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Bilinear maps and convolutions

Oscar Blasco∗

Abstract. Let X, Y, Z be Banach spaces and let u : X×Y → Z be a bounded
bilinear map. Given a locally compact abelian group G , and two functions
f ∈ L1(G, X) and g ∈ L1(G, Y ), we define the u -convolution of f and g as the
Z -valued function f ∗u g(t) =

∫
G

u(f(t − s), g(s))dµG(s) where dµG stands for
the Haar measure on G .

We define the concepts of vector-valued approximate identity and sum-
mability kernel associated to a bounded bilinear map, showing the corresponding
approximation result in this setting. A Haussdorf-Young type result associated
to a bounded bilinear map is also presented under certain assumptions on the
Banach space X .

1. Introduction

In this paper we shall be dealing with a notion which allows to understand
the convolution of functions taking values in different Banach spaces. This is done
by means of bilinear maps and it has been already considered in [1, 5] for the
particular groups T and R .

In this paper our main objetives will be to get some formulations of vector-
valued approximate identities and summability kernels in this context and the
study of Haussdorff-Young’s theorem on the Fourier transform for this vector-
valued and bilinear setting.

In what follows G will be an abelian and locally compact group, with
addition as group operation, usually abreviated by LCA. We denote the Haar
measure of the group, by µG , that is the unique (in abelian compact groups)
or unique up to a positive constant factor (in LCA groups) probability Borel
measure, which is invariant under traslations, and we use the notation of Lp(G,X)
(1 ≤ p < ∞), for the p-integrable Bochner functions, that is X -valued measurable
functions for which ‖f‖Lp(G,X) = (

∫
G
‖f(t)‖p

XdµG(t))1/p < ∞. The reader is
referred to [10] and to [23] or [14] for an introduction to vector-valued Bochner
integral and to harmonic analysis on groups respectively.

If G is a LCA group G , X, Y, Z are Banach spaces and u : X × Y → Z is
a bounded bilinear map we shall define the u-convolution by

f ∗u g(t) =

∫
G

u(f(t− s), g(s))dµG(s) ∈ L1(T, Z)

for any pair of functions f ∈ L1(G,X) and g ∈ L1(G, Y ).
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Let us mention some cases where this notion has been already used in the
literature.

(1) Let X = Y be a Banach algebra A and u the product on A u(a, b) = ab .
For f, g ∈ L1(G,A) the convolution is then defined by

f ∗ g(t) =

∫
G

f(t− s))g(s)dµG(s) ∈ L1(G,A).

(2) Let X be a Banach space (say over R) and u : X × R → X given by
u(x, λ) = λx . Then if f ∈ L1(G,X) and g ∈ L1(G)

f ∗ g(t) =

∫
G

g(s)f(t− s)dµG(s) ∈ L1(G,X).

(3) Let X be a Banach space (over K = R or C) and u : X×X∗ → K given
by the duality pair u(x, x∗) =< x, x∗ > . For f ∈ L1(G,X) and g ∈ L1(G,X∗)
the convolution gives

f ∗ g(t) =

∫
G

< f(t− s), g(s) > dµG(s) ∈ L1(G).

(4) Let X1, X2 be a couple of Banach spaces, put X = X1 , the space
of linear continuous operators L(X1, X2) = Y and the bilinear map u : X1 ×
L(X1, X2) → X2 given by u(x, T ) = T (x). Then for f ∈ L1(T, X1) and g ∈
L1(T, L(X1, X2)) the convolution means

f ∗ g(t) =

∫
G

g(s)(f(t− s))dµG(s) ∈ L1(T, X2).

The reader is referred to [1] for the use of such a convolution in partial
differential equations, to [17] for its connection with absolutely summing operators,
and to [5, 2, 3] for different applications, mainly in the cases G = T and G = R ,
when using the following particular bilinear maps :

(1) For X = Lp1(µ), Y = Lp2(µ) and Z = Lp(µ) where µ is any measure
and 1 ≤ p1, p2 ≤ ∞ such that 1

p1
+ 1

p2
= 1

p
, Hölder’s inequality provides the bilinear

map u(f, g) = f.g .

(2) For X = Lp1(Rn), Y = Lp2(Rn) and Z = Lp(Rn) where 1 ≤ p1, p2 ≤ ∞
such that 1

p1
+ 1

p2
≥ 1 and 1

p
= 1

p1
+ 1

p2
− 1, Young’s theorem provides the bilinear

map via convolution u(f, g) = f ∗ g
(3) Given three Banach spaces X1, X2, X3 , the composition of operators

u(T, S) = ST gives the bilinear map where X = L(X1, X2), Y = L(X2, X3) and
Z = L(X1, X3). This example provides also nice aplications when considering op-
erator ideals, such as p-absolutely summing operators or Schatten classes, instead
that just the spaces of bounded operators.

(4) The bilinear map u(x, y) = x ⊗ y from u : X × Y → X⊗̂Y , where
X⊗̂Y the projective tensor product, also provides interesting applications.

The paper is divided into three sections. In the first section we define the
convolution and prove some elementary properties of it. In particular we analyze
the behaviour with respect to Fourier transform. In section 2 we introduce the
notion of bounded approximate identity and summability kernel with respect a
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bilinear map u : X × Y → X and prove the corresponding approximation result.
Finally in Section 3 we consider the notion of Fourier type with respect to a
group and prove a Hausdorff-Young type result about Fourier transform under the
assumptions of Fourier type on X .

2. Preliminaries

Let us start off by mentioning that if f ∈ L1(G,X) and g ∈ L1(G, Y ) then∫
G
‖f(t − s)‖X‖g(s)‖Y dµG(s) < ∞ for almost all t ∈ G . This allows us to give

that following definition.

Definition 2.1. Let G be LCA group , X, Y, Z be Banach spaces and u :
X×Y → Z be a bounded bilinear map. For each f ∈ L1(G,X) and g ∈ L1(G, Y )
we define for almost all s ∈ G

f ∗u g(t) =

∫
G

u(f(t− s), g(s))dµG(s).

Remark 2.2. From Fubini’s theorem we actually get f ∗u g ∈ L1(G,Z) and

‖f ∗u g‖L1(G,Z) ≤ ‖u‖‖f‖L1(G,X)‖g‖L1(G,Y ).

It is rather easy to extend several properties on the classical convolution to
this general setting due to the following observations.

Remark 2.3. Let G be LCA group, X be a Banach space and 1 ≤ p < ∞ .
If fs denotes the function fs(t) = f(t − s) then the same proof as in the scalar-
valued case (see [23]) shows that the map s → fs is uniformly continuous from G
to Lp(G,X).

Remark 2.4. Let G be LCA group , X, Y, Z be Banach spaces and u :
X × Y → Z be a bounded bilinear map. Then

‖f ∗u g(t)‖Z ≤ ‖u‖
∫

G

‖f(t− s)‖X‖g(s)‖Y dµG(s)

for all f ∈ L1(G,X) and g ∈ L1(G, Y ).

In particular we can state the following result, whose proof follows from the
previous remarks and the analogous scalar-valued formulation.

Theorem 2.5. (see [23] or [14]) Let G be LCA group , X, Y, Z be Banach
spaces and u : X × Y → Z be a bounded bilinear map.

(1) If 1 < p < ∞, 1/p + 1/q = 1, f ∈ Lp(G,X) and g ∈ Lq(G, Y ) then
f ∗u g ∈ C0(G,Z). Moreover

‖f ∗u g‖L∞(G,Z) ≤ ‖u‖‖f‖Lp(G,X)‖g‖Lq(G,Y ).

(2) If 1 ≤ p < ∞, f ∈ L1(G,X) and g ∈ Lp(G, Y ) then f ∗u g ∈ Lp(G,Z).
Moreover

‖f ∗u g‖Lp(G,Z) ≤ ‖u‖‖f‖L1(G,X)‖g‖Lp(G,Y ).
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(3) If 1 ≤ p, q ≤ ∞, 1/p+ 1/q ≥ 1, f ∈ Lp(G,X) and g ∈ Lq(G, Y ) then
f ∗u g ∈ Lr(G,Z) where 1/r = 1/p+ 1/q − 1. Moreover

‖f ∗u g‖Lr(G,Z) ≤ ‖u‖‖f‖Lp(G,X)‖g‖Lq(G,Y ).

Let us denote by Γ = Ĝ the dual group and write γ for the characters in
Γ. The Fourier transform of functions in f ∈ L1(G) is defined by the formula

f̂(γ) =

∫
G

f(t)γ(t)dµG(t), γ ∈ Γ.

In the vector valued situation we can still define the Fourier transform for
f ∈ L1(G,X) as in the previous formula, but now f̂(γ) means the Bochner integral
and belongs to X .

Next result establishes that the vector-valued formulation behaves perfectly
with respect to bilinear maps.

Theorem 2.6. Let G be LCA group , X, Y, Z be Banach spaces and u :
X × Y → Z be a bounded bilinear map.

If f ∈ L1(G,X) and g ∈ L1(G, Y ) then

f̂ ∗u g(γ) = u(f̂(γ), ĝ(γ)).

Proof.

f̂ ∗u g(γ) =

∫
G

f ∗u g(t)γ(t)dµG(t)

=

∫
G

( ∫
G

u(f(t− s), g(s))dµG(s)
)
γ(t)dµG(t)

=

∫
G

( ∫
G

u(f(t− s)γ(t− s), g(s)γ(s))dµG(s)
)
dµG(t)

=

∫
G

( ∫
G

u(f(t− s)γ(t− s), g(s)γ(s))dµG(t)
)
dµG(s)

=

∫
G

u(

∫
G

f(t− s)γ(t− s)dµG(t), g(s)γ(s))dµG(s)

=

∫
G

u(f̂(γ)), g(s)γ(s))dµG(s)

= u(f̂(γ),

∫
G

g(s)γ(s)dµG(s))

= u(f̂(γ), ĝ(γ)).

To get an interesting applicaton, let us first recall the so-called Marcinkiewizc-
Zygmund theorem (see [12]):

Let 1 ≤ pi < ∞ for i = 1, 2, and let (Ωi,Σi, µi) measure spaces for i = 1, 2.
If T : Lp1(µ1) → Lp2(µ2) is a bounded linear map then there exists C > 0 such
that

‖(
n∑

j=1

|T (φj)|2)1/2‖Lp2 (µ2) ≤ C‖u‖‖(
n∑

j=1

|φj|2)1/2‖Lp1 (µ1)

for any n ∈ N and any φ1, ..., φn ∈ Lp1(µ1).

We now have the following analogue.
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Corollary 2.7. (The Bilinear Marcinkiewicz-Zygmund Theorem) Let 1 ≤ pi <
∞ for i = 1, 2, 3, and let (Ωi,Σi, µi) measure spaces for i = 1, 2, 3. If u :
Lp1(µ1) × Lp2(µ2) → Lp3(µ3) is a bounded bilinear map then there exists C > 0
such that

‖(
n∑

j=1

|u(φj, ψj)|2)1/2‖Lp3 ≤ C‖u‖ · ‖(
n∑

j=1

|φj|2)1/2‖Lp1‖(
n∑

j=1

|ψj|2)1/2‖Lp2

for any n ∈ N, φ1, ..., φn ∈ Lp1(µ1) and ψ1, ..., ψn ∈ Lp2(µ2).

Proof. Let us define

f1(t) =
n∑

j=1

φje
i2jt ∈ L1(T, Lp1(µ1)),

f2(t) =
n∑

j=1

ψje
i2jt ∈ L1(T, Lp2(µ2)).

Using Theorem 2.6 for G = T we get

f1 ∗u f2(t) =
n∑

j=1

(φj ∗ ψj)e
i2jt.

To complete the proof, let us recall that Kintchine’s inequalites (see [24])
easily imply that for any 0 < p < ∞ , and any measure space (Ω,Σ, µ) one has

‖(
n∑

j=1

|hj|2)1/2‖Lp(µ) ≈ ‖
n∑

j=1

hje
i2jt‖L1(T,Lp(µ))

for any n ∈ N and any h1, ..., hn ∈ Lp(µ). Using this and (2) in Theorem 2.5 the
result is achieved.

3. u-bounded approximate identities

Let us recall that a right bounded approximate identity (r.b.a.i) in a Banach
algebra A is a directed net aα satisfying that there exists C > 0 such that
supα ‖aα‖ ≤ C and aaα → a for all a ∈ A . This is a replacement for different
purposes of a right identity.

Inspired by these two notions we define the following concepts.

Definition 3.1. Let X, Y be Banach spaces and u : X×Y → X be a bounded
bilinear map . We say that y0 ∈ Y is a (u,X)-identity if u(x, y0) = x for all x ∈ X .

Example 3.2. (1) If A is a commutative Banach algebra with identity, then the
identity is (u, J)-identity for any ideal J and u : J×A → J given by u(a, b) = a.b .
This applies to the cases of A = M(G) and J = L1(G) or A = C(K) for a compact
space K and J = {f ∈ C(K) : f(t0) = 0}.

(2) If X is a Banach space, Y = L(X,X) and u : X × L(X,X) → X is
given by u(x, T ) = T (x) then idX is a (u,X)-identity.
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Definition 3.3. Let X, Y be Banach spaces and u : X × Y → X be a
bounded bilinear map. We say that a directed family {yα} ∈ Y is a (u,X)-
bounded approximate identity if there exists C > 0 such that supα ‖yα‖Y ≤ C
and u(x, yα) → x for all x ∈ X .

Example 3.4. (1) Let A be Banach algebra and let X be a right A-module ,
i.e X is a Banach space for which there exists a bilinear bounded map (x, a) → x.a
from X × A to X such that (ab).x = a.(b.x) for all x ∈ X and a, b ∈ A (where
ab denotes the product in the algebra).

The essential part of X , usually denoted by Xe , corresponds to the A-
module generated by XA = {xa : x ∈ X, a ∈ A} . It is easy to see that if (aj)
is a right bounded approximate identity of A then (aj) is also a (·, Xe)-bounded
approximate identity.

The reader is referred to [11] for connections with factorization theory.

(2) Let X be Banach space with a Schauder basis, say (xj). Let Y =
L(X,X) and u : X×L(X,X) → X given by u(x, T ) = T (x). Then the canonical
projections Pn(x) =

∑n
j=1 < x∗j , x > xj define an (u,X)-bounded approximate

identity.

(3) Let X = Lp([0, 1]), Y = L(X,X) and u : X × L(X,X) → X given by
u(x, T ) = T (x). If we consider the filtration of σ -algebras Fn generated by the
dyadic intervals of length 2−n we have that the conditional expectation operators
En(f) = E(f |Fn) define an (u,X)-bounded approximate identity.

The reader is referred to [18] for more r.i. spaces X where same result
holds.

A general procedure to get bounded approximate identities in the Banach
algebra L1(G) is the use of the so-called summability kernels (see [15]). We shall
define the corresponding notion adecuated to the bilinear formulation and the
vector valued setting.

Definition 3.5. Let G be a LCA group, X and Y be Banach spaces and
u : X × Y → X be a bounded bilinear map .

We say that a directed family {Kα} of functions in L1(G, Y ) is a (u,X)-
summability kernel if

(1) supα

∫
G
‖Kα(t)‖Y dµG(t) < ∞,

(2)
∫

G
Kα(t)dµG(t) = yα is a (u,X)-bounded approximate identity, and

(3) for any U neighborhood of 0

lim
α

∫
G\U

‖Kα(t)‖Y dµG(t) = 0.

This notion allows us to prove our next approximation result, which follows
closely the classical approach.

Theorem 3.6. Let G be a LCA group, X and Y be Banach spaces and u :
X × Y → X be a bounded bilinear map . If {Kα} is a (u,X)-summability kernel
then

(1) If 1 ≤ p < ∞ limα ‖f ∗u Kα − f‖Lp(G,X) = 0 for any f ∈ Lp(G,X).

(2) limα f ∗u Kα(t) = f(t) uniformly in G for any f ∈ C0(G,X).
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Proof. Using (2) in Definition 3.5 one has

f ∗u Kα(t) − f(t) =

∫
G

u(f(t− s), Kα(s))dµG(s) − u(f(t), yα)

+ u(f(t), yα) − f(t)

=

∫
G

u(f(t− s) − f(t), Kα(s))dµG(s)

+ u(f(t), yα) − f(t).

Therefore

‖f ∗u Kα(t) − f(t)‖X ≤ ‖u‖
∫

G

‖f(t− s) − f(t)‖X‖Kα(s)‖Y dµG(s)

+ ‖u(f(t), yα) − f(t)‖X .

To show (1) assume that f ∈ Lp(G,X). Using the vector valued Minkowsky
inequality we can write

‖f ∗u Kα − f‖Lp(G,X) ≤ ‖u‖
∫

G

‖fs − f‖Lp(G,X)‖Kα(s)‖Y dµG(s)

+ ‖u(f, yα) − f‖Lp(G,X).

Let ε > 0, Remark 2.3 gives that there exists a neighborhood of 0, say U ,
such that ‖fs − f‖Lp(G,X) < ε for s ∈ U .

Hence

‖f ∗u Kα − f‖Lp(G,X) ≤ ε‖u‖
∫

U

‖Kα(s)‖Y dµG(s)

+ 2‖f‖Lp(G,X)

∫
G\U

‖Kα(s)‖Y dµG(s)

+ ‖u(f, yα) − f‖Lp(G,X).

Now an application of the property (3) in Definition 3.5 gives that

lim
α

∫
G\U

‖Kα(s)‖Y dµG(s) = 0

and the Lebesgue dominated convergence theorem, since limα ‖u(f(t), yα)−f(t)‖X =
0 and ‖u(f(t), yα) − f(t)‖X ≤ C‖f(t)‖ ∈ Lp(G), implies

lim
α

‖u(f, yα) − f‖Lp(G,X) = 0.

Hence taking limits one gets

lim
α

‖f ∗u Kα − f‖Lp(G,X) ≤ Cε

what gives (1).
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To see (2) assume first that f has compact support, using then that f is
uniformly continuous we can repeat the previous argument to get, for each ε > 0,
a neigborhood of 0 so that

‖f ∗u Kα(t) − f(t)‖X ≤ ε‖u‖
∫

U

‖Kα(s)‖Y dµG(s)

+ 2‖f‖L∞(G,X)

∫
G\U

‖Kα(s)‖Y dµG(s)

+ ‖u(f(t), yα) − f(t)‖X .

Now observe that an ε-net argument easily gives that limα ‖u(f(t), yα) −
f(t)‖X = 0 uniformly in t ∈ supp(f), what together with property (3) in Definition
3.5 completes the proof for functions with compact support.

An elementary density argument takes care of the general case.

4. A Hausdorff-Young type Theorem

Let us recall that the Fourier transform can be defined for functions in
Lp(G) for 1 ≤ p ≤ 2 and LCA groups G . In fact the Hausdorff-Young theorem
still holds, that is the Fourier transform is bounded from Lp(G) into Lp′(Γ) where
p′ stands for the conjugate exponent for 1 < p ≤ 2 (see [14]).

Note that for linear combinations of the form f =
∑n

j=1 φjxj , φj ∈
Lp(G), xj ∈ X, j = 1, ..., n, the Fourier transform is well defined by the formula

FG(f)(γ) = f̂(γ) =
n∑

j=1

φ̂j(γ)xj.

Since Lp(G) ⊗X is dense in Lp(G,X) the following definition make sense.

Definition 4.1. Let 1 < p ≤ 2. A Banach space X is said have Fourier type
p with respect to the group G if the operator FG extends as a bounded operator
from Lp(G,X) to Lp′(Γ, X).

The reader is referred to the survey paper by Garcia-Cuerva, Kazarian,
Kolyada and Torrea ([13]) for a nice presentation of this property and its use
connected with geometry of Banach spaces.

The notion was first introduced by J. Peetre ([20]) for the group G = R

and was very useful in interpolation theory (see also [19] for groups). The use of
other groups was of special interest and have been considered by many authors.

It is shown in [13] that Fourier type p with respect to T , R and Z are all
equivalent. It is not hard to see that X has Fourier type p (with respect to G) if
and only if X∗ has Fourier type p (with respect to Γ). Typical examples of spaces
with Fourier type p are Lr(µ) for p ≤ r ≤ p′ or those obtained by interpolation
between a Banach and a Hilbert space.

One of the most relevant results on this notion is the celebrated theorem
by J. Bourgain which establishes that the B-convexity can be characterized by
having Fourier type bigger than 1 (see [8, 9]) or the book [22] . The reader is also
referred to [7, 6, 13] for a equivalent formulation in terms of the validity of certain
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inequality due to Hardy for functions in the space H1(T, X), defined by means of
X -valued atoms.

Another basic theorem on Fourier type corresponds to the case p = 2. It
was shown by S. Kwapien (see [16]) that Fourier type 2 is equivalent to being
isomorphic to a Hilbert space.

Here we shall present the following result.

Theorem 4.2. Let X, Y be Banach spaces, let u : X ×X → Y be a bounded
bilinear map. If 1 < p ≤ 4

3
and Y has Fourier type s = p

2−p
with respect to G

then there exists a constant C > 0 such that

( ∫
Γ

‖u(f̂(γ), f̂(γ))‖
p′
2
Y dµΓ(γ)

) 1
2 ≤ C‖u‖‖f‖Lp(G,X)

for all f ∈ Lp(G,X).

Proof. Take p1 = p2 = p and r given by 1
r

= 2
p
− 1. Then r = s and s′ = p′

2
.

Our assumption on p gives that 1 < s ≤ 2, what allows to apply the Fourier
type condition. This together with Theorem 2.6, and Young’s theorem (see (3) in
Theorem 2.5) give

( ∫
Γ

‖u(f̂(γ), f̂(γ))‖
p′
2
Y dµΓ(γ)

) p′
2 ≤ C‖f ∗u f‖Ls(G,Y ) ≤ C‖u‖‖f‖2

Lp(G,X).

Theorem 4.3. Let n ∈ N and let A be a Banach algebra. If n
2
< p ≤ 2n

3
and

A has Fourier type s = p
n−p

with respect to G then there exists a constant C > 0
such that ( ∫

Γ

‖f̂(γ).(n.f̂(γ))‖
p

2p−n

A dµΓ(γ)
) 1

n ≤ C‖f‖Lp(G,A)

for all f ∈ Lp(G,A).

Proof. Iterating part (3) in Theorem 2.5 one gets that if 1
p1

+ ..+ 1
pn

≥ 1 and
1
r

= 1
p1

+ ..+ 1
pn

− 1 then

‖f1 ∗ ... ∗ fn‖Lr(G,A) ≤ ‖f1‖Lp1 (G,A)...‖fn‖Lpn (G,A)

for fi ∈ Lpi(G,A) for i = 1, ..., n .

Applying this to pi = p and fi = f for i = 1, ..., n one gets 1
r

= n−p
p

, s = r
and r′ = p

2p−n
. The assumption gives again 1 < s ≤ 2 and therefore

( ∫
Γ

‖f̂(γ).(n.f̂(γ))‖
p

2p−n

A dµΓ(γ)
) 2p−n

p ≤ C‖f ∗ .n. ∗ f‖Ls(G,A) ≤ C‖f‖n
Lp(G,A)

for all f ∈ Lp(G,A).
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