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Convolution by means of bilinear maps

Oscar Blasco

Abstract. Given three complex Banach spaces X, Y, Z and u : X × Y → Z
a bounded bilinear map. For f(z) =

∑m
n=0 xnzn where xn ∈ X and g(z) =∑k

n=0 ynzn where yn ∈ X, we define the u-convolution of f an g as the

polynomial given by f ∗u g(z) =
∑min{m,k}

n=0 u(xn, yn)zn.
It is shown that whenever X and Y veryfies the vector-valued analogue

of certain inequalities due to Littlewood and Paley for Hardy spaces we have
that if 1 ≤ p1 ≤ 2, 1 ≤ p2 ≤ ∞ such that 1

p1
+ 1

p2
≥ 1 and 1 ≤ p, q ≤ ∞

are such that 1
p

= 1
p1

+ 1
p2

− 1 and 1
q

= 1
2

+ 1
max{p2,2} then there exists a

constant C > 0 such that

(

∫ 1

0
(1 − r)q−1(

∫ π

−π
‖(f ∗u g)′(reit)‖p dt

2π
)

q
p dr)

1
q ≤ C||u||||f ||p1 ||g||p2

for any f(z) =
∑N

n=0 xnzn ∈ P(X) and g(z) =
∑M

n=0 ynzn ∈ P(Y ).
Several applications of this result are obtained.

Introduction.

In this paper we are going to consider a very general notion of convolution
that makes sense for vector valued functions and which extends several situations
existing in the literature. Our objetive will be to get some improvements of the
well-known Young’s theorem on convolutions in the setting of analytic functions.

Let us first use the notation of Lp(T, X) for the p-integrable Bochner functions
and recall that the notion of convolution has been considered in different context.

Given f, g ∈ L1(T) the convolution is defined as

f ∗ g(t) =
∫ π

−π
f(eis).g(ei(t−s))

ds

2π
∈ L1(T).

Same notion makes sense for f, g ∈ L1(T, A) where A is a Banach algebra and
the product is understood in the sense of the algebra, and then f ∗ g ∈ L1(T, A).
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Now for a general Banach space X we still can consider f ∈ L1(T) and g ∈
L1(T, X) and define

f ∗ g(t) =
∫ π

−π
f(eis).g(ei(t−s))

ds

2π
∈ L1(T, X).

Even if f ∈ L1(T, X) and g ∈ L1(T, X∗) and define

f ∗ g(t) =
∫ π

−π
< f(eis), g(ei(t−s)) >

ds

2π
∈ L1(T),

where < x, x∗ > stands for the dualilty pairing.
A further step consists of taking X,Y Banach spaces and denote by L(X,Y )

the space of linear continuous operators. Now given f ∈ L1(T, L(X,Y )) and g ∈
L1(T, X) and define

f ∗ g(t) =
∫ π

−π
f(eis)(g(ei(t−s))

ds

2π
∈ L1(T, Y ).

All of them are very particular instances of the following general principle:
Given X,Y, Z Banach spaces and a bounded bilinear map u : X × Y → Z and

given f ∈ L1(T, X) and g ∈ L1(T, Y ) and define

f ∗u g(t) =
∫ π

−π
u(f(eis), g(ei(t−s))

ds

2π
∈ L1(T, Z).

For the use of this notion for analytic functions the reader is referred to [AB2]
and to [A] in the setting of vector-valued distributions. Here we concentrate our-
selves in our applications on the following bilinear maps:

(1) Given any measure µ and 1 ≤ p1, p2 ≤ ∞ such that 1
p1

+ 1
p2

= 1
p . Hölder’s

inequality gives that u : Lp1(µ) × Lp2(µ) → Lp(µ) given by u(f, g) = f.g is a
bounded bilinear map.

(2) Given 1 ≤ p1, p2 ≤ ∞ such that 1
p1

+ 1
p2

≥ 1 and 1
p = 1

p1
+ 1
p2

− 1. Young’s
theorem gives that u : Lp1(Rn) × Lp2(Rn) → Lp(Rn) given by u(f, g) = f ∗ g is a
bounded bilinear map.

(3) Given three Banach spaces X,Y, Z, then u : L(X,Y ) × L(Y,Z) → L(X,Z)
given by the composition u(T, S) = ST defines a bounded bilinear map.

(4) Given two Banach spaces X,Y , and denoting X⊗̂Y the projective tensor
product, then the natural embedding u : X × Y → X⊗̂Y given by u(x, y) = x⊗ y
defines a bounded bilinear map.

Note that all the examples presented for motivation run into this particular
cases.

In this paper we shall consider this general convolution in the setting of vector-
valued analytic functions. For this situation the definition is as follows (see [AB2]):

Given three complex Banach spaces X,Y, Z and u : X × Y → Z a bounded
bilinear map. For f(z) =

∑m
n=0 xnz

n where xn ∈ X and g(z) =
∑k
n=0 ynz

n where
yn ∈ X, we define the u-convolution of f an g as the polynomial given by

f ∗u g(z) =
min{m,k}∑
n=0

u(xn, yn)zn.

Throughout the paper we denote by P(X) and H(X) the set of polynomials
and holomorphic functions from the unit disc D into a complex Banach space X
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respectively. As usual, we write Mp(f, r) = ( 1
2π

∫ π
−π ||f(reit)||pdt)

1
p , and Hp(X)

stands for the Hardy space of X-valued functions, understood as the subspace of
Lp(T, X) of those functions f with f̂(n) = 0 for n < 0, or in other words the closure
of polynomials under the norm given by sup

0<r<1
Mp(f, r).

The ideas appearing in this paper were first introduced in the paper [AB2] and
were motivated by the previous papers [B1,AB1].

It is clear that if 1 ≤ p1, p2 ≤ ∞ such that 1
p1

+ 1
p2

≥ 1 and 1
p = 1

p1
+ 1
p2

− 1
and u : X × Y → Z is a bounded bilinear map then given f ∈ Lp1(T, X) and
g ∈ Lp2(T, Y ) then f ∗u g ∈ Lp(T, Z). Moreover

||f ∗u g||p ≤ ||f ||p1 ||g||p2 .

Our aim is to show that in the setting of vector-valued Hardy spaces this result
can be improved. We shall show that under certain assumptions on the Banach
spaces X and Y , if we start with functions f ∈ Hp1(T, X) and g ∈ Hp2(T, Y ) then
f ∗u g belongs not only to Hp(T, Z) but even to certain smaller space.

To understand the correct setting for the improvement of Young’s result we are
looking for, let us recall the following two important inequalities in the theory of
Hardy spaces.

It was shown by Littlewood and Paley (see [LP]) that for 2 ≤ p < ∞ there
exists a constant C > 0 such that for all f ∈ Hp,

(0.1)
( ∫ 1

0

(1 − r)p−1Mp
p (f ′, r)dr

) 1
p ≤ C||f ||p.

It was shown by Hardy and Littlewood (see [HL3]) that for 1 ≤ p ≤ 2 there
exists a constant C > 0 such that for all f ∈ Hp,

(0.2)
( ∫ 1

0

(1 − r)M2
p (f

′, r)dr
) 1

2 ≤ C||f ||p.

These two result lead, among other things, to the consideration of the following
spaces: For 1 ≤ p, q ≤ ∞ and for 0 < α we shall denote by Hp,q,α(X) the space
given by those functions in H(X) such that

∫ 1

0

(1 − r)αq−1Mq
p (f, r)dr <∞ ,

with the obvious modification for the case q = ∞ (see Section 1).
These spaces were considered first (in the scalar valued case) by Hardy-Littlewood

and Flett (see [HL1, HL2, F1, F2]) and then for many other authors. With this
notation the previous results say that

(0.3) f ∈ Hp =⇒ f ′ ∈ Hp,max{p,2},1.

We shall need to deal with Banach spaces X (see Section 1), shortly written
X ∈ (H)p where (0.3) holds for functions in Hp(X).

Our main result is now as follows:

Main Theorem. Let 1 ≤ p1 ≤ 2, 1 ≤ p2 ≤ ∞ such that 1
p1

+ 1
p2

≥ 1. Let
u : X × Y → Z be a bounded bilinear map where X,Y, Z are complex Banach
spaces. Let 1 ≤ p, q ≤ ∞ are such that 1

p = 1
p1

+ 1
p2

− 1 and 1
q = 1

2 + 1
max{p2,2} .
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Assume X ∈ (H)p1 and Y ∈ (H)p2 . Then if f ∈ Hp1(X), g ∈ Hp2(Y ) then
(f ∗u g)′ ∈ Hp,q,1(Z).

In other words, there exists a constant C > 0 such that

||(f ∗u g)′||p,q,1 ≤ C||u||||f ||p1 ||g||p2
for any f(z) =

∑N
n=0 xnz

n ∈ P(X) and g(z) =
∑M
n=0 ynz

n ∈ P(Y ).

The paper is divided into three sections. In section 1 we introduce the convo-
lution, the property (H)p corresponding to the vector-valued formulation of (0.3)
and give some general properties of the spaces Hp,q,α(X). In the second section
we prove the main theorem and present some corollaries of it. Finally Sections
3, 4 and 5 are devoted to give some applications for different bilinear maps. The
reader is also referred to [B1, AB1, AB2] for results of similar nature and other
applications.

As usual, throughout the paper, the constant C may vary from line to line.

1. Preliminaries.

Definition 1.1. (see [AB2]) Let u : X × Y → Z be a bounded bilinear map.
Let f ∈ H(X) and g ∈ H(Y ) given by f(z) =

∑∞
n=0 xnz

n and g(z) =
∑∞
n=0 ynz

n.
We define the u-convolution of f an g as the function in H(Z) given by

f ∗u g(z) =
∞∑
n=0

u(xn, yn)zn.

Definition 1.2. (see [AB2]) Let 1 ≤ p < ∞. A complex Banach space X
is said to have property (H)p, to be denoted X ∈ (H)p, if there exists a constant
C > 0 such that

(
∫ 1

0

(1 − r)max{2,p}−1Mmax{2,p}
p (f ′, r)dr)

1
max{2,p} ≤ C||f ||p

for any polynomial f ∈ P(X).

Remark 1.1. The property (H)1 was already defined and studied in [B1],
denoted there by (HL) and then again in [AB2].

Remark 1.2. The property (H)∞ would mean

M∞(f ′, r) ≤ CM∞(f, r)
1 − r ,

which holds true for any Banach space.

Definition 1.3. Let 1 ≤ p ≤ ∞, 1 ≤ q < ∞ and 0 < α. We shall denote by
Hp,q,α(X) the space of functions f ∈ H(X) such that

(1 − r)αMp(f, r) ∈ Lq(
dr

1 − r ),

and set ||f ||p,q,α = (
∫ 1

0

(1 − r)αq−1Mq
p (f, r)dr)

1
q .
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Accordingly, we shall denote by Hp,α(X) the space of functions f ∈ H(X) such
that

Mp(f, r) = O(
1

(1 − r)α ) (r → 1),

and set ||f ||p,α = sup
0<r<1

(1 − r)αMp(f, r).

Remark 1.3. The space Hp,p,
1
p (X) corresponds to the Bergman space Bp(X)

given by X-valued analytic functions such that
∫
D
‖f(z)‖pdA(z) <∞, where dA(z)

stands for the normalized Lebesgue measure on D.

Remark 1.4. Also observe that Bloch(X), that is the space of X-valued an-
alytic functions such that ‖f ′(z)‖ = O( 1

1−|z| ), corresponds to functions with deriv-
ative in H∞,1(X).

Recall thaf Bloch(X) is a Banach space if we endow it with the norm

‖f‖Bloch(X) = max{||f(0)||, sup
|z|<1

(1 − |z|)‖f ′(z)‖}.

We start with some very elementary embeddings, well known to the experts on
these spaces, whose proofs we include for completeness.

Lemma 1.1 (Embeddings). Let X be a complex banach space. If 1 ≤ p, q ≤
∞,0 < α, p1 ≤ p2, q1 ≤ q2 and α1 ≤ α2. Then

(i) Hp2(X) ⊂ Hp2,q1,α1(X) ⊂ Hp1,q2,α2(X) ⊂ Hp1,α2(X).
(ii) Hp1,q,α(X) ⊂ Hp2,q,α+ 1

p1
− 1

p2 (X).

Proof.
(i) The embedding Hp2(X) ⊂ Hp2,q1,α1(X) is obviuos.
For Hp1,q2,α2(X) ⊂ Hp1,α2(X) use

(1.2)
1
qα
Mq
p (f, r)(1 − r)qα ≤

∫ 1

r

(1 − s)αq−1Mq
p (f, s)ds

To get Hp2,q1,α1(X) ⊂ Hp1,q2,α2(X) use again (1.2):
Indeed, if f ∈ Hp2,q1,α1(X) then Mp2(f, r) ≤ C

(1−r)α1 . Hence

∫ 1

0

(1 − s)α2q2−1Mq2
p1 (f, s)ds ≤

∫ 1

0

(1 − s)α1q2−1Mq2
p2 (f, s)ds

≤
∫ 1

0

(1 − s)α1q2−1Mq1
p2 (f, s)

C

(1 − s)α1(q2−q1) ds

≤ ‖f‖q1p2,q1,α1
.

(ii) It follows from the following estimate (see [Du])

(1.1) Mp2(f, r
2) ≤ C Mp1(f, r)

(1 − r)
1

p1
− 1

p2

, (p1 ≤ p2)

�
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Proposition 1.1. Let 1 ≤ p ≤ ∞ and let X be a complex Banach space.
(i) f ∈ Hp(X) =⇒ f ′ ∈ Hp,1(X).
(ii) If 0 < α ≤ 1 ≤ q then

f ′ ∈ Hp,q,α(X) =⇒ f ∈ Hp(X).

(iii) If X ∈ (H)p and f ∈ Hp(X) then f ′ ∈ Hp1,q,α(X) for p1 ≤ p, max{p, 2} ≤
q and 1 ≤ α.

(iv) If X ∈ (H)p and f ∈ Hp(X) then f ′ ∈ Hp2,max{p,2},α(X) for p ≤ p2 and
1 + 1

p − 1
p2

≤ α.

Proof. (i) follows from the estimate

(1.3) Mp(f ′, r2) ≤ C
Mp(f, r)

1 − r .

(ii) It follows from the equality

(1.4) f(reit) =
∫ r

0

f ′(seit)ds+ f(0).

(iii) and (iv) are consequences from the definition and the Lemma 1.1. �

Let us now compute the norm of f(z) =
∑∞
n=0 xnz

2n

in Hp,q,α(X). The result
is well known in the scalar-valued case but we include the proof here for sake of
completeness.

Proposition 1.2. Let 1 ≤ p ≤ ∞, 1 ≤ q < ∞ and 0 < α ≤ 1 and let
f(z) =

∑∞
n=0 xnz

2n

, where xn ∈ X. Then

(1.5) ||f ||p,α ≈ sup
n∈N

2−αn||xn||,

and

(1.6) ||f ||p,q,α ≈ (
∞∑
n=0

2−αnq||xn||q)
1
q .

Proof. Note that

(1.7) r2
n ||xn|| ≤M1(f, r)

and

(1.8) M∞(f, r) ≤
∞∑
n=0

||xn||r2
n

.

To get (1.5) assume first that sup
n∈N

2−αn||xn|| ≤ 1; then we have, from (1.8),

Mp(f, r) ≤M∞(f, r) ≤
∞∑
n=0

2αnr2
n ≤ C

∞∑
n=0

nα−1rn ≤ C

(1 − r)α .

On the other hand, if Mp(f, r) ≤ C
(1−r)α then (1.7) gives (taking r = 1− 2−n) that

(1 − 2−n)2
n ||xn|| ≤ C2nα ,
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what shows that sup
n∈N

2−αn||xn|| ≤ C.

To get (1.6) first use (1.7) and that

∫ 1−2−(n+1)

1−2−n

(1 − r)αq−1r2
nqdr ≈ 2−nαq

to obtain

( ∞∑
n=1

2−αnq||xn||q
) 1

q ≤ C
( ∞∑
n=0

(
∫ 1−2−(n+1)

1−2−n

(1 − r)αq−1r2
nqdr)||xn||q

) 1
q

≤ C
( ∫ 1

0

(1 − r)qα−1Mq
p (f, r)dr

) 1
q

= C||f ||p,q,α.

To see the other inequality, consider the operator given by

T ({yn}) = (1 − r)α
∞∑
n=0

2nαynr2
n

e2
nit.

Note that (1.5) gives, for any 1 ≤ p ≤ ∞, the boundedness of T as an operator from
)∞(X) into L∞( dr

(1−r) , L
p(T, X)) (where, as usual, Lp( dr1−r , Y ) stands for the space

of Y -valued functions on (0, 1) that are p-integrable with respect to the measure
dr

1−r ).
It follows from (1.8) and a simple application of Fubbini’s theorem that it is

also bounded from )1(X) into L1( dr
(1−r) , L

p(T, X)).
Now we use interpolation (see [BL]) to get that

T : lq(X) → Lq(
dr

(1 − r) , L
p(T, X))

is bounded as well. What, in particular, implies that if
∑∞
n=0 2−nαq‖xn‖q < ∞

then f ∈ Hp,q,α(X). �

Remark 1.5. Let us mention that for the Bloch norm we have that

||
∞∑
n=1

xnz
2n ||Bloch(X) ∼ sup

n∈N

||xn||.

This also follows from the scalar case (see [ACP, AS]) using the easy fact that

||f ||Bloch(X) = sup
||x∗||≤1

||x∗f ||Bloch.

Let us now mention some notions of geometry of Banach spaces that will be
used in the sequel.

First recall that Kahane’s inequalites can be stated as ([MPi, Pi1 ])

(1.9) ||
∑
n≥0

xnz
2n ||p ≈ ||

∑
n≥0

xnz
2n ||1

for any 0 < p <∞.
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Given 2 ≤ q < ∞ a Banach space is said to have cotype q (see [Pi2]) if there
exists a constant C > 0 such that, for any finite family {xn}n≥0 in X,

(
∑
n≥0

||xn||q)
1
q ≤ C||

∑
n≥0

xnz
2n ||1.

Similarly for 1 ≤ p ≤ 2 a Banach space is said to have type p (see [Pi2]) if
there exists a constant C > 0 such that, for any finite family {xn}n≥0 in X,

||
∑
n≥0

xnz
2n ||1 ≤ C(

∑
n≥0

||xn||p)
1
p .

The notion of K-convex spaces (see [Pi2]) can be also stated by looking at the
projections onto lacunary sequences, that is the existence of a constant C > 0 such
that for some (or any) value of 1 < p <∞

(1.10) ||
∑
n≥0

x2nz2
n ||p ≤ C||

∑
n≥0

xnz
n||p

for any sequence xn ∈ X.
Another useful property for our purposes will be the notion of Fourier-type

introduced by Peetre ([Pee]) which corresponds to spaces where the vector valued
analogue of Hausdorff-Young’s inequalies holds.

Let us recall that for 1 ≤ p ≤ 2, a Banach space X is said to have Fourier type
p if there exists a constant C > 0 such that

(1.11)
( ∞∑
n=−∞

||f̂(n)||p′
) 1

p′ ≤ C||f ||Lp(X).

It is not hard to see that X has Fourier type p if and only if X∗ has Fourier
type p. Typical examples are Lr for p ≤ r ≤ p′ or those obtained by interpolation
between any Banach space and a Hilbert space.

Let us mention some results whose proofs can be seen in [AB2]

Proposition 1.3.
(i) Let q = max{p, 2}. If X ∈ (H)p then X has cotype q.
(ii) If H be a complex Hilbert space then H ∈ (H)2.
(iii) Let (Ω,Σ, µ) be a σ-finite measure space.
(a) If p ≥ 2 and p′ ≤ q ≤ p then Lq(µ) ∈ (H)p.
(b) If 1 ≤ p ≤ 2 and p ≤ q ≤ 2 then Lq(µ) ∈ (H)p.

Let us finally recall the notion of vector valued BMOA(X) (see [B1]) as the
space of functions f ∈ L1(T, X) with f̂(n) = 0 for n < 0 such that

||f ||∗,X = sup
I

1
|I|

∫
I

||f(eit) − fI ||
dt

2π
<∞,

where the supremum is taken over all intervals I ∈ [0, 2π), |I| stands for the nor-
malized Lebesgue measure of I and fI = 1

|I|
∫
I
f(eit) dt2π .

The norm in the space is given by

||f ||BMO(X) = ||
∫ π

−π
f(eit)

dt

2π
|| + ||f ||∗,X .
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Let us point out certain results on the duality to be used later on. Although
most of the results on the duality H1 −BMO for vector valued functions (see [B2,
Bo]) are given for the space H1 defined in terms of atoms, it is easy to deduce from
the known results the following facts:

For any Banach space X one has that BMOA(X∗) continuously embeds into(
H1(X)

)∗
. Actually if f ∈ BMOA(X∗) and g ∈ P(X) then

|
∫ 1

0

< f(eit), g(e−it) >
dt

2π
| ≤ ||f ||BMOA(X∗)||g||1,X .

IfX is a UMD space (see [B2]) then we actually have the validity of Fefferman’s
duality result (

H1(X)
)∗

= BMOA(X∗).

2. The theorem and its proof.

Next result is known and part of the folklore we include here a proof because
it will be a main point in our arguments.

Lemma 2.1. Let 1 ≤ p, q ≤ ∞, 0 < α and let X be a complex Banach space.
Then f belongs to Hp,q,α(X) if and only if f ′ belongs to Hp,q,α+1(X).

Proof. Let us assume f ∈ Hp,q,α(X). Denoting by K(z) = 1/(1 − z)2 the
Bergman kernel, we can write f ′ = f ∗K, therefore

Mp(f ′, r2) ≤Mp(f, r)M1(K, r) ≤ C
Mp(f, r)
(1 − r) .

From this it easily follows that f ′ ∈ Hp,q,α+1(X).
Conversely, let us assume f ′ ∈ Hp,q,α+1(X) and that f(0) = 0. To see that

f ∈ Hp,q,α(X) it suffices to see that

A = (
∫ 1

1
2

(1 − r)qα−1Mq
p (f, r)dr)

1
q <∞.

Observe first that

f(z) =
∫ 1

0

f ′(sz)ds.

This gives for r ≥ 1
2

Mp(f, r) ≤
∫ 1

0

Mp(f ′, rs)ds ≤ 2
∫ r

0

Mp(f ′, s)ds.

To estimate A we consider first the case q = 1. Then

A ≤ 2
∫ 1

1
2

(1 − r)α−1

∫ r

0

Mp(f ′, s)dsdr

≤ 2
∫ 1

0

Mp(f ′, s)(
∫ 1

s

(1 − r)α−1dr)ds

= (2/α)‖f ′‖qp,1,α+1.
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Assume now q > 1. From Lemma 1.1 we have that f ′ ∈ Hp,1,α+1(X). Note
that

Aq ≤ 2q

αq

∫ 1

1
2

(1 − r)qα−1
( ∫ r

0

Mp(f ′, s)ds
)q
dr

then integration by parts gives

Aq ≤ 2q

αq+1

∫ 1

0

(1 − r)qαMp(f ′, r)(
∫ r

0

Mp(f ′, s)ds)q−1dr.

Now writting (1−r)qα = (1−r)α+1−1/q(1−r)(q−1)α−1/q′ , Hölder’s inequality gives

Aq ≤ C(
∫ 1

0

(1 − r)q(α+1)−1Mq
p (f

′, r)dr)1/qAq/q
′
,

which is the desired inequality. �

Theorem 2.1. Let 1 ≤ p1 ≤ 2 and 1 ≤ p2 < ∞ such that 1
p1

+ 1
p2

≥ 1.
Let u : X × Y → Z be a bounded bilinear map where X,Y, Z are complex Banach
spaces. Let 1 ≤ p, q ≤ ∞ are such that 1

p = 1
p1

+ 1
p2

− 1 and 1
q = 1

2 + 1
max{p2,2} . If

X ∈ (H)p1 and Y ∈ (H)p2 then there exists a constant C > 0 such that

||(f ∗u g)′||p,q,1 ≤ C||u||||f ||p1 ||g||p2
for any f(z) =

∑N
n=0 xnz

n ∈ P(X) and g(z) =
∑M
n=0 ynz

n ∈ P(Y ).

Proof. Let us first observe that if Sf(z) = zf(z) we have

[S2(f ∗u g)]′′(z) =
∞∑
n=0

u((n+ 1)xn, (n+ 1)yn)zn +
∞∑
n=0

u(xn, (n+ 1)yn)zn

= [(Sf)′ + f ] ∗u (Sg)′(z).

This, with the notation fr(z) = f(rz), means that

[S2(f ∗u g)]′′(reiθ) = ((Sf)′ + f)r ∗u (Sg)′r(e
iθ).

Therefore, Young’s theorem implies

(2.1) Mp([S2(f ∗u g)]′′, r) ≤ ‖u‖Mp1((Sf)
′ + f), r)Mp2((Sg)

′, r).

Now, denoting by t = max{p2, 2} and t′ such that 1
t + 1

t′ = 1 then, using
1
q = 1

2 + 1
t , Hölder inequality gives that

(
∫ 1

0

(1 − r)q( 1
2+ 1

t′ )Mq
p (S

2(f ∗u g)′′, r)dr)1/q

≤ ‖u‖(
∫ 1

0

(1 − r)M2
p1((Sf)

′ + f), r)dr)1/2(
∫ 1

0

(1 − r)t−1M t
p2((Sg)

′, r)rdr)1/t

≤ C‖u‖
(
‖f‖p1 + (

∫ 1

0

(1 − r)M2
p1((Sf)

′, r)dr)1/2
)
(
∫ 1

0

(1 − r)t−1M t
p2((Sg)

′, r)dr)1/t.

Now using the properties X ∈ (H)p1 and Y ∈ (H)p2 we have that



BILINEAR CONVOLUTION 11

(
∫ 1

0

(1 − r)q( 1
2+ 1

t′ )Mq
p (S

2(f ∗u g)′′, r)dr)1/q ≤ C‖u‖(‖f‖p1 + ‖Sf‖p1)‖Sg‖p2

≤ C‖u‖‖f‖p1‖g‖p2 .

Now observe that q( 1
2 + 1

t′ ) = q( 3
2 − 1

t ) = 2q − 1 then from Lemma 2.1 we
can estimate the norm of S2(f ∗u g)′ in Hp,q,1(Z) by the norm of S2(f ∗u g)′′ in
Hp,q,2(Z) and hence

||(f ∗u g)′||p,q,1 ≤ C||u||||f ||p1 ||g||p2 .�

Theorem 2.2. Let u : X × Y → Z be a bounded bilinear map where X,Y, Z
are complex Banach spaces. If X ∈ (H)1 then there exists a constant C > 0 such
that

||(f ∗u g)′||∞,2,1 ≤ C||u||||f ||1||g||Bloch(Y )

for any f(z) =
∑N
n=0 xnz

n ∈ P(X) and g(z) =
∑M
n=0 ynz

n ∈ P(Y ).

Proof. Same proof as before where p1 = 1, p2 = ∞ gives the version of (2.1)
in our case

(2.2) M∞([S2(f ∗u g)]′′, r) ≤ ‖u‖M1((Sf)′ + f), r)M∞((Sg)′, r).

This implies that

M∞([S2(f ∗u g)]′′, r) ≤ C‖u‖‖g‖Bloch(Y )
M1((Sf)′ + f), r)

1 − r .

Therefore

(
∫ 1

0

(1 − r)3M2
1 (S2(f ∗u g)′′, r)dr)1/2

≤ ‖u‖‖g‖Bloch(Y )(
∫ 1

0

(1 − r)M2
1 ((Sf)′ + f), r)dr)1/2

≤ C‖u‖‖g‖Bloch(Y )

(
‖f‖1 + (

∫ 1

0

(1 − r)M2
1 ((Sf)′, r)dr)1/2

)

≤ C‖u‖‖g‖Bloch(Y )(‖f‖1 + ‖Sf‖1)

≤ C‖u‖‖g‖Bloch(Y )‖f‖1.�

In the applications of Theorems 2.1 and 2.2 that follow, sometimes polynomials
are replaced by functions defined by power series. In all such cases the justification
for doing so requires at most easy arguments, involving density of polynomials in
the corresponding function space, that will be omitted.

Let us now give another way the see the improvement on f ∗u g from a different
point of view.

Recall that for a function f ∈ Lp(X) we can define the modulus of p-integrability

ωp(f, t) = sup
|h|≤t

(
∫ π

−π
‖f(ei(x+h)) − f(eix)‖p dx

2π
)

1
p .
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It is simple to see that ωp(f, t) goes to zero as t goes to zero. A bit more can
be said for the functions with derivative in Hp,q,α(X) as the following lemma says.

Lemma 2.2. Let 1 ≤ p ≤ ∞, X a complex Banach space and f : D → X be
analytic function with continuous extension to the boundary, still denoted by f .

Then f ′ ∈ Hp,1,1(X) if and only if∫ π

0

ωp(f, t)
dt

t
<∞.

Proof. Asumme first that f ′ ∈ Hp,1,1(X). Now if we fix 0 < r < ρ < 1 and
x, h ∈ [−π, π) we have

f(rei(x+h)) − f(reix) =
∫

Γ

f ′(z)dz

where the contour Γ goes radially from reix to ρreix, then along |z| = ρr to ρrei(x+h)

and again radially to rei(x+h).
It follows that for any ρ < 1

‖f(rei(x+h))−f(reix)‖ ≤
∫ 1

ρ

‖f ′(rseix)‖ds+
∫ 1

ρ

‖f ′(rsei(x+h))‖ds+
∫ x+h

x

‖f ′(ρreiy)‖dy
2π
.

It is easy to see (using the Hardy-Littlewood maximal theorem for 1 < p <∞)
that if F (x) =

∫ x+h
x

‖f ′(ρreiy)‖ dy2π then ‖F‖p ≤ |h|Mp(f ′, ρr).
Using now the previous estimate we can write

(
∫ π

−π
‖f(rei(x+h)) − f(reix)‖p dx

2π
)

1
p ≤ 2

∫ 1

ρ

Mp(f ′, rs)ds+ |h|Mp(f ′, ρr).

Since Mp(f, r) is increasing we have for any t > 0

ωp(f, t) ≤ 2
∫ 1

ρ

Mp(f ′, s)ds+ tMp(f ′, ρ).

Now taking ρ = 1 − t, dividing by t and integrating we get
∫ π

0

ωp(f, t)
dt

t
≤ 2

∫ 1

0

∫ 1

1−t
Mp(f ′, s)dsdt+

∫ 1

0

Mp(f ′, 1 − t)dt ≤ 3
∫ 1

0

Mp(f ′, r)dr.

Conversely, using the Cauchy integral formula, we can write

f ′(reix) =
∫ π

−π

f(ei(x+h)) − f(eix)
(eih − r)2 ei(h−x)

dh

2π
.

From here it follows that

Mp(f ′, r) ≤
∫ π

0

ωp(f, t)
|eit − r|2 dt.

Using the fact that (1 − r)2 + (C0t)2 ≤ |eit − r|2 for certain constant C0 > 0
we have that ∫ 1

0

Mp(f ′, r)dr ≤
∫ 1

0

∫ π

0

ωp(f, t)
(1 − r)2 + (C0t)2

dtdr.

Finally applying Fubini and the change of variable 1 − r = (C0t)s we get
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∫ 1

0

Mp(f ′, r)dr ≤ C
∫ π

0

ωp(f, t)
dt

t
.�

Corollary 2.1. Let 1 ≤ p ≤ 2 and let u : X × Y → Z be a bounded bilinear
map where X,Y, Z are complex Banach spaces. Assume X ∈ (H)1 and Y ∈ (H)p.
If f ∈ H1(X) and g ∈ Hp(Y ) then∫ π

0

ωp(f ∗u g, t)
dt

t
<∞.

Proof. It follows from the application of Theorem 2.1 and Lemma 2.2 con-
secutively. �

Our next aim is to get information on Taylor coefficients of f ∗u g. For that
purpose the following lemma is useful.

Lemma 2.3. Let 1 ≤ q ≤ ∞, 0 < α and X a complex Banach space.
If f(z) =

∑∞
n=0 xnz

n ∈ H1,q,α(X) then

(2.3) (
∞∑
n=0

2−nαq sup
2n≤k<2n+1

||xn‖q)
1
q ≤ C‖f‖1,q,α

Proof. Note that

sup
2n≤k<2n+1

||xk‖ ≤ CM1(f, 1 − 2−n).

Therefore

‖f‖1,q,α =
( ∞∑
n=0

∫ 1−2−(n+1)

1−2−n

(1 − r)qα−1Mq
1 (f, r)dr

)1/q

≥ C
∞∑
n=0

Mq
1 (f, 1 − 2−n)

∫ 1−2−(n+1)

1−2−n

(1 − r)qα−1dr
)1/q

≥ C(
∞∑
n=0

2−nαq sup
2n≤k<2n+1

||xn‖q)
1
q .�

Corollary 2.2. Let u : X × Y → Z be a bounded bilinear map where X,Y, Z
are complex Banach spaces. Let f ∈ H1(X) and g ∈ H1(Y ) where X,Y ∈ (H)1 .
Then

(2.4)
∞∑
n=0

sup
2n≤k<2n+1

||u(xk, yk)|| ≤ C||u||||f ||1||g||1

In particular

(2.5)
∞∑
n=0

||u(xn, yn)||
n+ 1

≤ C||u||||f ||1||g||1
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Proof. Note that in this case Theorem 2.1 gives that h′(z) = (f ∗u g)′(z) =∑∞
n=1 nu(xn, yn)z

n−1 ∈ H1,1,1. Now apply Lemma 2.3. �

Next result is known but we include the proof for completeness.

Lemma 2.4. Let 0 < γ ≤ 1, β > 0 and αn ≥ 0. Then if In = N ∩ [2n, 2n+1)
we have ∫ 1

0

(1 − r)β−1(
∞∑
n=0

αnr
n)γdr ≈

∞∑
n=0

2−nβ(
∑
k∈In

αk)γ .

Proof.

∫ 1

0

(1 − r)β−1(
∞∑
n=0

αnr
n)γdr =

∞∑
n=0

∫ 1−2−(n+1)

1−2−n

(1 − r)β−1(
∞∑
n=0

αnr
n)γdr

≥ C
∞∑
n=0

2−n(β−1)

∫ 1−2−(n+1)

1−2−n

(
∑
k∈In

αkr
k)γdr

≥ C
∞∑
n=0

2−n(β−1)(
∑
k∈In

αk)γ
∫ 1−2−(n+1)

1−2−n

r2
nγdr

≥ C
∞∑
n=0

2−nβ(
∑
k∈In

αk)γ .

Let us now show the converse inequality. Using that γ ≤ 1 we have
∫ 1

0

(1 − r)β−1(
∞∑
n=0

αnr
n)γdr ≤ C

∫ 1

0

(1 − r)β−1
( ∞∑
n=0

(
∑
k∈In

αk)r2
n−1

)γ
dr

≤ C
∫ 1

0

(1 − r)β−1
( ∞∑
n=0

(
∑
k∈In

αk)γr(2
n−1)γ

)
dr

≤ C
∞∑
n=0

∫ 1

0

(1 − r)β−1r2
nγ−1(

∑
k∈In

αk)γdr

≤ C
∞∑
n=0

B(β, 2nγ)(
∑
k∈In

αk)γ

≤ C
∞∑
n=0

2−nβ(
∑
k∈In

αk)γ .

�

Corollary 2.3. Let 1 ≤ p1 ≤ 2, 1 ≤ p2 ≤ ∞ such that 3
2 ≤ 1

p1
+ 1
p2
< 2.

Let u : X × Y → Z be a bounded bilinear map where X,Y, Z are complex Banach
spaces. Let f ∈ Hp1(X) and g ∈ Hp2(Y ). Assume X ∈ (H)p1 and Y ∈ (H)p2 and
Z has Fourier type p where 1

p = 1
p1

+ 1
p2

− 1 then

( ∞∑
n=0

(
2n+1∑
k=2n

||u(xk, yk)||p
′
)

q
p′

) 1
q ≤ C||u||||f ||p1 ||g||p2
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for 1
q = 1

2 + 1
max{2,p2} .

Proof. It follows from Theorem 2.1 that h′(z) = (f∗ug)′(z) =
∑∞
n=1 nu(xn, yn)z

n−1 ∈
Hp,q,1(Z). Using that Z has Fourier type p (note that the restriction gives 1 < p ≤
2) we have, from (1.11), that

(
∞∑
n=0

np
′‖u(xn, yn)‖p

′
rp

′(n−1))
1
p′ ≤ CMp((f ∗u g)′, r).

Therefore an application of Lemma 2.4 with αn = np
′‖u(xn, yn)‖p

′
, β = q and

γ = q
p′ ≤ 1 gives the result. �

Corollary 2.4. Let 1 < p1 ≤ p2 ≤ ∞ such that 1
p1

+ 1
p2

≥ 1. Let u :
X × Y → Z be a bounded bilinear map where X,Y, Z are complex Banach spaces.
Let f ∈ Hp1(X) and g ∈ Hp2(Y ) where X ∈ (H)p1 and Y ∈ (H)p2 and either X
or Y is K-convex then

(
∞∑
n=0

||u(x2n , y2n)||q) 1
q ≤ C||u||||f ||p1 ||g||p2

where 1
q = 1

2 + 1
max{p2,2} .

Proof. Assume that X is K-convex (similar proof works for Y ). Take f(z) =∑∞
n=0 xnz

n, g(z) =
∑∞
n=0 ynz

n and apply Theorem 2.1 with f1(z) =
∑∞
n=0 x2nz2

n

and g. Note that (f1 ∗u g)′(z) =
∑∞
n=0 2nu(x2n , y2n)z2

n−1 ∈ Hp,q,1(Z). Now apply
Proposition 1.2 and the estimate given by (1.10) ‖f1‖p1 ≤ C‖f‖p1 to finish the
proof. �

Remark 2.1. The case p1 = 1 in the previous Corollary 2.4 can be obtained if
we assume that the Banach spaceX satisfies that the Paley projection is bounded in
H1(X). This property has been considered in [L-PP]. And, for instance,X = L1(µ)
or the nuclear operators σ1 (see Section 3) satisfy such a property.

3. Applications to Schatten classes.

Given 1 ≤ p <∞ we shall denote by σp the Banach space of compact operators
on l2 such that

||A||σp
=

(
tr(A∗A)

p
2

) 1
p

<∞.
It is well known that σ1 coincides with the space of nuclear operators on l2 and σ2

with the space of Hilbert-Schmidt operators on l2. The reader is referred to [GK]
for general properties on σp.

Lemma 3.1. (see [B1])
If 1 ≤ p ≤ 2 then σp has the (H)1-property.

To cover other values of p we shall use some of the recent advances on inter-
polation of vector-valued Hardy spaces. It is known (see [BX]) that interpolation
spaces by complex or real method,

(
Hp1(X1), Hp2(X2)

)
θ

or
(
Hp1(X1), Hp2(X2)

)
θ,p

do not coincide, in general, with Hpθ (Xθ) or Hpθ (Xθ,p), but nevertheless there are
some positive results for some particular spaces, like Lp or σp, where the expected
result remains true (see [X1, X2, BX, Pi3]).
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Proposition 3.1. Let 1 ≤ p <∞.
(i) If p ≥ 2 and p′ ≤ q ≤ p then σq ∈ (H)p.
(ii) If 1 ≤ p ≤ 2 and p ≤ q ≤ 2 then σq ∈ (H)p.

Proof. Observe that the (H)p property can be stated in terms of the bound-
edness of the operator T : Hp(X) → Lmax{2,p}( dr1−r , L

p(T, X)) given by

T (f)(r, t) = (1 − r)f ′(reit).

Note first that

T : H2
(
σ2

)
→ L2

( dr

1 − r , L
2
(
T, σ2

))

is bounded by Proposition 1.3 part (ii).
To see (i), choose θ = 1 − 2

p and s = θ( 1
q − 1

p )
−1, so that 1

p = 1−θ
2 and

1
q = 1−θ

2 + θ
s , which gives

[H2
(
σ2

)
, BMOA

(
σs

)
]θ = Hp

(
σq

)

and

[L2
( dr

1 − r , L
2
(
T, σ2

))
, L∞

( dr

1 − r , L
∞(

T, σs
))

]θ = Lp
( dr

1 − r , L
p
(
T, σq

))
.

In order to interpolate, just note that BMOA(X) ⊂ Bloch(X) for any X, so

T : BMOA
(
σs

)
→ L∞

( dr

1 − r , L
∞(T, σs)

)

is bounded for any value 1 ≤ s ≤ ∞.
To see (ii), let θ be such that 1

p = 1 − θ
2 and s such that 1

q = 1−θ
s + θ

2 . Then

[H1
(
σs

)
, H2

(
σ2

)
)]θ = Hp

(
σq

)

and

[L2
( dr

1 − r , L
1
(
T, σs

))
, L2

( dr

1 − r , L
2
(
T, σ2

))
]θ = L2

( dr

1 − r , L
p
(
T, σq

))
.

It follows from our assumptions that 1 ≤ s ≤ 2 and then, using Lemma 3.1,
σs ∈ (H)1. Hence we get σq ∈ (H)p. �

Theorem 3.1. Let 1 ≤ p ≤ 2. There exists a constant C > 0 such that if {Tn}
is a sequence of operators in σp and if {yn} is a sequence of vectors in l2 such that∑∞
n=0 ‖yn‖2 = 1 then

∞∑
n=0

(
2n+1∑
k=2n

‖Tk(yk)‖2)
1
2 ≤ C 1

2π

∫ π

−π
‖

∞∑
n=0

Tne
int‖σp

dt.

Proof. Consider f(z) =
∑∞
n=0 Tnz

n ∈ H1(σp) and g(z)
∑∞
n=0 ynz

n ∈ H2(l2).
Now apply Corollary 2.3 for the cases p1 = 1, p2 = 2, X = σp and Y = l2 with the
bilinear map u : σp × l2 → l2 given by u(T, y) = T (y). �
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4. Applications to convolution of sequences.

In this section we consider the bilinear map given by Young’s theorem, that
is for 1

p + 1
q ≥ 1 and 1

r = 1
p + 1

q − 1 we have the bounded bilinear map u :
Lp(R)×Lq(R) → Lr(R) given by u(f, g) = f ∗ g. The reader is referred to [ AB1,
AB2 ] for particular cases and some applications.

Theorem 4.1. Let 1 ≤ p1 ≤ 2, 1 ≤ p2 < ∞ such that 1
p1

+ 1
p2

≥ 1. If
1
p1

+ 1
p2

− 1 = 1
p and 1

2 + 1
max{p2,2} = 1

q then, we have

(
∞∑
n=0

||fn ∗ gn‖qp)
1
q ≤ C||(

∞∑
n=1

|fn|2)1/2||p1 ||(
∞∑
n=1

|gn|2)1/2||p2

for fn ∈ Lp1(R), gn ∈ Lp2(R).

Proof. Consider f(z) =
∑∞
n=0 fnz

2n

and g(z) =
∑∞
n=0 gnz

2n

.
It is a well-known consequence of Kintchine’s inequalities that

‖f‖Hp1 (Lp1 ) ∼ ||(
∞∑
n=1

|fn|2)1/2||p1 and ‖g‖Hp2 (Lp2 ) ∼ ||(
∞∑
n=1

|gn|2)1/2||p2 .

The result now follows from Theorem 2.1 and Proposition 1.2 applied to (f ∗u
g)′(z) =

∑∞
n=0 2nfn ∗ gnz2

n−1 ∈ Hp,q,1(Lp(R)).

Remark 4.1. The reader should observe that this previous result can also be
achieved by using Hölder’s inequality and the cotype of the spaces appearing in the
theorem.

Theorem 4.2. Let 1 ≤ p1 ≤ 2, 1 ≤ p2 ≤ ∞ such that 1 ≤ 1
p1

+ 1
p2

≤ 3
2 . If

1
p1

+ 1
p2

− 1 = 1
p .Then we have

||(
∞∑
n=1

|fn ∗ gn|2)1/2||p ≤ C||(
∞∑
n=1

|fn|2)1/2||p1 sup
n∈N

‖gn‖p2

for fn ∈ Lp1(R), gn ∈ Lp2(R) .

Proof. As above consider f(z) =
∑∞
n=0 fnz

2n

and g(z) =
∑∞
n=0 gnz

2n

.
Using Remark 1.5 we have that

‖g‖Bloch(Lp2 ) ∼ sup
n∈N

‖gn‖p2 .

Therefore Theorem 2.2 and Proposition 1.2 give that

(
∞∑
n=0

‖fn ∗ gn‖2
p)

1
2 ≤ C||(

∞∑
n=1

|fn|2)1/2||p1 sup
n∈N

‖gn‖p2

Now using that p ≥ 2 we apply that Lp has type 2 to get

||(
∞∑
n=1

|fn ∗ gn|2)1/2||p ≤ (
∞∑
n=0

‖fn ∗ gn‖2
p)

1
2

and the proof is finished. �
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5. Applications to vector valued multipliers.

In this section we deal with the following natural problem in the vector-valued
setting. Given two Banach spaces X,Y , a sequence {xn} ∈ X and a sequence of
opertators {Tn} ∈ L(X,Y ) we want to study the map from H(X) to H(Y ) defined
by f(z) =

∑∞
n=0 xnz

n → g(z) =
∑∞
n=0 Tn(xn)z

n. One wants to find the conditions
on {Tn} ∈ L(X,Y ) to get this map bounded from one space of X-valued functions
into another space of Y -valued functions. The reader is referred to [B1] where the
case H1(X) into BMOA(Y ) is analyzed.

Here we present an alternative proof of some result in [B1].

Theorem 5.1. Let 1 ≤ p ≤ 2 ≤ q < ∞ and let Tn : lp → lq be a sequence
of bounded linear operators. If

∑∞
n=0 Tnz

n ∈ Bloch(L(lp, lq)) and
∑∞
n=0 xnz

n ∈
H1(lp) then

∑∞
n=0 Tn(xn)z

n ∈ BMOA(lq).

Proof. Taking into account that (H1(lq
′
))∗ = BMOA(lq) ( since 2 ≤ q <∞)

it suffices to see that

|
∞∑
n=0

< Tn(xn), yn > | ≤ C‖
∞∑
n=0

xnz
n‖1‖

∞∑
n=0

ynz
n‖1

for any
∑∞
n=0 ynz

n ∈ H1(lq
′
).

Let us consider the natural embedding u : lp × lq′ → lp⊗̂lq′ and recall that
L(lp, lq) is naturally identified to (lp⊗̂lq′)∗ under the pairing [T, x⊗y] =< T (x), y >.

Therefore

|
∞∑
n=0

< Tn(xn), yn > | = |
∞∑
n=0

[Tn, xn ⊗ yn]| = |
∞∑
n=0

[Tn, u(xn, yn)]|.

Now we recall thatBloch(X∗) corresponds, under the pairing
∑∞
n=0 < xn, x

∗
n >,

to the dual of the space of functions whose derivative is in H1,1,1(X).
The combination of this facts and Theorem 2.2 applied to p1 = p2 = 1 and

X = lp and Y = lq
′
which belong to (H)1 gives the desired result. �
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