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Abstract
In this paper we obtain the boundedness of the periodic, discrete

and Ergodic bilinear Hilbert transform, from Lp1×Lp2 into Lp3 , where
1/p1 + 1/p2 = 1/p3 and pi ≥ 1. The main techniques are a bilinear
version of the transference method of Coifman and Weiss and certain
discretization of bilinear operators. In the periodic case, we also obtain
the boundedness for 2/3 < p3 < 1.

1 Introduction.

If T : S(R)×S(R) → S ′(R) is a continuous bilinear operator which commutes
with simultaneous translations then, in the distributional sense, T can be
represented as

T (f, g)(x) =
∫

R2
f̂(ξ)ĝ(ν)m(ξ, ν)e2πix(ξ+ν)dξdν,

for Schwarzt test functions f and g belonging to S(R). It has been of great
interest in the last decades to find conditions on the symbol m such that
T extends to a bounded operator from Lp(R) × Lq(R) → Lr(R) whenever
1/r = 1/p + 1/q (see for example the works of [7], [11],[12], [15] or [18]). In
particular, if

T (f, g)(x) =
∫

Rn
K(y)f(x− y)g(x + y)dy,

where K(y) = Ω(y′)
|y|n , y′ ∈ Σn−1 and Ω is an odd-function then

T (f, g)(x) =
1

2

∫
Σn−1

Ω(θ)
( ∫ ∞

−∞
f(x− tθ)g(x + tθ)

dt

t

)
dθ.
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The operator inside the brackets Hθ(f, g)(x) =
∫ ∞
−∞ f(x−tθ)g(x+tθ)dt

t
is the

so-called uni-directional bilinear Hilbert transform whose boundedness can
be proved directly from the boundedness of the bilinear Hilbert transform

H(f, g)(s) =
∫ ∞

−∞
f(s− t)g(s + t)

dt

t
, s ∈ R.

This operator appeared for the first time in 1960, when A.P. Calderón was
analyzing Cauchy integrals on Lipschitz curves and, in particular, the bound-
edness on L2(R) of the first commutator with a kernel A(x)−A(y)

(x−y)2
where A′ ∈

L∞(R), and he needed to prove that the operator H maps boundedly L2(R)×
L2(R) → L1(R) (see [6, 17]).

After several papers concerning the problem, M. Lacey and C. Thiele (see
[19, 21, 22]) proved Calderón’s conjecture showing that H : Lp(R)×Lq(R) →
Lr(R) whenever 1/p + 1/q = 1/r < 3/2. (see also [13, 14]).

Since then, multilinear operators have become a matter of great interest
in Harmonic Analysis.

In 2001, D. Fan and S. Sato ([10]) were able to show the boundedness of
the bilinear Hilbert transform on the torus

HT(f, g)(x) =
∫

T

f(x− y)g(x + y) cot(πy)dy,

by transferring the result from R. Their proof relies upon some DeLeeuw type
transference methods for multilinear multipliers (see [9]). Similar techniques
have been recently extended in [3] and [4].

Our aim in this paper will be to study the boundedness of the bilinear
Hilbert transform in different measure spaces. In particular, we shall obtain
the boundedness (on the same range but p3 ≥ 1) of the discrete Hilbert
transform

HZ(a, b)(m) =
∑
n�=0

am−nbn+m

n
,

of the ergodic Hilbert transform

HT (f, g)(x) =
∑
n�=0

T nf(x)T−ng(x)

n
,

where T is an ergodic transformation acting on Lpi(Ω) for a certain σ-finite
measure space Ω, and, hence also of

HD(f, g)(x) =
∑
n�=0

f(x− n)g(x + n)

n
,
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and, we shall also give a new proof of the result of Fan and Sato about the
boundedness of the bilinear Hilbert transform in the torus.

The main technique is based in the so-called transference method of R.
Coifman and G. Weiss (see [8]). This method was introduced in 1977 and
since then, it has been developed and extended by many other people (see [2]
or [1]) and has shown to be an extremely useful tool to prove the boundedness
of many operators defined on certain measure space assuming that we know
the boundedness of a related convolution operator on certain group.

In 1996, L. Grafakos and G. Weiss (see [16]) proved a first result con-
cerning a transference method for multilinear operators. They consider a
multilinear operator T defined on an amenable group G by

T (g1, ..., gk)(v) =
∫

Gk
K(u1, ..., uk)g1(u

−1
1 v)...gk(u

−1
k v)dλ(u1)...dλ(uk),

with gj in some dense subset of Lpj(G) and where K is a kernel on Gk which
may not be integrable, and they are able to transfer the boundedness of
T : Lp1(G) × ...Lpk(G) → Lp0(G) whenever 1/p0 = 1/p1 + ... + 1/pk to the
boundedness of operator T̃ : Lp1(µ) × ...Lpk(µ) → Lp0(µ) where (M,µ) is a
measure space and

T̃ (f1, ..., fk)(x) =
∫

Gk
K(u1, ..., uk)(R

1
u1
f1)(x)...(Rk

uk
fk)(x)dλ(u1)...dλ(uk),

where fj is in some dense subset of Lpj(M), and Rj : G → B(Lpj(M))
(j = 0, 1, ..., k) are representations which are connected through R0

vR
j
u = Rj

uv

for all u, v ∈ G and 1 ≤ j ≤ k, and satisfy certain boundedness conditions.
In this paper, we shall develop a transference method for bilinear oper-

ators in the same spirit as the one started by Coifman and Weiss for linear
operators, which will allow us to transfer the boundedness of bilinear opera-
tors such as the bilinear Hilbert transform on R to other groups, recovering
the Fan and Sato transference result from our general principle. We shall
restrict ourselves to the two variable case, to locally compact abelian groups
G and to integrable kernels (although our results will work in multilinear
situation, amenable groups and more general kernels). A much more de-
tailed study of this type of transference will be undertaken in [5]. Here, we
shall be more concerned about the applications related to the bilinear Hilbert
transform on measure spaces.

The second technique that we shall use concerns the discretization of
bilinear operators.
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2 Main techniques: Transference method and

discretization

2.1 Transference method for bilinear operators

Let K ∈ L1(G) be a kernel with compact support and let 1 ≤ p1, p2 < ∞
and 0 < p3 < ∞ such that

1

p3

=
1

p1

+
1

p2

·

From now on, p1, p2 and p3 will satisfy the above relation.

Consider the mapping

BK(φ, ψ)(v) =
∫

G
φ(u−1v)ψ(uv)K(u)dm(u),

for φ ∈ Lp1(G) and ψ ∈ Lp2(G), where m is the Haar measure on G, and let
us define the transference operator TK : Lp1(µ) × Lp2(µ) → Lp3(µ) by

TK(f, g)(x) =
∫

G
(R1

u−1f)(x)(R2
ug)(x)K(u)dm(u),

where Rj : G → B(Lpj(µ)) are strongly continuous mappings for j = 1, 2.
Then:

Theorem 2.1 Under the above conditions, if, for every v ∈ G, there exist
Aj > 0 such that

‖Rj
vf‖Lpj ≤ Aj‖f‖Lpj (1)

and there exists a strongly continuous mapping R3 : G → B(Lp3(µ)) satisfy-
ing that, for every u, v ∈ G and every f ∈ Lp1(M) and g ∈ Lp2(M),

R3
v(R

1
u−1fR2

ug) = R1
vu−1fR2

vug, (2)

and such that, for every v ∈ G, there exists B > 0 satisfying

‖f‖Lp3 (M) ≤ B‖R3
vf‖Lp3 (M). (3)

then, the bilinear operator TK : Lp1(µ) × Lp2(µ) → Lp3(µ) is bounded and it
has norm bounded by Np1,p2(K)A1A2B where Np1,p2(K) stands for the norm
of the bilinear map BK in the corresponding spaces.
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Proof. Using the continuity of R3
v and (2), we get that

R3
v(TK(f, g)) =

∫
G
R3

v(R
1
u−1fR2

ug)K(u)dm(u)

=
∫

G
R1

vu−1fR2
vugK(u)dm(u),

and by (3), we obtain that, for every f ∈ Lp1(Ω), g ∈ Lp2(Ω), and every open
set V ⊂ G,

‖TK(f, g)‖p3

Lp3 (µ) ≤ Bp3
1

m(V )

∫
V

∫
Ω
|R3

vTK(f, g)|p3dµ dm(v).

Now, we can use similar arguments to those given in [8]. For any ε > 0, let
V ∈ V such that

max
{
m(V C)

m(V )
,
m(V C−1)

m(V )

}
≤ 1 + ε,

with C = supp K. Then,

‖TK(f, g)‖p3

Lp3 (µ)

≤ Bp3

m(V )

∫
Ω

∫
V

∣∣∣∣
∫

G
(R1

vu−1f)χV C−1(vu−1)(R2
vug)χV C(vu)K(u)dm(u)

∣∣∣∣
p3

dµ dm(v)

≤ Bp3
1

m(V )

∫
Ω
||BK(R1

ufχV C−1 , R2
ugχCV )||p3

p3
dµ

≤ Bp3Np1,p2(K)p3

.
1

m(V )

∫
Ω

[( ∫
V C−1

|R1
vf |p1dm(v)

)p3/p1
( ∫

V C
|R2

vg|p2dm(v))
)p3/p2

]
dµ

≤ Bp3Np1,p2(K)p3
1

m(V )

( ∫
V C−1

‖R1
vf‖p1

Lp1

)p3/p1
( ∫

V C
‖R2

vg‖p2

Lp2

)p3/p2

≤ Bp3Ap3
1 A

p3
2 Np1,p2(K)p3(1 + ε)||f ||p3

p1
||g||p3

p2
,

from which the result follows. �

2.2 Discretization techniques

Let us denote Au = u + A where u ∈ R and A is an interval in R and let
I = (−1/4, 1/4) and p ≥ 1. Denote by Q : Lp(R) → 2p(Z) the bounded
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operator defined by

f →
( ∫

In

f(t)dt
)

n∈Z

and by P : 2p(Z) → Lp(R) the map defined by

(an)n∈Z → f =
∑
n∈Z

anχIn .

Observe that ‖Q‖ = 2−1/p′ and ‖P‖ = 2−1/p.

Proposition 2.2 Let K be an integrable kernel in L1(R) and let us define

Kn =
∫

I

∫
(n+Iu)∩(n−Iu)

K(t)dtdu.

If

TK(f, g)(x) =
∫

R

f(x− t)g(x + t)K(t)dt

then
QTK(Pa, Pb)(m) = T(Kn)(a, b)(m) =

∑
n∈Z

am−nbm+nKn.

In particular, for p3 ≥ 1, one gets ‖T(Kn)‖p1,p2 ≤ 1
2
‖TK‖p1,p2, where

‖T(Kn)‖p1,p2 stands for the norm of the bilinear map T(Kn) from 2p1(Z)×2p2(Z)
to 2p3(Z) and ‖TK‖p1,p2 stands for the norm of the bilinear map TK from
Lp1(R) × Lp2(R) to Lp3(R).

Proof:
Given a, b be finite sequences, we have that

TK(Pa, Pb)(x) =
∑
n,m

anbmTK(χIn , χIm)(x)

=
∑
n,m

anbm

∫
(x−In)∩(−x+Im)

K(t)dt

=
∑
n,m

anbm

∫
(x−n+I)∩(−x+m+I)

K(t)dt.

Now, it is clear that (x−n+I)∩(−x+m+I) �= ∅ if and only if |2x−(n+
m)| < 1/2, and hence, given k ∈ Z and x ∈ Ik, (x−n+I)∩ (−x+m+I) �= ∅
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implies that |2k − (n + m)| < 1; that is 2k = n + m . Thus,

∫
Ik

TK(Pa, Pb)(x)dx =
∑
n,m

anbm

∫
k+I

∫
(x−n+I)∩(−x+m−I)

K(t)dtdx

=
∑
n,m

anbm

∫
I

∫
(k−n+Iu)∩(−k+m−Iu)

K(t)dtdu

=
∑

n+m=2k

anbm

∫
I

∫
(k−n+Iu)∩(k−n−Iu)

K(t)dtdu

=
∑
l∈Z

ak−lbk+l

∫
I

∫
(l+Iu)∩(l−Iu)

K(t)dtdu,

and therefore, for every m ∈ Z,

QTK(Pa, Pb)(m) =
∑
n∈Z

am−nbm+nKn,

as we wanted to see. �

3 Applications

3.1 Bilinear Hilbert transform on T

We shall apply our transference method to give a new proof of the result
in [10] for the bilinear Hilbert transform on T. For such a purpose take
G = R with the Lebesgue measure, (Ω,Σ, µ) the measure space (T,B(T),m)
the Lebesgue measure on T and R1 = R2 = R3 = R, where

(Ruf)(eiθ) = f(ei(θ−u)).

Trivially Rj, j = 1, 2, 3, satisfy conditions (1), (2) and (3).

Definition 3.1 A function m ∈ L∞(R) is said to be normalized if mn =
φ̂n ∗m is pointwise convergent to m where φn(x) = 1

2n
χ[−n,n] ∗ χ[−n,n].

7



Theorem 3.2 Let K ∈ S ′(R) such that K̂(ξ) = m(ξ) for some normalized
function m. Let

TK(f, g)(x) =
∫

R

∫
R

f̂(ξ)ĝ(ν)m(ξ − ν)eix(ξ+ν)dξdν,

for f, g ∈ S and let

T̃K(P,Q)(x) =
∑
k∈Z

∑
k′∈Z

P̂ (k)Q̂(k)m(k − k′)eix(k+k′),

for P and Q trigonometric polynomials.
Then, if TK : Lp1(R) × Lp2(R) → Lp3(R) is bounded, we have that

T̃K : Lp1(T) × Lp2(T) → Lp3(T)

is also bounded, if p3 ≥ 1.

Proof. As in Lemma 3.5 of [8], let us take ψ ∈ L2(R) with compact support
such that ψ̂(0) = 1 and let us define Kn(x) = (mnĥn)̌(x) where hn(x) =
nψ(nx). Then Kn ∈ L1(R), it has compact support and K̂n(x) → m(x) for
all x ∈ R.

Let
Tn(f, g)(x) =

∫
R

Kn(t)f(x− t)g(x + t)dt

for f, g ∈ S(R).
We shall show first that Tn : Lp1(R)×Lp2(R) → Lp3(R) and supn∈N

||Tn|| <
∞.

Now,

Tn(f, g)(x) =
∫

R

K̂n(ξ)[f(x− ·)g(x + ·)] (̌ξ)dξ

=
∫

R

ĥn(ξ)mn(ξ)[f(x− ·)g(x + ·)] (̌ξ)dξ

=
∫

R

hn(t)An(t, x)dt

where An(x, t) = (m̌n ∗ f(x + ·)g(x− ·))(t). We write

An(x, t) =
∫

R

m̌n(y)f(x + t− y)g(x− t + y)dy

=
∫

R

mn(y)[f(x + t− ·)g(x− t + ·)] ďy

=
∫

R

( ∫
R

φ̂n(z)m(y − z)dz
)
[f(x + t− ·)g(x− t + ·)] ďy

=
∫

R

φ̂n(z)
( ∫

R

m(y − z)[f(x + t− ·)g(x− t + ·)] ďy
)
dz
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Now, observe that

B(z, x, t) =
∫

R

m(y − z)[f(x + t− ·)g(x− t + ·)] ďy

=
∫

R

K(y)e2πizyf(x + t− y)g(x− t + y)dy

=
∫

R

K(y)Fz,t(x− y)Gz,t(x + y)dy

where Fz,t(u) = eπizuf(u + t) and Gz,t(u) = eπizug(u− t).
Therefore,

Tn(f, g)(x) =
∫

R

hn(t)
( ∫

R

φ̂n(z)BK(Fz,t, Gz,t)(x)dz
)
dt

and, hence, since

||BK(Fz,t, Gz,t)||p3 ≤ C||Fz,t||p1 ||Gz,t||p2 ≤ C||f ||p1 ||g||p2 ,

and p3 ≥ 1, we obtain that

||Tn(f, g)||p3 ≤ C||hn||1||φ̂n||1||f ||p1||g||p2 .

Now, we can apply Theorem 2.1 with RuP (θ) = P (θ−u), to get that the
transferred bilinear operator

T̃n(P,Q)(θ) =
∫

T

K̃n(u)P (θ − u)Q(θ + u)du,

where K̃n(u) =
∑

m∈Z Kn(m+u), is bounded from Lp1(T)×Lp2(T) → Lp3(T)
and the norms are uniformly bounded for n ∈ N.

To finish the proof observe that if ek(θ) = eikθ then

T̃n(ek, ek′) = ekek′

∫
R

Kn(u)eiu(k′−k)du = ek+k′mn(k − k′)ĥn(k − k′),

and hence,

lim
n→∞

Tn(ek, ek′) = ek+k′m(k − k′) = T̃K(ek, ek′).

Therefore, by linearity, density and Fatou’s lemma, we obtain the result.�

Now, in order to avoid the condition of p3 ≥ 1 in the case of the bilinear
Hilbert transform, we need the following lemma that follows from the bound-
edness of the corresponding maximal bilinear Hilbert operator (see [20]).
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Lemma 3.3 Let 0 < A < A′ ≤ ∞. Define KA,A′(x) = 1
x
χA<|x|<A′(x). Let

BA,A′(f, g)(x) =
∫

R

f(x− t)g(x + t)KA,A′(t)dt

and let ‖BA,A′‖p1,p2 denote the norm as bounded bilinear map from Lp1(R)×
Lp2(R) into Lp3(R). Then

sup
A,A′

‖BA,A′‖p1,p2 < ∞.

Let us give an easy proof of the above lemma in the case p3 ≥ 1. To this
end, we first need the following lemma.

Lemma 3.4 Let p3 ≥ 1. Let h1, h2 ∈ L1(R) and define m(ξ) = sign(ξ)ĥ1(ξ)+
ĥ2(ξ). If

Bh1,h2(f, g)(x) =
∫

R

∫
R

f̂(ξ)ĝ(η)m(ξ − η)ei(ξ+η)xdξdη.

Then Bh is bounded from Lp1(R) × Lp2(R) into Lp3(R) and ‖Bh1,h2‖p1,p2 ≤
‖H‖p1,p2‖h1‖1 + ‖h2‖1.

Proof:

Bh1,h2(f, g)(x) =
∫

R

∫
R

f̂(ξ)ĝ(η)m(ξ − η)ei(ξ+η)xdξdη

=
∫

R

∫
R

f̂(ξ)ĝ(η)sign(ξ − η)(
∫

R

h1(y)e
−i(ξ−η)ydy)ei(ξ+η)xdξdη

+
∫

R

∫
R

f̂(ξ)ĝ(η)(
∫

R

h2(y)e
−i(ξ−η)ydy)ei(ξ+η)xdξdη

=
∫

R

( ∫
R

∫
R

f̂(ξ)e−iξyĝ(η)eiηysgn(ξ − η)ei(ξ+η)xdξdη
)
h1(y)dy

+
∫

R

( ∫
R

∫
R

f̂(ξ)e−iξ(y−x)ĝ(η)eiη(y+x)dξdη
)
h2(y)dy

=
∫

R

H(fy, g−y)(x)h1(y)dy +
∫

R

f(x− y)g(x + y)h2(y)dy

where fx(y) = f(y − x). Now using the boundedness of the bilinear Hilbert
transform, Hölder inequality and the integrability of h1 and h2 one gets the
result. �
Proof of Lemma 3.3 for p3 ≥ 1: It is known that

mA,A′(ξ) = K̂A,A′(ξ) = sign(ξ)
∫ A′

A

sin(|ξ|u)

u
du, (4)
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and hence,
mA,A′(ξ) = m(Aξ) −m(A′ξ)

where m(ξ) = sign(ξ)
∫ ∞
1

sin(|ξ|u)
u

du.
Denoting by K(x) = K1,∞(x) = 1

x
χ{|x|>1}(x) and Q(x) = x

1+x2 , we have
that K −Q = h ∈ L1(R). In particular,

m(ξ) = K̂(ξ) = −i sign(ξ)P̂ (ξ) + ĥ(ξ),

where P (x) = 1
1+x2 is the Poisson kernel.

Then,

mA,A′(ξ) = −i sign(ξ)(P̂A(ξ) − P̂A′(ξ)) + ĥA(ξ) − ĥA′(ξ),

where, as usual, fA(x) = 1
A
f( x

A
).

Finally, we can apply Lemma 3.4 to obtain that

‖BA,A′‖p1,p2 ≤ ‖H‖p1,p2‖PA − PA′‖1 + ‖hA − hA′‖1 ≤ 2‖H‖p1,p2 + 2‖h‖1,

as we wanted to see. �
As a consequence of the previous result, we obtain the following ([10]).

Corollary 3.5 The bilinear Hilbert transform on the torus

HT(f, g)(x) =
∫

T

f(x− y)g(x + y) cot(πy)dy,

is bounded from Lp1(T)×Lp2(T) into Lp3(T) whenever 1/p1 +1/p2 = 1/p3 <
3/2.

Proof: Let us take A = 1/N and A′ = N in Lemma 3.3. Then, since the
corresponding kernel KA,A′ is in L1 with compact support, we can apply our
transference argument and this lemma to obtain that the operator

T̃N
K (P,Q)(x) =

∑
k∈Z

∑
k′∈Z

P̂ (k)Q̂(k)m1/N,N(k − k′)eix(k+k′),

for P and Q trigonometric polynomials, satisfies that

T̃N
K : Lp1(T) × Lp2(T) → Lp3(T)

uniformly in N . Letting N goes to infinity, we obtain the result. �
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3.2 Bilinear Hilbert transform on Z

Using now the discretization technique of section 2.2, we obtain the fol-
lowing result, whenever p3 ≥ 1.

Proposition 3.6 Let N ∈ N, and let us define the truncated discrete bilinear
Hilbert transform by

HZ,N(a, b)(m) =
∑

k �=0,|n|≤N

am−nbm+n

n
.

Then,
sup
N∈N

‖HZ,N‖p1,p2 < ∞.

Proof: Let us apply Lemma 3.3 with K = K 1
2
,N− 1

2
and Proposition 2.2, to

obtain that
TN(a, b)(m) =

∑
n∈Z

am−nbm+nKn (5)

is bounded from 2p1(Z)× 2p2(Z) into 2p3(Z). Let us now compute Kn in this
particular case:

Kn =
∫

I

∫
(n+Iu)∩(n−Iu)

K(t)dtdu

=
∫

I

∫
(n+Iu)∩(n−Iu)∩( 1

2
,N− 1

2
)

dt

t
du +

∫
I

∫
(n+Iu)∩(n−Iu)∩(−N+ 1

2
,− 1

2
)

dt

t
du.

Observe that for u ∈ I, we have that (n+ Iu)∩ (n− Iu) ⊂ (n− 1
2
, n+ 1

2
),

and hence Kn = 0 if |n| ≥ N and K0 = 0.
For 1 ≤ n < N , we can write

Kn = 2
∫ 1/4

0

∫
(n+u− 1

4
,n+u+ 1

4
)∩(n−u− 1

4
,n−u+ 1

4
)∩( 1

2
,N− 1

2
)

dt

t
du,

and if 0 < u < 1
4
, we obtain that

(n + u− 1

4
, n + u +

1

4
) ∩ (n− u− 1

4
, n− u +

1

4
) = (n + u− 1

4
, n− u +

1

4
).
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Hence,

Kn = 2
∫ 1/4

0
log(

n− u + 1
4

n + u− 1
4

)du = 2
∫ 1/4

0
log(

n + v

n− v
)dv

= 2n
∫ 1/4n

0
log(

1 + x

1 − x
)dx.

Integrating by parts, we obtain

∫ 1/4n

0
log(

1 + x

1 − x
)dx =

1

4n
log(

1 + 1
4n

1 − 1
4n

) −
∫ 1/4n

0

2x

1 − x2
dx

=
1

4n
log(

1 + 1
4n

1 − 1
4n

) + log(1 − 1

16n2
),

and hence,

Kn =
1

2
log(

n + 1
4

n− 1
4

) − 2n log(
16n2

16n2 − 1
).

Since log(1 + x) = x + O(x2), (x → 0), we finally get

Kn =
1

4n− 1
+ O(

1

(n− 1
4
)2

) +
2n

16n2 − 1
+ 2nO(

1

(16n2 − 1)2
)

=
6n + 1

16n2 − 1
+ O(

1

n2
) =

3

8n
+ O(

1

n2
).

The case −N ≤ n ≤ −1 is obtained similarly, and the result follows from
(5). �

3.3 Ergodic Bilinear Hilbert transform

The idea now is to transfer the boundedness of the discrete bilinear Hilbert
transform to a measure space using our transference result.

Let G = Z and let (Ω,Σ, µ) be a σ-finite measure space. Let T be a
bounded and invertible operator acting on Lpi(Ω), such that

max(‖T−1‖L(Lpi (Ω)), ‖T‖L(Lpi (Ω))) ≤ 1,

13



for i = 1, 2. Let us assume that there exists a bounded and invertible operator
S acting on Lp3(Ω), such that max(‖S−1‖L(Lp3 (Ω)), ‖S‖L(Lp3 (Ω))) ≤ 1 and such
that

Sm(T nfT−ng) = Tm+nfTm−ng. (6)

Then:

Theorem 3.7 The bilinear ergodic Hilbert transform

HT (f, g)(x) =
∑
n�=0

T nf(x)T−ng(x)

n

is bounded from Lp1(Ω)×Lp2(Ω) into Lp3(Ω) whenever 1/p1 +1/p2 = 1/p3 ≤
1.

Proof. It is trivial to see that if we take R1
n = R2

n = T n and R3
n = Sn

and use (6) then conditions (1), (2) and (3) hold and hence, we can transfer,
using Theorem 2.1, the boundedness of the truncated discrete bilinear Hilbert
transform proved in Proposition 3.6, to show that, in fact,

HN
T (f, g)(x) =

N∑
n�=0,n=−N

T nf(x)T−ng(x)

n

is bounded uniformly in N . From this, the result follows. �

In particular, using Tf(x) = f(x−1) and S = T one obtains the following:

Corollary 3.8 The bilinear Hilbert transform

H(f, g)(x) =
∑
n�=0

f(x− n)g(x + n)

n

is bounded from Lp1(R)×Lp2(R) into Lp3(R) whenever 1/p1 +1/p2 = 1/p3 ≤
1.
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[7] Coifman R.R., Meyer Y. Au delà des operatateurs pseudo-differentiels,
Asterisque 57 [1978]

[8] Coifman R.R., Weiss W. Transference Methods in Analysis. Regional
Conference Series in Mathematics 31, A.M.S. (1977)

[9] DeLeeuw, K., On Lp Multipliers, Ann. of Math. 81 [1969] pp. 364-379.

[10] Fan, D., Sato, S., Transference of certain multilinear multiplier opera-
tors. J. Austral. Math. Soc 70 [2001] pp. 37-55.

[11] Gilbert J., Nahmod A., Bilinear operators with non-smooth symbols. J.
Fourier Anal. Appl. 7 [2001], pp. 435-467.

[12] Gilbert J., Nahmod A., Boundedness of bilinear operators with non-
smooth symbols Math. Res. Lett. 7 [2000], pp. 767-778

[13] Grafakos L., Li X., Uniform bounds for the bilinear Hilbert transform I
To appear in Ann. of Math.

[14] Grafakos L., Li X., Uniform bounds for the bilinear Hilbert transform II
Preprint.

[15] Grafakos L.,Torres, R. H., Multilinear Calderón-Zygmund theory. Adv.
Math. 165 [2002], pp. 124-164.

[16] Grafakos, L., and Weiss, G., Transference of multilinear operators. Illi-
nois J. Math. 40 [1996], pp. 344-351.

15



[17] Jones P., Bilinear singular integrals and maximal functions , Havin and
Nikolski (Eds.), Linear and Complex Analysis Problem Book 3, Part 1.
Springer LNM 1573, [1994].

[18] Kenig, C. E., Stein, E.M., Multilinear estimates and fractional integra-
tion. Math. Res. Lett. 6 [1999], pp. 1-15.

[19] Lacey M., Thiele C., Lp bounds on the bilinear Hilbert transform for
2 < p < ∞. Ann. Math. 146 [1997], pp. 693-724.

[20] Lacey M., Thiele C., The bilinear maximal function map into Lp for
2/3 < p ≤ 1. Ann. Math. 151 [2000], pp. 35–57 .

[21] Lacey, M. and Thiele, C. Weak bounds for the bilinear Hilbert transform
on Lp. Documenta Mathematica, extra volume ICM 1-1000, [1997].

[22] Lacey, M., Thiele, C., On Calderón’s conjecture. Ann. Math. 149 2
[1999], pp. 475-496

Departamento de Análisis Matemático
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