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1. Notation and preliminaries.

These notes contain an extended version of the talk given in the III International
Course of Mathematical Analysis hold in La Rabida (Huelva, Spain) in September
2007 and they are based on results appeared in [1, 2, 3, 4]. I would like to thank
the organizers for the kind hospitality and their nice working atmosphere that all
the participants (students and professors) enjoyed during our stay.

Let us start by recalling some classical operators whose bilinear formulation will
be considered throughout the paper. Let f : R → C belong to the Schwarzt class,
and write

H(f)(x) = lim
ε→0

∫
|y|>ε

f(x− y)
y

dy

and

H∗(f)(x) = sup
ε>0

|
∫
|y|>ε

f(x− y)
y

dy|,

for the Hilbert and maximal Hilbert transform respectively.
We also write

M(f)(x) = sup
ε>0

1
2ε

∫
|y|<ε

|f(x− y)|dy,

for Hardy-Littlewood maximal function and

Iα(f)(x) =
∫

R

f(x− y)
|y|1−α

dy,

for the Fractional Integral where 0 < α < 1.
They are very classical operators in Harmonic Analysis and are rather well un-

derstood not only in R but in many other groups and not only for the Lebesgue
measure but for weight functions w(x)dx. Of course the boundedness in the setting
of Lebesgue (and many other function spaces) of these operators (not entering in
the extreme cases) is well known. Let recall that there exist constant Ap, Bp > 0
such that

(1) ‖H(f)‖p ≤ Ap‖f‖p, ‖H∗(f)‖p ≤ Bp‖f‖p

for 1 < p <∞.
There exists Cp > 0 such that

(2) ‖M(f)‖p ≤ Cp‖f‖p,

for 1 < p ≤ ∞.
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There exists Dp > 0 such that

(3) ‖Iα(f)‖q ≤ Dp‖f‖p,

for 0 < α < 1
p , 1 < p <∞, 1

q = 1
p − α.

There are bilinear versions of these operators that have been studied in the last
decade and which will be the aim of our considerations.

Given f, g : R → C belonging to the Schwarzt class we can now define the bilinear
Hilbert transform by

H(f, g)(x) = lim
ε→0

∫
|y|>ε

f(x− y)g(x+ y)
y

dy,

the bisublinear maximal Hilbert transform by

H∗(f, g)(x) = sup
ε>0

|
∫
|y|>ε

f(x− y)g(x+ y)
y

dy|,

the bisublinear Hardy-Littlewood maximal function by

M(f, g)(x) = sup
ε>0

1
2ε

∫
|y|<ε

|f(x− y)g(x+ y)|dy,

and the bilinear fractional integral by

Iα(f, g)(x) =
∫

R

f(x− y)g(x+ y)
|y|1−α

dy, 0 < α < 1.

It has been the effort of several authors and many years to get the range of
boundedness for the corresponding bilinear versions. We collect in the following
theorem the actual knowledge of the problem.

Theorem 1.1. Let 1 < p1, p2 <∞, 0 < α < 1/p1 + 1/p2, 1/q = 1/p1 + 1/p2 − α,
1/p3 = 1/p1 + 1/p2 and 2/3 < p3 <∞. Then there exist constants A,B,C,D such
that

(4) ‖H(f, g)‖p3 ≤ A‖f‖p1‖g‖p2(Lacey-Thiele, [16, 17, 18]),

(5) ‖H∗(f, g)‖p3 ≤ B‖f‖p1‖g‖p2(Lacey, [15]),

(6) ‖M(f, g)‖p3 ≤ C‖f‖p1‖g‖p2 .(Lacey, [15]),

(7) ‖Iα(f, g)‖q ≤ A‖f‖p1‖g‖p2 . (Kenig-Stein [14], Grafakos-Kalton, [13] ).

We would like to consider analogue operators in the periodic or the discrete case
and to analyze their boundedness.

In particular, one can define the bilinear conjugate function as

B(F,G)(eit) =
∫ π

−π

F (t− s)G(t+ s)cotag(s/2)
ds

2π

where F and G are polynomials on T.
Using Fourier series expansion of the polynomials, the operator can also be

written as

B(F,G)(eit) = −i
∑

k

(
∑

n+m=k

sign(n−m)F̂ (n)Ĝ(m))eikt

where F (t) =
∑N
−N F̂ (n)eint and G(t) =

∑M
−M Ĝ(m)eimt.

The fundamental question is the following: Is the bilinear conjugate transform
bounded from Lp1(T)× Lp2(T) → Lp3(T) for some values of p1, p2, p3?.
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While the situation in the linear case reduces to adapt the proof of the group
R to the group T (or to replace the half-space for the disc when using a complex-
variable approach), the techniques that were needed for the real line in the bilinear
case do not seem to have any easy modification to the periodic setting to obtain
the boundedness of the bilinear conjugate function defined in T. However some
transference techniques known in the linear case can be adapted to the bilinear
one.

Another analogue formulations that we would like to consider are discrete bilinear
Hilbert transform, the discrete bisublinear Hardy-Littlewood maximal function and
the discrete bilinear fractional transform, defined by

Hd(λ, β)(n) = lim
N→∞

∑
0<|k|≤N

λn−kβn+k

k
,

Md(λ, β)(n) = sup
N∈N

1
2N

∑
0<|k|≤N

|λn−k||βn+k| and

Iα
d (λ, β)(n) =

∑
k 6=0,k∈Z

λn−kβn+k

|k|1−α

for finite sequences λ, β respectively.
As above, the fundamental question is the following: Are they bounded from

`p1(Z)× `p2(Z) → `p3(Z) for some values of p1, p2, p3?.
Several methods have been developed to such purposes in the last five years.

In fact two different approaches have been applied: The first one is the bilinear
formulation of the DeLeeuw method [8] first considered in the paper by Fan and
Sato [9] and then developed by O. Blasco and P. Villarroya [1, 5]. The second one
is the bilinear formulation of the Coifman- Weiss transference method [7] that has
been extensively studied in [2, 3, 4] by O. Blasco, E. Berkson, M.J. Carro and A.T.
Gillespie.

We shall only mention one theorem and its application of each of the procedures
considered in the just mentioned papers. All the results appearing in Theorem 1.1
can be transferred to both situations periodic and discrete. We will also present a
detailed proof for the reader to see the tools used in our approaches. The interested
reader can consult the references in the bibliography for a further study of the topic.

2. Methods and applications

Let us start considering the simplest situation, corresponding to bilinear convo-
lution with integrable kernels.

Assume K ∈ L1(R) and define

BK(f, g)(x) =
∫

R
f(x− y)g(x+ y)K(y)dy.

Writing f(x − y) =
∫

R f̂(ξ)ei(x−y)ξdξ and g(x + y) =
∫

R ĝ(η)e
i(x+y)ηdη, we can

also use expression:
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BK(f, g)(x) =
∫

R
f(x− y)g(x+ y)K(y)dy

=
∫

R

∫
R

∫
R
f̂(ξ)ĝ(η)K(y)ei(x−y)ξei(x+y)ηdξdηdy

=
∫

R

∫
R
f̂(ξ)ĝ(η)(

∫
R
K(y)e−i(ξ−η)ydy)ei(ξ+η)xdξdη

=
∫

R

∫
R
ĝ(η)f̂(ξ)K̂(ξ − η)ei(ξ+η)xdξdη.

This motivates the following definition.

Definition 2.1. Let 0 < p1, p2, p3 <∞ and 1/p1 + 1/p2 = 1/p3. Given a bounded
measurable function m(ξ, η) is said to be a bilinear multiplier on R of type (p1, p2, p3)
if the operator

Bm(f, g)(x) =
∫

R

∫
R
f̂(ξ)ĝ(η)m(ξ, η)ei(ξ+η)xdξdη

is bounded from Lp1(R)× Lp2(R) to Lp3(R).

The study of bilinear multipliers for smooth symbols (where m(ξ, η) is a ”nice“
regular function) goes back to the work by R.R. Coifman and Y. Meyer in [6].

Let us restrict ourselves to a smaller family of multipliers: The case m(ξ, η) =
m′(ξ − η) where m′(x) is bounded in R.

The simplest case is m′(x) = µ̂(x) where µ is a Borel regular measure in R. It
is elementary to see that m′ define a bilinear multiplier on R of type (p1, p2, p3)
whenever p3 ≥ 1 and 1/p1 + 1/p2 = 1/p3.

Indeed, using the expression

Bm(f, g)(x) =
∫

R
f(x− t)g(x+ t)dµ(t)

one gets

‖Bm(f, g)‖p3 ≤
∫

R
‖f(· − t)g(·+ t)‖p3d|µ|(t)

≤
∫

R
‖f(· − t)‖p1‖g(·+ t)‖p2d|µ|(t)

= ‖f‖p1‖g‖p2

∫
R
d|µ|(t) = ‖µ‖1‖f‖p1‖g‖p2 .

However, the case where the symbol m′ is not smooth has a much shorter story.
A very non trivial example is given bym′(x) = −isign(x) which leads to the bilinear
Hilbert transform and it was first considered by Lacey and Thiele in [16, 17, 18])
and then extended to other cases in [10, 11]. The solution took many years to be
achieved after the formulation of the question by A. P. Calderón in the seventies.

Let us mention a general method to transfer results from R to T. The approach
follows the DeLeeuw method in the linear case and there are two different proofs
of the following result.

Theorem 2.2. (see [1, 9]) Let m(ξ, η) be a continous function defining a bilinear
multiplier on R of type (p1, p2, p3) where 1/p1 + 1/p2 = 1/p3 and p3 ≥ 1 i.e. the
operator

Bm(f, g)(x) =
∫

R

∫
R
f̂(ξ)ĝ(η)m(ξ, η)ei(ξ+η)xdξdη
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is bounded from Lp1(R) × Lp2(R) to Lp3(R) then the sequence mk,k′ = m(k, k′)
define a bilinear multiplier on T of type (p1, p2, p3), i.e. the operator

B̃m(F,G)(t) =
∑

k

( ∑
n+n′=k

F̂ (n)Ĝ(n′)m(n, n′)
)
eikt

is bounded from Lp1(T)× Lp2(T) to Lp3(T).

Corollary 2.3. The bilinear conjugate function operator is bounded from Lp1(T)×
Lp2(T) to Lp3(T) whenever 1 < p1, p2 <∞, 1/p1 + 1/p2 = 1/p3 and p3 ≥ 1.

The reader should be aware that the restriction p3 ≥ 1 is a limitation of the
proof but it can be removed using other approaches (see [4]).

To handle the discrete case, there are also two different techniques (see [1]) or
([4, 2]). We shall select here the second approach using a “discretization” method.

Let us define the mappings P : `p(Z) → Lp(R) by

λ = (λn) → f =
∑
n∈Z

λnχ(n−1/4,n+1/4)

and Q : Lp(R) → `p(Z) by

f → (
∫

(n−1/4,n+1/4)

f(x)dx)n∈Z.

Clearly ‖P (λ)‖p = C‖λ‖p for 0 < p <∞ and ‖Q(f)‖p ≤ C‖f‖p for 1 ≤ p <∞.

Theorem 2.4. ([4]) Let K be integrable in R and denote

BK(f, g)(x) =
∫

R
f(x− y)g(x+ y)K(y)dy

for f and g simple functions. If

Kn =
∫

[−1/4,1/4]

∫
[n−1/4,n+1/4]

K(x− u)K(x+ u)dxdy

then
QBK

(
P (λ), P (β)

)
(n) =

∑
k∈Z

λn−kβn+kKk

for any finite sequences λ and β.
In particular, for p3 ≥ 1 one has QBKP is bounded from `p1(Z) × `p2(Z) to

`p3(Z) with norm bounded by the norm of BK as operator from Lp1(R)×Lp2(R) to
Lp3(R)).

Corollary 2.5. The bilinear discrete Hilbert transform is bounded from `p1(Z) ×
`p2(Z) to `p3(Z) whenever 1 < p1, p2 <∞, 1/p1 + 1/p2 = 1/p3 and p3 ≥ 1.

The reader should also be aware that the restriction p3 ≥ 1 is again a limitation
of the proof but it was removed in [2] to get the p3 >

2
3 .

Let us finally explain a bit how to get the transference method of Coifman-Weiss
in the bilinear setting (see [4, 2, 3]).

Let G be a l.c.a group with Haar measure m, let (Ω,Σ, µ) be a measure space
and let Ru be a representation of G in the space of bounded linear operators on
Lp(µ), i.e. R : G→ L(Lp(µ), Lp(µ)) such that u→ Ru verifies

• RuRv = Ruv for u, v ∈ G,
• limu→0Ruf = f for f ∈ Lp(µ),
• supu∈G ‖Ru‖ <∞.
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Let K ∈ L1(G) with compact support. Denote now

BK(φ, ψ)(v) =
∫

G

φ(v − u)ψ(v + u)K(u)dm(u)

for φ, ψ simple functions defined on G, and assume that, for 0 < p1, p2 < ∞ and
1/p1 + 1/p2 = 1/p3, the bilinear operator BK is bounded from Lp1(G)×Lp2(G) to
Lp3(G) with ”norm“ Np1,p2(BK).

We now consider the transferred operator by the formula

TK(f, g)(w) =
∫

G

R−uf(w)Rug(w)K(u)dm(u)

for f ∈ Lp1(µ) and g ∈ Lp2(µ).
Let us present, in a particular case, a prototype result that one can produce in

this setting. The assumptions can be weakened and the setting can be relaxed but
we concentrate in the case for simplicity.

Theorem 2.6. Let G = R, (Ω,Σ, µ) a measure space, 1 ≤ p1, p2 <∞ and 1/p3 =
1/p1 + 1/p2. Let R be a representation of R on acting Lpi(µ) for i = 1, 2 with

sup
u∈R

‖Ru‖L(Lpi ,Lpi ) = 1

for i = 1, 2
Assume that there exists a map u → L(Lp3(µ), Lp3(µ)) given by u → Su such

that Su are invertible with supu∈G ‖S−1
u ‖ = 1 and

Sv((R−uf)(Rug)) = (Rv−uf)(Rv+ug)

for u, v ∈ R, f ∈ Lp1(µ) and g ∈ Lp2(µ).
Let K belong to L1(R) and be supported in [−A.A]. If the bilinear map BK

defined as above is bounded with norm Np1,p2(BK) then TK is also bounded from
Lp1(µ)× Lp2(µ) to Lp3(µ) and with norm bounded by CNp1,p2(BK).

Proof. Write, for each v ∈ R,

TK(f, g) = S−1
v (Sv

∫
R
R−ufRugK(u)du)

= S−1
v (

∫
R
Sv(R−ufRug)K(u)du)

= S−1
v (

∫
R
(Rv−uf)(Rv+ug)K(u)du)

Hence

‖TK(f, g)‖p3
Lp3 (µ) ≤ ‖

∫
R
(Rv−uf)(Rv+ug)K(u)du‖p3

Lp3 (µ)

Given N ∈ N, integrating over v ∈ [−N,N ],

2N‖TK(f, g)‖p3
Lp3 (µ) ≤

∫ N

−N

‖
∫

R
(Rv−uf)(Rv+ug)K(u)du‖p3

Lp3 (µ)dm(v).
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Therefore

2N ‖TK(f, g)‖p3
Lp3 (µ) ≤

∫ N

−N

∫
Ω

|
∫

R
Rv−uf(w)Rv+ug(w)K(u)du|p3dµ(w)dv

=
∫

Ω

(
∫ N

−N

|
∫ A

−A

Rv−uf(w)Rv+ug(w)K(u)du|p3dv)dµ(w)

=
∫

Ω

(
∫

R
|
∫

R
Rv−uf(w)χ[−A−N,A+N ](v − u)Rv+ug(w)χ[−A−N,A+N ](v + u)K(u)du|p3dv)dµ(w)

=
∫

Ω

(
∫

R
|BK(Ruf(w)χ[−A−N,A+N ], Rug(w)χ[−A−N,A+N ])(v)|p3dv)dµ(w)

=
∫

Ω

‖BK(Ruf(w)χ[−A−N,A+N ], Rug(w)χ[−A−N,A+N ])‖p3
Lp3 (R)dµ(w)

≤ Np1,p2(BK)p3

∫
Ω

‖Ruf(w)χ[−A−N,A+N ]‖p3
Lp1 (R)‖Rug(w)χ[−A−N,A+N ]‖p3

Lp2 (R)dµ(w)

≤ Np1,p2(BK)p3(
∫

Ω

‖Ruf(w)χ[−A−N,A+N ]‖p1
Lp1 (R)dµ(w))p3/p1

× (
∫

Ω

‖Rug(w)χ[−A−N,A+N ]‖p2
Lp2 (R)dµ(w))p3/p2

= Np1,p2(BK)p3(
∫ A+N

−(A+N)

‖Ruf‖p1
Lp1 (µ)du)

p3/p1

× (
∫ A+N

−(A+N)

‖Rug‖p2
Lp2 (µ)du)

p3/p2

= Np1,p2(BK)p3(
∫ A+N

−(A+N)

‖f‖p1
Lp1 (µ)du)

p3/p1

× (
∫ A+N

−(A+N)

‖g‖p2
Lp2 (µ)du)

p3/p2

≤ Np1,p2(BK)p3(2(A+N))‖f‖p3
Lp1 (µ)‖g‖

p3
Lp2 (µ).

Therefore

‖TK(f, g‖Lp3 (µ) ≤ (
A+N

N
)1/p3Np1,p2(BK)‖f‖p3

Lp1 (µ)‖g‖
p3
Lp2 (µ).

�
Note that, in particular, the assumptions in the previous theorem hold for mul-

tiplicative representations, i.e. Ru(fg) = (Ruf)(Rug), selecting Su = Ru.
Let us finish with an application to Ergodic theory. We state here the result

for maximal version of the operators, but results in the same spirit can be seen in
[2, 4]. Let (Ω,Σ, µ) be σ−finite measure space and T an invertible and bounded
operator on Lp(µ). Define the“bisublinear maximal ergodic transform” by

MT (f, g)(w) = sup
N>0

1
2N

N∑
n=−N

Tnf(w)T−ng(w),

and the “ bisublinear maximal ergodic Hilbert transform” by

H∗
T (f, g)(w) = sup

N>0

∑
0<|n|<N

Tnf(w)T−ng(w)
n

.
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Theorem 2.7. ([2, 3]) Let 1 < p1, p2 <∞ and 1/p1 + 1/p2 = 1/p3 < 3/2, let T be
an invertible operator on Lpi(µ) for i = 1, 2 such that T and T−1 are power bounded.
Assume that there exists an invertible operator S defined on L(Lp3(µ), Lp3(µ)) such
that

Sm(TnfT−ng) = Tm+nfTm−ng

for f ∈ Lp1(µ) and g ∈ Lp2(µ).
Then MT and H∗

T are bounded from Lp1(µ)× Lp2(µ) to Lp3(µ).
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