw)?

where dA is the normalized Lebesgue measure in the disk. Recall also the
family of Forelli-Rudin projections parameterized by a > —1

Powp(z) = /D(O‘ +1) (11__|:,Um|) (1 Si(z%)sz(w)
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which are the orthogonal projection of the weighted L*(ID,(1— |w|)*dA(w))
onto H(D) N L*(D,(1— |w|)*dA(w)). It is well known (see [6, Th. 7.1.4]) that
P, is a continuous projection of L?(D) onto A%, for each a > —1/2.

Since
1— |w]”
— — z2zwebDy, ch
1—zw

where D; = {z : |z — 1] < 1}, we may replace the function g,(¢) = (a+1)¢*
in the definition of P, by any holomorphic function g on I; to obtain an
operator T, mapping the space C.(ID) of compactly supported continuous
functions defined on D into A2. An equivalent formulation of the operators
defined this way was given by Bonet, Englis and Taskinen in [1] to construct
continuous projections in weighted L> spaces of D into H(D). The purpose
of this paper is to study the space P of all holomorphic functions g € Dy,
for which the corresponding operator 7T, can be extended continuously to
L*(D). In particular we study the set Py of those functions g € P that
define continuous projections on A%. For convenience in the notation we will
translate the functions in P to the unit disk D.

We will prove that P is a Banach space when we define the norm of
g € P as the operator norm of the operator T, and that ®(g) = fol g(r)dr
defines a bounded linear functional in P*. We give an analytic description
of the elements of P and show that if g € P then either T} is identically zero
on A? or it is a multiple of a continuous projection onto A2, implying that
Po = & 1({1}) is a closed affine subspace of P.

As usual, for each z € D, ¢, will denote by ¢, the Mobius transform
¢.(w) = 2= which satisfies (¢,)! = ¢, and ¢, (w) = —~—EL. Throughout

~ 17w (1—zw)?"
this paper we will write

1w

Y. (w) =

1—zw
and
H ={z € C: Re(z) > 1/2}.

Clearly the mapping z — i is a bijection of D onto H, and

P (w) =1 — Why(2). (1)

2 A space of projections on A?

Let us start by presenting our new definitions and spaces of projections.
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Definition 1 Let g be holomorphic in D. We define

Ty6(2) = [ atwon(:)etu) o,

for any ¢ € C.(D).

We denote by P (respect. Py) the space of holomorphic functions g €
H(D) such that T, extends continuously to L*(D) (respect. T, is a projection
on the Bergman space A?).

We provide the space P with the norm ||gllp = [Tyl 12 ) r2(p) -

Remark 2 In [1] it was introduced, for each F holomorphic in H the oper-
ator ) . dA(w)
— 2w w
Srp(z —/ F( ><p w)————5—.
A= L ) P e

We have that T, = Sp, with F(n) = n%g(l - %) We will say that such F' € P

(respect. Py) if g € P (respect. Py).

Example 3 Let g,(z) = (a+ 1)(1 — 2)* for every a > —1. Then g, € Py
for a > —=1/2. In fact by (1) we have that T, = P,, which is a bounded
projection from L*(D) into A? if and only if o > —1/2.

Example 4 If P(z) = ZQLO arz® is a polynomial then P € P.
Moreover P € Py if and only if Z]kvzo (;‘T’“l) = fol P(r)dr = 1.

Proof. Write P(z) = 3.0 bp(1 — 2)¥ where by, = (—1)]“%. Hence

= B+ 1)
This shows that Tp € P and ||P|p < Sop, (]Lli’:ll) || P¢]|. On the other hand
Tp € Py if and only if Zg:O(kakl) = 1. Notice now that Z,]f:o(ka’“l) =

[ P(r)dr to conclude the proof. m

Example 5 If ¢ € H(D) is such that (1 — 2)%g(z) is bounded for some
a > —1/2 then g € P and ||g|lp < Csupp, 4 [(1 — 2)%g(2)|. In particular
the space of bounded holomorphic functions H>®(D) is contained in P and

11l < Cllflloo-



Proof. Use that Py fD U=lw) (w)dA(w) also defines a bounded

|[1— wz|2+a

operator on L?(D) (see [5 Theorem 1.9]). m

Proposition 6 Let g : {z : |z — 1| < 2} — C be holomorphic such that
g(z) =32 Jan(l—2)" for |z — 1] < 2.

If 3200 3+‘1a’§|/4 < 00 then g € P and

[e.e]

2" |an|
lgll» <C Z m-
n=0

Moreover, g € Py if and only if Zn 0 n‘fﬁl =

Proof. Indeed, the norm ||P,|| = —”n) (see [2, 3]). Then for ¢ € C.(D)

o

(2),

n=1

Z |an| \/W

and

lgll»

» D!~ (nrn)i/ae

To conclude the result note that »_ ~ |‘fﬂ < 00 and

Finally observe that, from Stirling’s formula

[e.o]

n=1

forpe A2 . m

Example 7 Let hg(z) = Ag(1+2)7P for 3 > 0 where Ag = % if B#1
and A; = (log2)™'. Then hg € Py for 0 < < 5/4.

Proof. Since, for § > 0,
(n 4+ 1)°~1, we have that

(1—1w)ﬁ = ZZOZO Bpw™ for |w| < 1, where 3, ~

hg(z) = = (f—z 17277 ZA 2= 5 (1 — 2)™.




Now Proposition 6 implies that hz € P.
Note that

2 1 A2 n+16
1= [ Ags™Pd _/h dr=Y 22
[ s tis = [ oty Z —

Apply again Proposition 6 to finish the proof. m
Let us now give some necessary conditions that functions ¢ in P should
satisfy.

Theorem 8 If g € P then

Sup {/D | (@ ()] dA(w)}l/2 <2llgllp, (2)
(/01 |g(7“)|2dr> " < 2[lglp, (3)

1 2 1/2
(/0 < . %Wl(u» (1- r2)2rdr> < 2|gllp- (4)

Proof. If g € P and ¢ € C.(D) one has T, € A% Hence for each z € D

=12 = Q-1
Therefore dA(w) lall el
B w g Pllo
/Dg(w¢w(2))90(w)<1 ) = (17i 2])

Then by duality,

2 dAw) Y2 lgllp lgll
{/‘g w2 T } “a-maoy @

Let us show the following formula:

6= (W) s () (2) = udu(2). (6)

Indeed, since



oo = 20D

then

I e X O e O
ve(0:()) = o = g = ) ™)

Now (6) follows from (1) and (7)

6. (W), () (2) = 1 — 1. (6(u)) = udy(2). (8)

Changing the variable u = ¢.(w) in (5) and using (6) we obtain

{/D ‘g (u¢u—(2))‘2dA(u)}l/2 <2[lfl, -

Now replacing u and Z by w and z respectively the inequality (2) is
achieved.

Part (3) follows selecting z = 0 in (2).

Part (4) follows from (2) replacing the supremum by an integral over D
and changing the variable u = ¢,,(2),

[ [19@sucnraswiacy = [ ([ 4D ona)a - purraac)
_ /D< D%M@))a—w)ﬂdmw)

/01( %dfl( ))( —7’2)27’dr.

Remark 9 (P, | - ||p) is a normed space and (g fo r)dr € P*.
Indeed, the only condition which needs a proof is the fact that ||g|lp = 0
implies that g = 0. It follows from (3) that if ||g|lp = 0, then g(r) = 0 for
0 <r < 1. Hence by analytic continuation, g(z) =0 for z € D.
Notice also that (3) implies that ||| < 2.



Remark 10 The space P is not invariant under under rotations. Given
0 € [0,27) denote Ro(f)(2) = f(e?2) for f € H(D). Observe that RyT,(¢) =
T,(Rop). However, that T, is bounded in L*(D) does not imply that Tg,, is
bounded in L*(D). For instance, the function g(z) = (1 + 2)~Y/2 belongs to
P, but by (3), its reflection g(z) = (1 — 2)~Y2 ¢ P.

Let us now also give some necessary conditions to belong to the class P,.

Theorem 11 If g € Py then

/D 9(udn(2)) () dA(u) = (0) (9)

for ally € Ay and z € D.
In particular,

(1) If g € Py then folg(r)dr =1.
(ii) Let Sy = {Z(1 — |2]*)¢(2) : ¢ € A*}. If g € Py and ¢ € P then
SQ C K@T(Tg/).

Proof. Assume
§ p(w)
A pr—
[ st g2 aaw) = o)
for all ¢ € A2
2)2

Given ¢ € A% and z € D, consider p(w) = @D(qﬁz(w))((ll__‘gu))g. Clearly
p € Ay and ||¢|lz = (1 — |2]?)||¢]|2- From the assumption,
(L — =2
11— wz|*

/D 9(06(2))((w)) dA(w) = (0).

for all ¢ € A% and z € D.
Now changing the variable u = ¢,(w), and using (6), one gets

/D 9(ub(2) b (w)dA(u) = 1(0)

for all ¢ € Ay and z € D. Finally changing u by w one obtains
[ stwoute)ee)daw) = vo) (10)
D
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for all ©» € Ay and z € D.
(i) follows selecting » = 1 and z = 0 in (10).
Differentiating in (10) with respect to z one obtains

—w(1 — [w]?)

4) g’(w%(Z))W@b(w)dA(u) =Ty (1hy) =0

where ¢;(u) = —u(1 — |u]*)¢(a). Hence (ii) is finished. m
Let us now show that (P, || - ||p) is complete. For such a purpose, let us
define h, : D — H by

1 1—zw

a(w) 1= |w*

and let us mention that

D= (221 e Dy = (p(w) 2w e D).

1—zw

Lemma 12 For every & € H, there exist 0 < a < 1 and w € D such that

€ = ho(w) and hy, is an diffeomorfism of a neighborhood U of w onto an open
neighborhood of &.

Proof. For 0 < r,a <1 fixed,

; 1 ra
ha(rea): TE 1_r26 0

(11)

1

—= with radius

describes the circle (), centered at the complex number

2

Let £ € H. To prove that £ € h,(D) it is enough to see that ¢ € C,., for
some 0 < 7r, a < 1.
Let

1

Lot 1
r? )

B= L[ IeP 1201~ ) Reg] = I (12
It is clear that # > 0 and

B<le (I—rH)EP+1<2Reé.



Also, since £ € H, we have for some ¢ > 0 that 2Re& > 1 + ¢. Hence
if ¢ < 7 then 3 < 1. We conclude that there exists ro such that
0 < 3 < 1provided 7y < r < 1. Then if 7o < 7 < 1 and we let a = /3 we

have 0 < o < 1 and
1 ro

‘5_ T—r2| 1—¢2
that is £ € C,. . Hence there exists 6, and 0 < o, < 1 such that h,, (re??) = ¢.
To find 6, explicitly, we let ¢, = 7 — 6,.. From (11) we can write

¢ = 1 n roy,
S 1—r2 1 =92

Hence ¢, is the argument of ¢ in polar coordinates centered at the complex
number . Then if = > Re(¢),

eter

sinf, =sing, = r:()(é{) (1—1?

cosf, = —cosp, = <1r_ozr2) (1 —17’2 — Re(§)> (13)
1= (1= ) Re(f)
B ra, ’

Now we will prove that possibly except for a finite number of values of
r > rg, the jacobian matrix Dh,, (re?") is not singular, where o, and 6, are
chosen so that hg, (re?") = £ as before. To this end, it is enough to see that
the set of values of r such that the vectors

Ohg, , . 10h,, ,
a—pr(pe GT)|p_r and ~ 50 (re 9)|9:9T (14)
are linearly dependent is finite.
We have
Oha i 2p a(l+p?) a(l+p%) .
i) — - 6, 02T L) Gng
i (vt e e O

10ha, ( _ )

— ) = sin 6, cosf |,

poo Y=\ =



and the jacobian of h,,

: oh o\ 1L Oh ;
h 10y _ det a AN a 0
Jha(pe”) = de o5 (pe )p 59 e

«a 2 e 2y .
(1—252)2 - (1(:;5)2) cos 6 % sin 0
= det
(1_a—p2) sin 6 ﬁ cos
@ 2
_ m@pcose—a(l—i—p )) (15)

If 2r cos 0, — a,.(1+7?) = 0, then multiplying this equation by a,7? we obtain

2r?a,r cos, — a?r?(1+1r%) = 0. (16)

However, from (12) and (13) we see that 2r?a,r cosf, — a?r*(1 + r?) is
a polynomial of degree 6 in the variable r. We conclude that the vectors in
(14) are linearly dependent for six values of r at the most and the proof of
the lemma is complete. m

Theorem 13 P is a Banach space

Proof. Let g € P we have by Theorem 8 that

1/2
sup{ [ latwon:DF )} < 2l )
z€D D

Fix £ € D. Since ¢, = 1/h,, then the local invertibility statement of Lemma
12 holds for the family of functions 1 — ¢, taking & € D, namely, there exist
a € (0,1), we € D and open neighborhoods U and V of £ and wg respectively,
such that 1 — ), is a diffeomorphism of V into U.
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Hence

{ |g<u>|2dA<u>}1/2 ~{ [ o= vatwpr |J%(w)|d,4<w>}”2

<c@{[ |g<w¢w<a>>|2dA<w>}1/2

<C©) gl -

It follows that 12
{ 1o <u>|2dA<u>} < Crc gl

for every compact set K C ID. This implies that
sup g (u)| < [|gllp Ck- (18)
ueK

If {g,} is a Cauchy sequence in P, we have by (18) that {g,} converges to
uniformly on compact sets of D to a holomorphic function g.
If ¢ € C.(D), we have

Typ(2) = Typ(2),

uniformly on D in L*(D). Since ||g, ||, is a bounded sequence then by the
Fatou lemma it follows that

1Tyl < Mllgllp

and g € P. Also, from

1Ty, = Tonelly < llgn = gmll 21l

we conclude that T, — T,, namely g, — gin P. =

3 Main results

Let us now describe the norm in P in a more explicit way. We shall use the
formulation of the space given in [1].

11



Theorem 14 Let g € H(D) and put F(§) = E%g(l - b,
Then g € P if and only

1 o 2 1/2
Sup ——— r— 1)z} |zF ]) dx) < 00.
i J! J+1(/1 ( Pl )|

Proof. We use the expression

Top(2) :/DF (11—_|f|2) Wﬂ)%‘

Consider the space M of functions of the form

Y= Z pi(r)e,

finite

with ¢; € L?((0,1),7dr). Then M is a dense subspace of L?(D).
For z € Dand 0 < r < 1 fixed, let f(¢) = (1 fzc) which is holomorphic

1
on D. We have .

1—rz¢ 1/ —rz \’ ;
o=r ()£ v

Jj=0

1 .
—)E I < 1.

Then for g € M,

m N oL
f( Z(p] ]' (1—T2> F (1_7,2)27

0 7>0

Hence
Z% ©i)NJ + lzj (19)

j>0

where 7; is the functional in L?((0, 1), rdr) defined by

PR G VU AP S T
7](%0>_\/mj|/0 90( )<1—’I“2) F( (l_rz)(l_rg)gd‘

Using the normalized Lebesgue measure dA, the set {y/7+ 127} is an or-
thonormal basis for A2, so we conclude that T, is bounded in L*(D) if and
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only if

< Clloll 2

1/2
=C (Z/]@j(rﬂzrdr) .

Using duality, this will hold if and only if

|Gy,

A 1/2
1 / ! r % 70) ( 1 ) > rdr -
SUp —— — 00.
20 VI 1 \Jo \T=7 T=r| =)
Letting the change of variables = = ﬁ, the integrals above equal

% /1 e = Dap |eFO @) de

and the proof is complete. =
We can now give an alternative proof of a well know result.

Corollary 15 P, is bounded on L*(D) if and only if « > —1/2.

(20)

Proof. Consider g,(z) = (1 — 2)*. Assume first that g, € P. Then (3)
in Theorem 8 implies that fol(l —r)**dr < oo and therefore a > —1/2.
Assume now that a > —1/2. Since F,(§) = £ ™ with m = 2 + a and

2m — 3 > 0, one has for 7 > 0 that

I'(m+j)

PP () = (1P mim 4 1)..(m+ = a9 = (-1

Therefore

/1 @ = Vaf [oFO@)| dr = /1 (- PO @)

B (F(;'Eﬂ:)j)f/l (1— E)J —2m-+4
= (F(;rén:)j))z/o (1 —r)r*™ 4y
(F(gznt)j))23(2m —3,j+1).



Using that B(p,q) = % one concludes that

1 OOI_ L) CEZB(Qm—?),j—i-l)
(j!)z(j+1)/1 (@ = Naf o FP(@) de = Bty

Finally since for p fixed, B(p,j) ~ j~P one obtains that

B(2m —3,j+1)
B(m, j)*5*(j +1)

Example 16 In Ezample 7 it was shown that, for 0 < 5 < 5/4, g(z) =
(14 2)=% € P (which corresponds to F(£) = (;; 12)2)
Let us show for mstance that g(2) = (1+2)"2 ¢ P.
In this case F(§) = (25 ez and
(—1)7(j +1)12
(26 — 1)**7

FU)(g) =
Since 5 <wx—1<w forx > 2 we have

(/:O(x(x—l))j]xF(j)(x)|2dx> K. 2j(j+1)!(/200 %dw)m ~ (1)

Hence the condition in Theorem 14 does not hold.

The conditions

1 oo
sup — |(a: — 17 FU)( (z)] dz < oo, (21)
J=0 J!
lim 2/ FO (z) =0 (22)

were introduced in [1]. These conditions imply that on the space of all the
holomorphic functions ¢ such that Sgy is well defined, the operator Sr is a
constant multiple of the identity . Now we will see that (21) and (22) hold
for every g € P what allows to show the following result.

Theorem 17 Let g € P and ¢y = fol g(r)dr. Then

Ty(p) = cop, @€ A2,

14



Proof. Let us notice first that (z — 1)7FU)(z) € L'([1,00),dz) for j > 0.
Indeed,

/100 o — 1 |F9 ()| da
= /loo |z(z — 1)|J' ‘xF(j)(x)} x‘jlfl
< (/100 (z(x —1)) |$F(j)($)|2dx)l/2</loo m;—-:zl))]dx)l/z

- (/100 (a(z — 1)) |xF(j)(:c)|2d:c)1/2</ol a-niar)”

1 (/OO , A 9 1/2 .
= ——([ la@- D [2FO@)|"dz) " < Cillglp.
Applying (19) in Theorem 14 to ¢(z) = Z;‘V:o a;z? one obtains
N
Typ = Z cja;z, (23)
=0
and 4
(—1)/

Cj:

. / (z — 1Y FY (z)dz,
J! 1
where ¢; is well defined.

As in [1, Th. 1] we have by integration by parts

(=1) lim (1 — )1 FU) (z).

G — Ci+1 = GFD) o

Let us now show that lim, (1 — z)7*' F0)(z) = 0.
Note first that (z — 1971 FU)(x) € L2([1,00),dz) for j > 0. Indeed

| =0 PO @ < [ oo - DO @)Pde < G+ DG
1 1

(24)
In particular (z — 1)7FY(z) € L*([1,00),dx) for j > 1. From Cauchy-
Schwarz and the previous estimates one has that if f;(z) = [(z—1)7*1F ) (z)]?
then (f;)" € L'([1,00)) for every j > 0.
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Therefore writing
(e~ 1P FO@P = [ () )y
1
we see that the lim, . ((z — 1)7+F()(2))? exists and by (24) it vanishes for

all j.
Hence (23) becomes T,(¢) = cop where

co = /100 F(z)dz = /1009(1 - é)‘i—f - /Olg(r)dr.

Corollary 18 Let g € P. Then A* C KerT, if and only if fol g(r)dr = 0.

Corollary 19 Let ®(g) = fol g(r)dr for g € P. Then Py = @ 1({1}).

Corollary 20 Let g € P. If T, is not identically zero in A* then there exists
A# 0 and gy € g € Py such that g = \go.
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