FOURIER ANALYSIS WITH RESPECT TO BILINEAR MAPS

OSCAR BLASCO AND JOSE M. CALABUIG

ABSTRACT. Several results about convolution and Fourier coef-
ficients for X-valued functions defined on the torus satisfying
supyyj=1 S ||B(f(ei9),y)||% < oo for a bounded bilinear map
B: X XY — Z are presented and some applications are given.

1. INTRODUCTION AND NOTATION

Let (T,m) be the Lebesgue measure space over T = {|z| = 1}, let X be a
Banach space over K (R or C). An X-valued function f : T — X is said to be
strongly measurable if there exits a sequence of simple functions, (s,) € S(T, X),
which converges to f a.e. It is called weakly measurable if {f,z*) is measurable
for any z* € X*. We denote by L°(T, X) and LY, (T, X) the spaces of strongly
and weakly measurable functions. As usual we denote by PP(T, X) the Pettis p-
integrable functions and by LP(T, X) the Bochner p-integrable functions for 1 <
p < oo.

Convolutions with respect to bilinear maps were introduced and studied in [4, 5]
in the setting of Bochner integrable functions:

Let Y and Z be a Banach spaces and let B : X X Y — Z be a bounded bilinear
map. If f € L}(T, X) and g € L'(T,Y) then the map ¢ — B(f(et=9), g(e?)) is
strongly measurable for each ¢t and the fact

IB(f(e =), g(e)]| < IBINF (= )Ig(e™)]
allows to define
fragle®) = [ BUEO. )5 € LT, 2)
and || f *B gllz1(r,z) < I fllzr e, x) 9l ry)-

Also it is clear that f(n) = I f(e%)e= 0 4L is well defined (as Bochner integral)
for n € Z and f € L'(T, X).

Actually the following formula holds (see [4, 5]) for f € LY(T,X) and g €
LY(T,Y),

(f *B gJ(n) = B(f(n), §(n)).

In this paper we shall try to developp the theory for a wider class of functions
integrable with respect the bilinear map that has been recently considered by the
authors in [7], and which allows to extend the results in [4, 5].

Given a bounded bilinear map B : X x Y — Z, we shall be denoting by B, €
L(Y,Z) and BY € L(X, Z) the corresponding linear operators B, (y) = B(x,y) and
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BY(xz) = B(z,y). The following notions were introduced in [7]: A triple (Y, Z, B)
is admissible for X if Y and Z are Banach spaces and B : X XY — Z is a bounded
bilinear map such that ¢ — B, is injective from X — L(Y, Z), i.e. B(z,y) =0 for
all y € Y implies x = 0. X is said to be a (Y, Z, B)-normed space if there exists
C > 0 such that ||z|| < C||Bg| for all x € X, that is X can be understood as a
subspace of £(Y, Z) with some equivalent norm.

Also we define the "adjoints” B* : X x Z* — Y* and B, : Y X Z* — X* by the

formulas

(1) (B*(2,2%),y) = (B(x,y),2"),

(2) (Bi(y,z"), @) = (B(z,y),27).

Hence (B*), = (B;)* and (B.), = (BY)*.
Clearly (Y, Z, B) is admissible for X if and only if (Z*,Y™*, B*) is. Observe that
X is (Y, Z, B) normed if and only if there exists Cq,Cy > 0 such that

C; < sup ‘<B(xay)7Z*>| < Co.
lzll=llyll=l=*]=1
Therefore X is (Y, Z, B) normed only if X is (Z*,Y™*, B*) normed if and only if ¥
is (Z*, X*, B,) normed.

Throughout the paper we always assume that X is (Y, Z, B) normed. Our aim
is to show that some of the results from vector-valued Fourier Analysis can be
extended to more general functions and bilinear maps.

As in [7] we say that f: T — X is (Y, Z, B)-measurable if B(f,y) € L°(T, Z) for
any y € Y and denote the class of such functions by L% (T, X).

For 1 < p < 0o and a simple function s = Y;'_; zxx 4, one has that

Isllzg,x) = sup [|BY(s)llLr(z)
lyll=1
= sup (D 1B, )P u(Ar)?
lvll=1 =
= sup{|| Y B (an, 20)n(Ar)ll : O ll=£ ") =1},
k=1 k=1

We define L% (T, X) as the closure of simple functions S(T, X) under this norm.
Of course LP(T, X) C L (T, X) and || fllzz x) < [|fllzr(x) for any f € LP(T, X).
In particular L (T, X) for the cases D : X x X* — K given by D(z,z*) = (z,z*)
and B : X x K — X given by B(z,A) = Az correspond to PP(T, X) and LP(T, X)
respectively.

The reader is referred to [7] for some general facts about the theory on these
spaces. It is shown there that, under the assumption of X being a (Y, Z, B)-
normed space, one obtains that LL(T, X) C P}(T, X) and also the existence of the
B-integral over sets E for functions in L5 (T, X). There are some general examples
to have in mind where the general theory can be applied.

Example 1.1. Let X = L(Y, Z) for some Banach spaces Y, Z. Define
(3) Ovz : LY, Z) XY — Z, Oyv,z(T,y) =T(y).
Clearly one has (Oy,z)*(T, z*) = Oz« y- (T, z*).
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If f: T — L(Y,Z), defined by f(e') = T}, belongs to L, _(T,L(X,Y)) then

Oy, z

T do
£y, eorrn = sw0 [ T3

llyll=1J—m
and there exists 7' € £(X,Y) such that T(y) = |7 Tp(y) L.

Example 1.2. (Holder’s bilinear map) Let (Q,n) be a o-finite measure space, 1 <

< L1 1 consi
p1,p2 <00 and - = -+ - Consider

Hpy py + LPH () x LP2(n) — LP*(n), (f.9) — fg.

It was shown in [7] that for @ = N with the counting measure then

||‘]L1||L‘;’_Z°’plyp2 (bpy) — ”(fn)”épl([,pa)
where f = (f,) € LO(T, ¢rr).

Example 1.3. (Young’s bilinear map) Let G be locally compact abelian group and

m the Haar measure, 1 < p1,p2 < oo with pil—i—p% > 1 cmdpL3 =14 L _ 1

Consider nom
Voo + LPHG) X LP(G) — LP(G),  (f,9) = [*g-

It was shown in [7] that LP(R) is (L'(R), LP(R), Y, 1)-normed whenever L!(G)
has a bounded approximation of the identity. However (L*(R), L?(R), Y1 2) is an
admissible triple for L'(R), but L' (R) is not (L*(R), L?(R), V1 2)-normed.

Also for G = R with the Lebesgue measure it is easy to show that

Ifllzg, @@y = 1 llLe e @)
P1,
for any f € LO(T, L' (R)).
2. FOURIER ANALYSIS WITH RESPECT TO BILINEAR MAPS.

We denote by P(T, X) the space of X-valued trigonometric polynomials. It is
clear that P(T, X) is dense in LI (T, X).
We start by pointing out a result which will be used in the sequel.

Proposition 2.1. (see [7]) If f € LL(T,X) and E € X there exists a unique
xp € X such that for anyy €Y

Blag,y) = /E B(f.y)dp.

The value x5 = (B) [, fdu is called the B-integral of f over E.

Of course (B) [}, fdu coincides always with the Pettis integral, and in the case
of Bochner integrable functions then (B) fE fdp = fE fdp is the Bochner integral.
It is clear that if f € LL(T,X) and ¢ € L°(T) then fop € LL(T,X). Hence
Proposition 2.1 allows to give the following definitions.
Definition 2.2. Let n € Z and f € L5(T,X). Define the n-Fourier coefficient
with respect to B as
£ " i —in do
PPy= ) [ fet)ems
- b
Hence
—inf do
e e

B = [ BUE), e s

—T

= (BY(f))(n).
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Of course if f € L'(T,X) then fB(n) = f(n) for all n € Z. In particular if
f € P(T,X) with f(e®) = 200 zre™® then fB(n) = x, for n € [-N, M] and
FB(n) = 0 otherwise.

Proposition 2.3. If f € LL(T, X) then (f2(n))nez € co(Z, X). Moreover
IFEn)|| < Cllfllzy, r,x)-
Proof. Using that X is (Y, Z, B)-normed one has

IFP ()l < 0”81”1191 IB(f? (), )l < ClLA Ly cr x)-
vll=

The standard approximation for polynomials show that ( f B(n))nez € co(Z,X). O
Let us denote fi(e?) = f(ei*=9) for f € LB(T,X). It is obvious that f;, €
L%(T,X) and Hft”L;;(T,X) = Hf”L{,;(T,X)-

Definition 2.4. Let f € LL(T,X) and ¢ € L=(T). Define the convolution with
respect to B by
do

o’ et € T.
s

f+P o) = (B) 3 fi(€)e(e)
Hence

B(f 8 p(e®) ) = [ B(F),y)p(e)

—T

for any trigonometric polynomial .

Proposition 2.5. If f € LL(T, X) and ¢ € L>(T) then

9

= =B ele)

1 %2 elly e, x) < N1z, x- el -

Proof.
’ : d T N do d
[ B0 e < [0 [ B e, e
g T ) do ‘ d
< [ 1B g lee g
<

£l 2y, crx) 1ol 2 (ry-

This allows to give the following definition.

Definition 2.6. If f € LL(T, X) and ¢ € L*(T) we define the convolution
fP o =limf ",

for any sequence of polynomials ¢, converging to o € L*(T).

Of course f*" ¢ € L(T, X) and || f +” ¢l (r.x) < I flloy e lellpien)-
Remark 2.7. If f € LL(T, X), p € L(T) and y € Y then

B(f+" ¢,y) = BY(f) * ¢.
We now give the connection between convolution and Fourier coefficients.

Proposition 2.8. Let n € Z, f € LLY(T, X) and ¢ € L'(T) then
(F 2 9P (n) = fE ()& (n),
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Proof. Assume first that ¢(t) = ¢ for some m € Z. Then

mi6 d_e

2

mi6 ﬁ
2w

et = B) [ filee

—Tr

= ®) [ FEe0)e

—T

_ (B) f(eie)emi(t—e)%

— eimt fB (m)

This shows the result in this particular case. Now by linearity one gets the result
for polinomials . Finally using Propositions 2.3 and 2.5 one extends to general
functions ¢ € L'(T).

O

Let us now extend the notion of convolution between two different vector-valued
functions.

Definition 2.9. Let f € LL(T,X) and g € LNT) @Y, say g = Y ny yrdr where
Yk €Y and ¢ € Ll('JI“). Define the convolution

M
Frpg="> B(f+" ¢run).
k=0
Remark 2.10. In particular B(f+2 ¢,y) = f+p(¢®@y) = BY(f)*¢ for ¢ € L*(T)
andyey.
Proposition 2.11. If f € LY(T, X) and g € P(T,Y) then
) 4 X vy dO
Fragle®) = [ BUE D). ge )5

Proof. Take g = Zi\i_z\/ 1 @yr where y € Y and ¢ (e®) = ek, Apply Remark
2.10 to obtain

M
Frpgle™) = Y fxn(dr@yr)(e")
k=—N
N . N
= X [ B,
= [ BUE gy

Proposition 2.12. Let f € L5(T,X) and g € S(T,Y). Then
1f *B 9llrrz) < Iflloy o llgllin -

Proof. Assume g = ZkM:O yrPr where ¢ = Xy, for pairwise disjoint intervals.
Hence
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IA

If *B gllL1(2)

M

Z | B(f *® ér, yi)ll L1 (2)
M

= Z |By’“ *¢k||L1(Z)
k=0
M

= D _IB*(Nllerz)ldnl e
k=0

M
= ZHB””” Nz llyxllll @l L

< ||fHL1 xyllgllzreyy-
O
This allows us to give the following definition.

Definition 2.13. If f € LL(T,X) and g € LY(T,Y) = LY(T)®Y we define the
convolution
fxpg=linfxp gy
for any sequence of simple functions (g,) C S(T,Y) converging to g € L*(T,Y).
Of course f+p g € L'(T,Z) and | f *p 9llLi(r,z) < ||f||LlB(T,X)||9||L1(T,Y)-
Theorem 2.14. Letn € Z, f € LL(T, X) and g € L*(T,Y). Then
(f *8 9)(n) = B(f#(n),3(n)).

Proof. Assume first that g = ¢ @y for ¢ € L*(T) and y € Y.
Therefore

(f*Bgf(n) = B(f+" ¢,y)(n)
(

= B(f"(n),4(n).
This extends to g € P(T,Y) by linearity. Now use the density of P(T,Y) in
LY(T,Y) to obtain

(f*pg)n) = lim (fpge)f(n)
Jim B(f2(n), ge(n))
= B(f"(n),5(n)).

3. YOUNG’S THEOREM

We shall present here several analogues to Young’s theorems about convolutions
in our setting.

Note that for any f € L'(T, X) and ¢ € L*(T) the following pointwise estimate
holds

1 =l < NI el
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Using the scalar-valued Young theorem one clearly obtains that if f € LP(T, X)
and ¢ € LY(T) then f x ¢ € L"(T, X) with
ILf *ollr,xy < I flloex)llell Laer)

where 1 < p,q,7 < oo with =1+ 2 —1.
Using Remark 2.7 and the previous observation we can formulate the following
extension.

Proposition 3.1. Let1 < p < oo, 1< q < oo with %—F% > 1 and let % = zl)+§_1'

If f € L%(T,X) and ¢ € LY(T) then f +5 p € L'y(T, X).
Moreover

I f " ol

Let us establish the dualities to be used in our bilinear setting.

ry@x) < 1 fllee o lellpacn.-

Lemma 3.2. Let B : X XY — Z bounded bilinear map and B, : Y x Z* — X*

given by (B(z,y),2*) = (x, B.(y, 2")).
If feP(T,X), geP(T,Y) and h € P(T, Z*) then

<f *B g7h> = <fvg *B, h> and <f_*B gvh> = <f *B* hag>7
where g(e'?) = g(e™).

Proof. Observe that if F' and G are polynomial with values in a Banach space
and its dual respectively then

w6 - | R, G L =S (B ), G(-n)

o 27
Taking into account that
Frpa(e)y=> B(f"(n),4(-n))e™
one obtains

(f*pg.h) = > (B(f(n),3(=n)),h(-n))
= > (f(n), Bu(g(=n), h(—n)))
= > (f(n), (g 5. BY(—n))
= (fig*B. h).

);
)

Similarly
(Frpg.h) = Y (B(f(=n),4(n)),h(-n)
= D (B (f(=n),h(-n)),§(n))

)

= > ((f - h)(=n),5(n)
= <f*B* h7g>'

gt

Let us now present the version of Young’s theorem in our general setting.

Theorem 3.3. Let 1 < p < 0.
(i) If f € LE(T, X) and g € LY(T,Y) then f xp g € LP(T, Z). Moreover

1 *B gllzrz) < 1 fllg, ) lglleron-
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(it) If f € L2.(T,X) and g € L? (T,Y) then f +p g € L>°(T, Z). Moreover
1 *B gll=(z) < Ifllee. ) lgll Lo vy-

(iii) If f € LP (T, X) and g € LY (T,Y) then fxp g € L>(T, Z). Moreover
If*B gll=z) < Iflerexollglley vy

(iv) If f € L(T,X) N LY. (T,X), and g € LY(T,Y) for 1 < q < p’ then
f*p g€ L"(T,Z) where + = % + % — 1. Moreover

r’ 1—p/r’
ez S I o) 11 ey gl .

If *5 gl

Proof. (i) Assume g = ZkM:O yror where ¢ = xy, for pairwise disjoint intervals.
Hence

|f *B gllLe(z)

N
|iM§
=
&h
*
w
°
x
<
=
=
=
N

M
Yk
= D BT (f)llocz lyellldnllzs

k=0
< Afllzexollgllinr .-

As usual one extends to general functions g € L'(T,Y’) using the density of simple
functions.
(ii) Using Lemma 3.2 and (i) one gets, for f € P(T,X) and g € P(T,Y), that

I *B glli~(zy = sup{|(f g g.h)|: h € P(T,Z), Al (z) = 1}
sup{|(f - h.g)| : h € P(T, Z7), [l| 2 (z+) = 1}
sup{[lgll .o o 1 #5+ Allzoiy=y : b € P(T, Z°), Bl 1z = 1}
1Az collgll e vy

IN A

Using the density of polynomials the result is completed.
(iii) is analogous to (ii).
(iv) follows from interpolation using (i) and (ii). O

Remark 3.4. ForD: X x X* — K given by D(x,2*) = (x,2*) and B: X xK — X
gwen by B(z,\) = Az one has that B* = D and D* = B. Therefore LY(T, X) C
L% (T, X), and there exists f € L} (T,X) \ L. (T, X).

We shall now observe that Young’s theorem (see Theorem 3.3, (iv)) does not
hold without the extra assumption f € L. (T, X).

Proposition 3.5. For any infinite dimensional Banach space X there exists f €
LL(T, X) and g € L>=(T, X*) such that f xp g ¢ L°>(T).

Proof. Assume the result does not hold true. Then if f € P(T, X) we have that
for any g € P(T, X*)

T ; o a0
[/ 9O =] [ <f(6*”’)79(619)>§| < Clflleyxollglizee vy



FOURIER ANALYSIS AND BILINEAR MAPS 9

This would imply that || f|z1(r,x) < C||f||p1(r,x) for any polynomial, and then X
would be finite dimensional. O

Let us point out an application of our convolution which extends the bilinear
Marcinkiewicz-Zygmund theorem (see [5], Corollary 2.7).

Theorem 3.6. Let 1 < p; < oo and (4, ;) be o-finite measure spaces fori =1,2.
If X is (LP*(p1), LP2 (p2), B)-normed then there exists C > 0 such that

ZIB 2, $5)*)?|lLes <C sup II(ZIB(%Ap)IQ)”QHmH(Z|¢j\2)1/2\|m
j=1 j=1

lllpy =

forall xq,...,xn € X, ¢1,...,n € LP (1), n € N.

Proof. Let f(e") = Y7 1£J€12jt € P(T,X) and g(eit) = > p;e?’t €
P(T, L (1)) Hence fxp g(e™) = Y7, Bl(x;, ¢;)e®". Now use Kintchine’s
inequalities (see [10]), which assert that

1Y e o, cege = 10 10521 Lo

j=1 j=1
for any 0 < p < oo and @1, ...¢0n, € LP (1), together with
1f *B gllLr(r,e2 (ua)y < I llLy ) N9l rer,zes ue))
to obtain the result. O

Corollary 3.7. Let (2, u) be o-finite measure space and 1 < p; < oo fori=1,2,3
such that 1/ps = 1/p1 + 1/pa. Then there exists C > 0 such that

1O 156522 llzea < OO 152 o 1 165172 |
j=1 j=1

j=1
for all iy, ..., € LPY (1), ¢1,...,¢n € LP2(u), n € N.

Proof. Apply Theorem 3.6 for B : LP* (i) x LP2(u) — LP3(u) given by (¢, ) —
¢ and use the fact

n n n
sup [|(Y 1B(65,9)*)?lzes = sup N 15 2 lollLes = 1 165172 Lo
j=1 j=1

lellpa=1 5= llellpy =1

O

Corollary 3.8. Let (R, m) be the Lebesgue measure space and 1 < p < oo. Then
there exists C > 0 such that

leawﬂ Y < C Iolhet ||<me| )2 1o Zm BRE

j=1 llelli=1 j=1
for all Y1, ..., 1, € LP(R), ¢1,..., ¢, € L*(R), n € N.

Proof. Apply Theorem 3.6 for B : LP(R) x L*(R) — LP(R) given by (¢,1) —
o * . U

We now present the following different generalization of the Marcinkiewizc-
Zygmund Theorem (see [10]).
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Theorem 3.9. Let 1 < p; < o0 and (4, ;) be o-finite measure spaces fori =1,2.
Then there exists C > 0 such that

Q1T (@) ) 2l <€ sup Q1T (@) 2llzea | 165*) 2 | o
Jj=1 j=1

llellp, =1 j=1

for all ¢1,...,¢n € LP (1), Ty : LP (1) — LP?(ue) bounded linear operators for
1<j<n, andneN.

Proof. Apply Theorem 3.6 for B : L(LP*(uy), LP2(u2)) x LP*(u1) — LP2(u9)
given by (T, ) — T(%). O

4. HAUSSDORFF-YOUNG INEQUALITY

We recall that for 1 < p < 2 a complex Banach space X is said have Fourier
type p if there exists C > 0 such that

QO I ®IF) < Cllfllorer,x)
keZ

for any f € P(T, X) and p’, as usual, verifies 1/p+ 1/p’ = 1.

This notion was firstintroduced in [13] and it has been extensively studied by
different authors (see [11] for a survey on that). It is well known that X has Fourier
type 2 if and only if X is isomorphic to a Hilbert space ( [9]) and that X has Fourier
type p if and only if X* has.

Definition 4.1. Let 1 < p < 2. X is said to have B-Fourier type p if there exists
C > 0 such that

”SIH1P1 I(B(fP (k) v)rezlle, z) < Cllfles . x)
y =

for any f € P(T, X).
Remark 4.2. Fvery Banach space X has B-Fourier type 1.

Proposition 4.3. If Z has Fourier type p then X has B-Fourier type p.
In particular every Banach space X has D-Fourier type 2.

Proof. Let f € P(T,X) and y € Y. From the assumption

I(B(f”(k), Y)iezlle, (2) 1(BY(f)(k))kezlle, ()
ClIBY(f)llLr(2)
Cllyllll fllze (r.x)

Taking suprema one gets the result. O
It is well known that ¢, has Fourier-type min{g, ¢'}.

IAIA

Proposition 4.4. Let 2 < q¢ < 0o. For each r € [¢,2] there exists B such that {,
has B-Fourier type r.

Proof. For r = 2 take B = D and for r = ¢’ take B = B. Assume now
¢ <r<2<aq.

Consider B = ¢, x £, — £, given by ((ow), (Bn)) — (anfBy) for 1/p=1/r —1/q.

Using Proposition 4.3 and F(¢,) = r one obtains the result. O

We now present some applications. theorems.
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Theorem 4.5. Let 1 < p < oo and (2, p) be o-finite measure space. If T, : X —
LP(u) be a sequence of bounded linear operator then there exists C > 0 such that

sup Z HT max{Pp })l/max{p,p/} <C sup Z |T 1/2||L1’

lz||=1 llzll=1
for all mn € N.

Proof. Since LP(u) has Fourier-type min{p, p'}, applying Proposition 4.3 for the
bilinear map B : L(X, LP(u)) x X — LP(u) given by (T,z) — T'(x) one has that
L(X,LP(u)) has B-Fourier type min{p,p’}. Now apply the result to the function
f(e") =1 Tje™'" and Kintchine’s inequality one more time. O

Remark 4.6. The previous result is immediate for p > 2, since

Z|T |P 1/pHLT’ < ” Z|T 1/2HLP-

j=1

i+1

Corollary 4.7. Let 1 < p < 2 and denote Aj(f)(e) = > 5 4 f(n)e™®. Then
there exists C' > 0 such that

(Z ||Aj(f)||1£p('ﬂ~))1/pl < Cllfllze(ry-
J

Proof. Apply Theorem 4.5 for T; : LP(T) — LP(T) given by T;(f) = A;(f)
together with Littlewood-Paley inequalities

ZlA )2 0 = || f o
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