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Oscar Blasco*

Abstract

Let m(§,n) be a regulated function in R x IR, 1 < p1,pa,p3 < 00
and 1/p1 + 1/p2 = 1/ps . It is shown that m defines a bilinear
bounded (p1,p2)-multiplier on IR x IR, if and only if there exists

a constant K so that |3 gemxm m(t s)p({tHv({sHA{t + s})| <
K| il s, "ﬁ"BPQ“S‘”Bp/ for all measures pu,v, A supported on a finite
3

number of points, where |4, = lim7_o (55 fg (&) [Pde)M /P,

1 Introduction.

Let (p1,p2,p3) such that 1 < py,po,p3s < 0o, 1/p1 + 1/py = 1/ps and let
m(&,n) be a bounded measurable function in IR?. It is said to be a bilinear
(p1, p2)-multiplier on IR x R if

CulF9)(@) = [ [ F©atmmi(, e dedn

(defined for functions f, g in the Schwartz class S) extends to a bounded
bilinear operator from LP'(IR) x LP*(IR) into LP3(IR).

The theory of these multipliers has been tremendously developped after
the results proved by M. Lacey and R. Thiele (20, 21, 22]) which establish
that m(&,v) = sign(§ + av) are (py, p2)-multipliers for each triple (p,p2)
such that 1 < py,pe < 00, p3 > 2/3 and each a € R\ {0, 1}.

The study of such multipliers was started by R. Coifman and Y. Meyer
(see [3, 5, 6]) for smooth symbols and new results for non-smooth symbols, ex-
tending the ones given by the bilinear Hilbert transform, have been achieved
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by J.E. Gilbert and A.R. Nahmod ( see [10, 11, 12]) and also by J. Muscalu,
T. Tao and C. Thiele (see [19]).

We refer the reader also to [18, 17, 9, 13| for new results on bilinear
multipliers and related topics.

In a recent paper (see [9]) D. Fan and S. Sato have shown certain DeLeeuw
type theorems for transferring multilinear operators on Lebesgue and Hardy
spaces from IR" to ™. Here we will consider bilinear multipliers on Lebesgue
spaces LP(IR) and get a characterization which allows us to transfer not only
to the bilinear multipliers on T but also on Z. Our approach will follow
closely the ideas in the original paper by DeLeeuw (see [8]) and will provide
an alternative proof to some results in [9].

Let us start by setting up natural analogue versions of bilinear multipliers
in the periodic and discrete cases. Let (my i) be a bounded sequence and m
be a periodic function defined on T x M. Define

Pl f,9)(0) = 32 D7 f(R)g(K ymy e ¢+

keZ kel
for periodic functions f, g defined on T and

Do, )(k) = [ 2 / P2 POyt s)e =) dids

—1/2.J-1/2

2mint an d

for sequences (a(n)),.z and (b(n)),.z where P(t) = > .z a(n)e
Q(t) = 3,,ez, b(n)e*™™™.

Now we say that (my) (respect. m) is a a bilinear (pi, pe)-multiplier
on Z x Z (respect. T x M) if P, (respect. D;;) defines a bounded bilinear
operator from LP'(T') x LP2(T) into LP3(T) (respect. ¢P*(Z) x ¢P2(Z) into
(7).

Of course we can see these three cases as instances of the general bilinear
multiplier acting on different groups. Let G be a locally compact abelian
group and G its dual. Let 1 < p1, P2 < 0o and m be a bounded measurable
function defined on G x G. We say that m is a (p1, p2)-multiplier on Gx G
if the operator

Tolf,9)@) = [ [ FFO)FgG2m(n. 329 (~)a(—)dm(n)dm(r2)

(defined for simple functions f and g) extends to a bounded bilinear operator
from L' (G) x LP*(G) to LP*(G) where 1/py + 1/ps = 1/ps.
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The first transference results on linear multiplier were given by K. Deleeuw
(see [8]). He showed, among other things, that if m is regulated (all its points
are Lebesgue points) and m is a p-multiplier on IR then (m(ek)), are uni-
formly bounded p-multipliers for all € > 0 on Z. See [25] page 264 for the
converse of this result for continuous multipliers.

In [9] the multilinear version this result was shown, namely that for con-
tinuous functions m(&,n) one has that m is a (py, p2)-multiplier on IR x IR
if and only if m(ek, ek’)i s are uniformly bounded multipliers on Z x Z. An
extension of the result to Lorentz spaces is achieved in [2].

We shall first characterize the boundedness of bilinear multipliers on IR x
IR by the existence of a constant K such that

> mts)p{r{sHA{E + sHI < Kllills,, 1715, 1 Al15,

(t,s)eRxIR

for all measures pu, v, A of finite supports.

This allows us to present an alternative proof of the result in [9].

We also obtain the transference from the continuous case C,, to the pe-
riodic case P,,. Our main result establishes that m is (p;, po)-multiplier on
IR x R if and only if Dem = me o X[-1/2,1/2]x[~1/2,1/2] are uniformly bounded
(p1, p2)-multipliers on T x T.

Throughout the paper 1 < py, o, ps < 0o and 1/p3 = 1/p; + 1/p,. For a
given finite Borel measure on IR we write fi(§) = [ e 2™%!du(t) and, for an
almost periodic function g, we denote ||g||p, = limr_.oo(55 [77 [g()[Pdt)/P .
We shall use the notations Dem(z,y) = m(ex,ey) and ¢-(z) = 2o(%).

e

2 Bilinear multipliers on R x R

Let us start by reformulating the condition of (py, pe)-multiplier on R x IR
using duality. The proof is straightforward and left to the reader.

Lemma 2.1 Let m(§,n) be a bounded measurable function on IR x IR.
m is a (p1, p2)-multiplier on IR x IR if and only if there exists a constant
K so that

[ [ o©umm(e + mum(,mdgdnl < KIdlldlaloly, (1)
for all p,,v € S.



Now we present some behavior of multipliers on IR x IR with respect to
convolution and dilation operators to be used later on.

Lemma 2.2 Let m(&,n) be a bounded measurable function on R x IR. If
® € LY(IR?) and m is a (p1, p2)-multiplier on IR x IR then m x ® a (p1, py)-
multiplier on IR X IR and ||Couml|| < [|P||1||Crml|-

Proof. Let ¢,9,v € S and H(inl = Hzﬂ”m = HﬁHp/S = 1. Applying Lemma
2.1 to ¢g, Yy, iy s where fs(x) = f(z + s), we have

[ ] 66+ )0+ (s +n+t + s)m(&,m)dsdn| < K

for all (s,t) € R*.

Therefore
L o(©umwis +nym x (&, m)dsdn
= [ [ ot §+n)(/ m(€ — s, — )®(s, t)dsdt)dedy

B /132 /IR /IR (€ + s)v(n+ )v(§+n+ s+ t)m(§, n)P(s, t)ddndsdt.

This gives the result applying Lemma 2.1 again. B

Lemma 2.3 Let ¢ > 0 and m(&,n) be a (p1, p2)-multiplier on IR x R. Then
m(e&, en) is also a (p1, p2)-multiplier on R x R and ||Crpe.cn|| < [|Cnil|-

Proof. For ¢,¢,v € 8 and ||¢]l,, = [[$ll, = ]|, = 1 we have

[ [ ot€ystopte + mmice, en)dedn
1 1
/IR /]R el/p1 ¢(§)61/p2¢(g)61/pé ’/(g ;L n)m(éa n)d&dn

where the functions now apperaring in the integral are also norm 1 for each
€. Use Lemma 2.1 again to finish the proof. B



Theorem 2.4 Let m(&,n) be a bounded continuous function on IR x IR. The
following are equivalent:

(i) m is a (p1, p2)-multiplier on R x R.

(i) There ezists a constant K so that

> mits)p{r{sHA{E + sHI < Kllills,, 1715, 1 A]15,

(t,s)eIRxIR

for all measures p, v, X supported on a finite number of points.

Proof. (i) = (ii) Assume that m is a (p1, p2)-multiplier on IR x IR. Denote
by ¢ the gaussian function ¢(x) = e /2 and take 0 < «, 3,7 such that
a+pB+vy=2

Let us consider y = d,, v = 9, and A = 6. for a,b,c € IR and let us
observe that

[ 500080 (= (e myacn =

b
- /]R/]R ¢ (£)7 ()" (E+ 1+ %)m(a + &€, b+ en)dédn =

- /]R /]R“ 5 () (E)v = (02) (M)A () (€ + m)ym(&, m)dédn.

Since

lim °(€)6° () (€ +1+ T2 Y+ <.+ o) =

de(a +0)¢*(€)¢” ()¢ (€ + n)m(a, ),

the convergence Lebesgue theorem implies that

. a B 7£+77
lim [ MQas (L) “ym

= Cm(a,b)d.(a +b) = Cma,bu({a})v({b}A({a + b}).
where C = fi, i 6°(€)0%(n)6™ (€ + n)dEdn.

Therefore we have that

lim/ /13“ # (02)*(E)v x (82)P (A % (92)7 (€ + m)m(€&, n)dEdn

e—0 JR

(&, m)d&dn



=C > mts)u({thr({shA{E+9)})

(t,s)eERxIR

for all measures pu, v, A having their supports on finite sets of points.
On the other hand, from the assumption and Lemma 2.1 we have

[ e 67 (€v x (2 m)A x (6276 + mym(€, m)dse

< K[| 02) 1o 17(02 )P [l I A (D) -

Let us now choose o = pi,l, 6= é and v = pig. Since (¢)* = 211—_;(255@71/2,
— e2¢2 — e2¢2 —
we get (6.)7(6) = Coe'/Pe 2, (6)8(€) = Cpe'/™e™ 2 and (6.)1(€) =
g2
C.el/Pe™ 2

52 2
Now taking into account that [ e~ 2L

d¢ = C'e7! we have that

Pl

_ 1 £2¢2
401l = Oy f OIS de) .

 2pe?

for A(e) = fwe™ "B dg. Hence C|jilp,, = lime o [[262]).

Applying similar procedure for v and A we finish this implication.

(ii) = (i) From the assumption we can get that the same holds for all finite
measures [, v, A with countable support. Let us take ¢, and p such that
¢,1 and p have compact support contain in [—N/2, N/2] for N big enough.
Now consider py, vy and Ay the measures with support in (1/N)Z whose
Fourier transform coincide with the periodic extensions of ngS, ﬁ and p . In
particular we have

() = 100, (L)) = () and A }) = ool ).

Therefore we have

lim N >0 m(t s)un({thvw ({sHAv({t + s})

N
T (t,s)eERXR
n m n m. n+m. 1

= J&iﬂo(mmgzxzm(ﬁjNW(NW(NM N )ﬁ

= [ [ miemotewimpte + nydan
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Now observe that ||i|s,, = (55 J2x [6(6)P1d€) Y™ = (55)/*||dlp, and
the same for the others. R

Using that [|in| 5, -1~ 5,, ||)‘N”Bp/3 = 5 and passing to the limit we
get the result. W

Recall that a function m is called regulated if

) 1 € €
lg%rglelem(x—s,y—t)dsdt =m(z,y)
for all (z,y) € IR?.

Theorem 2.5 Let m(&,n) be a bounded regulated function on IR x R. m is
a (p1, p2)-multiplier on IR x R if and only if here exists a constant K so that

X mtsu{r{sHA{t + s < Klalls,, 19115, M5, (2)
(t,s)eRxIR

for all measures p, v, X\ having their supports on finite sets of points.

Proof. Assume that m is (py, po)-multiplier. Denote ®(s,t) = $x(-1,1)(s)x[-1,1(t)

and ®.(¢,n) = S0(%, 1) for ¢ > 0. Now Lemma 2.2, Theorem 2.4 and the

fact that m(z,y) = lim._om x ®.(z,y) gives the direct implication.
Conversely, assume (2) for p, v, A having finite supports,

> mx@(ts)u({thr({sHA({t + s})

(t,s)eERxIR

= /( > mlt—us —v)p({thr({sHA({t + s})) @ (u, v)dudv

(t,s)ERXIR
= /( S m(t s)u({t+ ub)v({s + vP)A{E + s+ u + v})) P (u, v)dudv.
(t,s)eRxIR

This shows that m x ®. verifies (2) with uniform constant for all £ > 0. Now
apply Theorem 2.4 to get that m x ®. are (py, po)-multipliers with uniform
norm.

Finally we have that for ¢, ¢, v € §

[ o©wmm(s + mm(&,n)dgdn)
= Ihm// V(& + n)m * (&, n)dEdn|

e—0

< C||¢|\p1||¢|\p2||V|lpg-

A



The result follows now from Lemma 2.1. R

3 Transference theorems

Let us mention the formulations for (py, ps)-multipliers on the groups T and
7 which follows directly from duality.

Lemma 3.1 Let m(t,s) be a bounded measurable function on T x T .
m is a (p1, p2)-multiplier on T x T if and only if there exists a constant
K so that

1/2 1/2
[0 ] PR Pelt + syin(t, s)dtds| < Kl 16l el

1/2J-1/2
for all finite sequences (a(n))n, (b(n))n, (c(n)), where P,(t) =3, a(n)e*™™t,

Lemma 3.2 Let (mg ) be a bounded sequence on Z X Z

m is a (p1, pe)-multiplier on Z X Z if and only if there exists a constant
K so that

> mw PRO)QUE)R(k + K| < K||P|ly, Qo | Rl
keZ k' eZ,

for all trigonometric polinomials P,Q and R.

Theorem 3.3 (See [9]) Let m(&,n) be a regulated bounded function on IR x
R. Ifm(&,n) is a (p1, pe)-multiplier on RX IR then (m(k, k"))kx is a (p1,p2)-
multiplier on Z X 7.

Proof. According to Lemma 3.2 we have to show that there exists a constant
K so that

A

|30 > mk, K)P(k)QUK)R(k + k)| < K| Pl |Qllps 1 Bl
kel k'el.

for all trigonometric polinomials P, Q) and R.
This follows by selecting in Theorem 2.5 the measures u, v, A such that
p=P,v=Qand A\=R. R



Theorem 3.4 Let m(&,n) be a bounded regulated function on R x IR. The
following are equivalent:
(i) m(&,m) is a (p1, p2)-multiplier on R x RR.
- (z’%m(a, 5')X[—2—157%1X[—2—15»%1 are uniformly bounded (p1, p2)-multipliers on
x T,

Proof. (i)=(ii). Using Lemma 3.1, it suffices to show that for any finite
sequences (a(n))y,, (b(n)), and (c(n)), with |al/,, = ||bl|,, = ||c||p/ =1 there
exists a constant K > 0 such that

12 (1/2
0] mEm P& R P + n)dgdn] < K
1/2 1/2
where P,(§) = 3, a(n)e?™ s, .

Since P, (2)x[-1/2,-1/2)(%) = ¢a(x) where ¢q(x) = Zna(n)% and
P.(x)X[-1,-1)(x) = Yo(x) where () =3, c(n)smfﬂw we can write

(z—n)

/ . / - w(§) Po(n) Pe(§ +m)d€dn

1/2 1/2

/ / m(&, 77)%(5)%(77)@@0(5 + n)dédn

Using now the assumption and the known facts that ||¢q|| rm) = ||alls, =
|¥al| Lrw) for all 1 < p < oo we obtain the desired inequality.

Now We apply Lemma 2.3 to get the result for each ¢.

(ii)==(i) Let us take ¢ and v such that supp¢p and suppy> are contained
n [—1/4,1/4]. For a fixed u € [—1/2,1/2] consider the periodic extension of
the functions ¢(&)e?™ € (n)e*™ ™ to be denoted P, and Q, respectively.

If a*(n) = [, Pu(&)e™™EdE, b (n) = [117, Qu(&)e™>™¢dE for all n € Z
we have that if x = k + u for some k € Z and u € [—1/2,1/2)

[ L (e b e agn -

/2 r1/2 . ~ .
=[] mlem PO Qum)e gy,

1/2J-1/2

Denote (€, 7) = m(€, mX (172172 (E)X(1/21/2(1). Hence for @ = u + k
C(6,8)() = Din(a®, b) (k).



Now

[ [Cn(é ) (@) =
_ Z/ (6,0) (K + ) P du

:/ S D (a, 0 (k) [P du

1/2

< DI [ (S e (5 B
1/2

k

< ||’D HP3 / Z |a |P1du P3/p1 / Z |bu |p2du p3/p2

1/2 k
= a7 S o+ Ry ([ S ot + )y
-1/27 -1/2 %
= DAl Il v I

In the general case if ¢, 1) are such that (ﬁ, @/A) have compact support, then
there exists € > 0 so that ¢.,1. have their support in [—1/4,1/4]. Now
observe that

Cm(¢, w)(x) = €2Cm(s.,a.)(¢sa ws)(‘g:w

Applying the previous case and the assumption we obtain

||Cm((/5v Q/’) ”ps = 52_1/p3 ||Cm(6-76-) (¢s7 ¢s) Hp3

< KPPy 10l
— Kazfl/ps”(megil/pllHmegil/pé
= Koy 195 -

m
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