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Abstract

Let m(ξ, η) be a regulated function in IR × IR, 1 ≤ p1, p2, p3 ≤ ∞
and 1/p1 + 1/p2 = 1/p3 . It is shown that m defines a bilinear
bounded (p1, p2)-multiplier on IR × IR, if and only if there exists
a constant K so that |∑(t,s)∈IR×IR m(t, s)µ({t})ν({s})λ({t + s})| ≤
K‖µ̂‖Bp1

‖ν̂‖Bp2
‖λ̂‖Bp′

3

for all measures µ, ν, λ supported on a finite

number of points, where ‖µ̂‖Bp = limT→∞( 1
2T

∫ T
T |µ̂(ξ)|pdξ)1/p.

1 Introduction.

Let (p1, p2, p3) such that 1 ≤ p1, p2, p3 ≤ ∞, 1/p1 + 1/p2 = 1/p3 and let
m(ξ, η) be a bounded measurable function in IR2. It is said to be a bilinear
(p1, p2)-multiplier on IR × IR if

Cm(f, g)(x) =
∫
IR

∫
IR
f̂(ξ)ĝ(η)m(ξ, η)e2πix(ξ+η)dξdη

(defined for functions f, g in the Schwartz class S) extends to a bounded
bilinear operator from Lp1(IR) × Lp2(IR) into Lp3(IR).

The theory of these multipliers has been tremendously developped after
the results proved by M. Lacey and R. Thiele ([20, 21, 22]) which establish
that m(ξ, ν) = sign(ξ + αν) are (p1, p2)-multipliers for each triple (p1, p2)
such that 1 < p1, p2 ≤ ∞, p3 > 2/3 and each α ∈ IR \ {0, 1}.

The study of such multipliers was started by R. Coifman and Y. Meyer
(see [3, 5, 6]) for smooth symbols and new results for non-smooth symbols, ex-
tending the ones given by the bilinear Hilbert transform, have been achieved
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by J.E. Gilbert and A.R. Nahmod ( see [10, 11, 12]) and also by J. Muscalu,
T. Tao and C. Thiele (see [19]).

We refer the reader also to [18, 17, 9, 13] for new results on bilinear
multipliers and related topics.

In a recent paper (see [9]) D. Fan and S. Sato have shown certain DeLeeuw
type theorems for transferring multilinear operators on Lebesgue and Hardy
spaces from IRn to TTn. Here we will consider bilinear multipliers on Lebesgue
spaces Lp(IR) and get a characterization which allows us to transfer not only
to the bilinear multipliers on TT but also on Z. Our approach will follow
closely the ideas in the original paper by DeLeeuw (see [8]) and will provide
an alternative proof to some results in [9].

Let us start by setting up natural analogue versions of bilinear multipliers
in the periodic and discrete cases. Let (mk,k′) be a bounded sequence and m̃
be a periodic function defined on TT × TT. Define

Pm(f, g)(θ) =
∑
k∈Z

∑
k′∈Z

f̂(k)ĝ(k′)mk,k′e2πiθ(k+k′)

for periodic functions f, g defined on TT and

Dm̃(a, b)(k) =
∫ 1/2

−1/2

∫ 1/2

−1/2
P (t)Q(s)m̃(t, s)e2πix(t+s)dtds

for sequences (a(n))n∈Z and (b(n))n∈Z where P (t) =
∑

n∈Z a(n)e
2πint and

Q(t) =
∑

n∈Z b(n)e
2πint.

Now we say that (mk,k′) (respect. m̃) is a a bilinear (p1, p2)-multiplier
on Z × Z (respect. TT × TT ) if Pm (respect. Dm̃) defines a bounded bilinear
operator from Lp1(TT) × Lp2(TT) into Lp3(TT) (respect. �p1(Z) × �p2(Z) into
�p3(Z)).

Of course we can see these three cases as instances of the general bilinear
multiplier acting on different groups. Let G be a locally compact abelian
group and Ĝ its dual. Let 1 ≤ p1, p2 ≤ ∞ and m be a bounded measurable
function defined on Ĝ× Ĝ. We say that m is a (p1, p2)-multiplier on Ĝ× Ĝ
if the operator

Tm(f, g)(x) =
∫

Ĝ

∫
Ĝ
Ff(γ1)Fg(γ2)m(γ1, γ2)γ1(−x)γ2(−x)dm(γ1)dm(γ2)

(defined for simple functions f and g) extends to a bounded bilinear operator
from Lp1(G) × Lp2(G) to Lp3(G) where 1/p1 + 1/p2 = 1/p3.

2



The first transference results on linear multiplier were given by K. Deleeuw
(see [8]). He showed, among other things, that ifm is regulated (all its points
are Lebesgue points) and m is a p-multiplier on IR then (m(εk))k are uni-
formly bounded p-multipliers for all ε > 0 on Z. See [25] page 264 for the
converse of this result for continuous multipliers.

In [9] the multilinear version this result was shown, namely that for con-
tinuous functions m(ξ, η) one has that m is a (p1, p2)-multiplier on IR × IR
if and only if m(εk, εk′)k,k′ are uniformly bounded multipliers on Z × Z. An
extension of the result to Lorentz spaces is achieved in [2].

We shall first characterize the boundedness of bilinear multipliers on IR×
IR by the existence of a constant K such that

|
∑

(t,s)∈IR×IR

m(t, s)µ({t})ν({s})λ({t+ s})| ≤ K‖µ̂‖Bp1
‖ν̂‖Bp2

‖λ̂‖Bp′
3

for all measures µ, ν, λ of finite supports.
This allows us to present an alternative proof of the result in [9].
We also obtain the transference from the continuous case Cm to the pe-

riodic case Pm. Our main result establishes that m is (p1, p2)-multiplier on
IR × IR if and only if Dεm = mε.,ε.χ[−1/2,1/2]×[−1/2,1/2] are uniformly bounded
(p1, p2)-multipliers on TT × TT.

Throughout the paper 1 ≤ p1, p2, p3 ≤ ∞ and 1/p3 = 1/p1 + 1/p2. For a
given finite Borel measure on IR we write µ̂(ξ) =

∫
IR e

−2πiξtdµ(t) and, for an
almost periodic function g, we denote ‖g‖Bp = limT→∞( 1

2T

∫ T
−T |g(t)|pdt)1/p .

We shall use the notations Dεm(x, y) = m(εx, εy) and φε(x) = 1
ε
φ(x

ε
).

2 Bilinear multipliers on IR × IR

Let us start by reformulating the condition of (p1, p2)-multiplier on IR × IR
using duality. The proof is straightforward and left to the reader.

Lemma 2.1 Let m(ξ, η) be a bounded measurable function on IR × IR.
m is a (p1, p2)-multiplier on IR × IR if and only if there exists a constant

K so that

|
∫
IR

∫
IR
φ(ξ)ψ(η)ν(ξ + η)m(ξ, η)dξdη| ≤ K‖φ̂‖p1‖ψ̂‖p2‖ν̂‖p′3

(1)

for all φ, ψ, ν ∈ S.
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Now we present some behavior of multipliers on IR × IR with respect to
convolution and dilation operators to be used later on.

Lemma 2.2 Let m(ξ, η) be a bounded measurable function on IR × IR. If
Φ ∈ L1(IR2) and m is a (p1, p2)-multiplier on IR × IR then m ∗ Φ a (p1, p2)-
multiplier on IR × IR and ‖CΦ∗m‖ ≤ ‖Φ‖1‖Cm‖.

Proof. Let φ, ψ, ν ∈ S and ‖φ̂‖p1 = ‖ψ̂‖p2 = ‖ν̂‖p′3
= 1. Applying Lemma

2.1 to φs, ψt, νt+s where fs(x) = f(x+ s), we have

|
∫
IR

∫
IR
φ(ξ + s)ψ(η + t)ν(ξ + η + t+ s)m(ξ, η)dξdη| ≤ K

for all (s, t) ∈ IR2.
Therefore∫

IR

∫
IR
φ(ξ)ψ(η)ν(ξ + η)m ∗ Φ(ξ, η)dξdη

=
∫
IR

∫
IR
φ(ξ)ψ(η)ν(ξ + η)(

∫
IR2
m(ξ − s, η − t)Φ(s, t)dsdt)dξdη

=
∫
IR2

∫
IR

∫
IR
φ(ξ + s)ψ(η + t)ν(ξ + η + s+ t)m(ξ, η)Φ(s, t)dξdηdsdt.

This gives the result applying Lemma 2.1 again. �

Lemma 2.3 Let ε > 0 and m(ξ, η) be a (p1, p2)-multiplier on IR× IR. Then
m(εξ, εη) is also a (p1, p2)-multiplier on IR × IR and ‖Cm(ε.,ε.)‖ ≤ ‖Cm‖.

Proof. For φ, ψ, ν ∈ S and ‖φ̂‖p1 = ‖ψ̂‖p2 = ‖ν̂‖p′3
= 1 we have

∫
IR

∫
IR
φ(ξ)ψ(η)ν(ξ + η)m(εξ, eη)dξdη

=
∫
IR

∫
IR

1

ε1/p1
φ(
ξ

ε
)

1

ε1/p2
ψ(
η

ε
)

1

ε1/p′3
ν(
ξ + η

ε
)m(ξ, η)dξdη

where the functions now apperaring in the integral are also norm 1 for each
ε. Use Lemma 2.1 again to finish the proof. �
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Theorem 2.4 Let m(ξ, η) be a bounded continuous function on IR×IR. The
following are equivalent:

(i) m is a (p1, p2)-multiplier on IR × IR.
(ii) There exists a constant K so that

|
∑

(t,s)∈IR×IR

m(t, s)µ({t})ν({s})λ({t+ s})| ≤ K‖µ̂‖Bp1
‖ν̂‖Bp2

‖λ̂‖Bp′
3

for all measures µ, ν, λ supported on a finite number of points.

Proof. (i) ⇒ (ii) Assume that m is a (p1, p2)-multiplier on IR × IR. Denote
by φ the gaussian function φ(x) = e−x2/2 and take 0 < α, β, γ such that
α+ β + γ = 2.

Let us consider µ = δa, ν = δb and λ = δc for a, b, c ∈ IR and let us
observe that

∫
IR

∫
IR

1

ε2
φα(
ξ − a
ε

)φβ(
η − b
ε

)φγ(
ξ + η − c

ε
)m(ξ, η)dξdη =

=
∫
IR

∫
IR
φα(ξ)φβ(η)φγ(ξ + η +

a+ b− c
ε

)m(a+ εξ, b+ εη)dξdη =

=
∫
IR

∫
IR
µ ∗ (φε)

α(ξ)ν ∗ (φε)
β(η)λ ∗ (φε)

γ(ξ + η)m(ξ, η)dξdη.

Since

lim
ε→0
φα(ξ)φβ(η)φγ(ξ + η +

a+ b− c
ε

)m(a+ εξ, b+ εη) =

δc(a+ b)φα(ξ)φβ(η)φγ(ξ + η)m(a, b),

the convergence Lebesgue theorem implies that

lim
ε→0

∫
IR

∫
IR

1

ε2
φα(
ξ − a
ε

)φβ(
η − b
ε

)φγ(
ξ + η − c

ε
)m(ξ, η)dξdη

= Cm(a, b)δc(a+ b) = Cm(a, b)µ({a})ν({b})λ({a+ b}).
where C =

∫
IR

∫
IR φ

α(ξ)φβ(η)φγ(ξ + η)dξdη.
Therefore we have that

lim
ε→0

∫
IR

∫
IR
µ ∗ (φε)

α(ξ)ν ∗ (φε)
β(η)λ ∗ (φε)

γ(ξ + η)m(ξ, η)dξdη
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= C
∑

(t,s)∈IR×IR

m(t, s)µ({t})ν({s})λ({(t+ s)})

for all measures µ, ν, λ having their supports on finite sets of points.
On the other hand, from the assumption and Lemma 2.1 we have

|
∫
IR

∫
IR
µ ∗ (φε)

α(ξ)ν ∗ (φε)
β(η)λ ∗ (φε)

γ(ξ + η)m(ξ, η)dξdη|

≤ K‖µ̂ ̂(φε)α‖p1‖ν̂ ̂(φε)β‖p2‖λ̂ ̂(φε)γ‖p′3
.

Let us now choose α = 1
p′1

, β = 1
p′2

and γ = 1
p3

. Since (φε)
α = ε1−α

α1/2 φεα−1/2 ,

we get ̂(φε)α(ξ) = Cαε
1/p1e−

ε2ξ2

2α , ̂(φε)β(ξ) = Cβε
1/p2e−

ε2ξ2

2β and ̂(φε)γ(ξ) =

Cγε
1/p3e−

ε2ξ2

2γ .

Now taking into account that
∫
IR e

− ε2p1ξ2

2α dξ = C ′
αε

−1 we have that

‖µ̂ ̂(φε)α‖p1 = C(
1

A(ε)

∫
IR
|µ̂(ξ)|p1ε−

p1ε2ξ2

2α dξ)1/p1 ,

for A(ε) =
∫
IR e

− ε2p1ξ2

2α dξ. Hence C‖µ̂‖Bp1
= limε→0 ‖µ̂φ̂α

ε ‖p1 .
Applying similar procedure for ν and λ we finish this implication.
(ii) ⇒(i) From the assumption we can get that the same holds for all finite

measures µ, ν, λ with countable support. Let us take φ, ψ and ρ such that
φ̂, ψ̂ and ρ̂ have compact support contain in [−N/2, N/2] for N big enough.
Now consider µN , νN and λN the measures with support in (1/N)Z whose
Fourier transform coincide with the periodic extensions of φ̂, ψ̂ and ρ̂ . In
particular we have

µN({ n
N
}) =

1

N
φ(
n

N
), νN({ n

N
}) =

1

N
ψ(
n

N
) and λN({ n

N
}) =

1

N
ρ(
n

N
).

Therefore we have

lim
N→∞

N
∑

(t,s)∈IR×IR

m(t, s)µN({t})νN({s})λN({t+ s})

= lim
N→∞

∑
(n,m)∈Z×Z

m(
n

N
,
m

N
)φ(
n

N
)ψ(
m

N
)ρ(
n+m

N
)

1

N2

=
∫
IR

∫
IR
m(ξ, ν)φ(ξ)ψ(η)ρ(ξ + η)dξdη.

6



Now observe that ‖µ̂N‖Bp1
= ( 1

2N

∫ N
−N |φ̂(ξ)|p1dξ)1/p1 = ( 1

2N
)1/p1‖φ̂‖p1 and

the same for the others.
Using that ‖µ̂N‖Bp1

.‖ν̂N‖Bp2
‖λ̂N‖Bp′

3

= 1
2N

and passing to the limit we

get the result. �
Recall that a function m is called regulated if

lim
ε→0

1

4ε2

∫ ε

−ε

∫ ε

−ε
m(x− s, y − t)dsdt = m(x, y)

for all (x, y) ∈ IR2.

Theorem 2.5 Let m(ξ, η) be a bounded regulated function on IR × IR. m is
a (p1, p2)-multiplier on IR× IR if and only if here exists a constant K so that

|
∑

(t,s)∈IR×IR

m(t, s)µ({t})ν({s})λ({t+ s})| ≤ K‖µ̂‖Bp1
‖ν̂‖Bp2

‖λ̂‖Bp′
3

(2)

for all measures µ, ν, λ having their supports on finite sets of points.

Proof. Assume thatm is (p1, p2)-multiplier. Denote Φ(s, t) = 1
4
χ[−1,1](s)χ[−1,1](t)

and Φε(ξ, η) = 1
ε2 Φ( ξ

ε
, η

ε
) for ε > 0. Now Lemma 2.2, Theorem 2.4 and the

fact that m(x, y) = limε→0m ∗ Φε(x, y) gives the direct implication.
Conversely, assume (2) for µ, ν, λ having finite supports,

∑
(t,s)∈IR×IR

m ∗ Φε(t, s)µ({t})ν({s})λ({t+ s})

=
∫

(
∑

(t,s)∈IR×IR

m(t− u, s− v)µ({t})ν({s})λ({t+ s}))Φε(u, v)dudv

=
∫

(
∑

(t,s)∈IR×IR

m(t, s)µ({t+ u})ν({s+ v})λ({t+ s+ u+ v}))Φε(u, v)dudv.

This shows that m ∗Φε verifies (2) with uniform constant for all ε > 0. Now
apply Theorem 2.4 to get that m ∗ Φε are (p1, p2)-multipliers with uniform
norm.

Finally we have that for φ, ψ, ν ∈ S

|
∫
IR

∫
IR
φ(ξ)ψ(η)ν(ξ + η)m(ξ, η)dξdη|

= | lim
ε→0

∫
IR

∫
IR
φ(ξ)ψ(η)ν(ξ + η)m ∗ Φε(ξ, η)dξdη|

≤ C||φ̂||p1 ||ψ̂||p2 ||ν̂||p′3 .
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The result follows now from Lemma 2.1. �

3 Transference theorems

Let us mention the formulations for (p1, p2)-multipliers on the groups TT and
Z which follows directly from duality.

Lemma 3.1 Let m̃(t, s) be a bounded measurable function on TT × TT.
m is a (p1, p2)-multiplier on TT × TT if and only if there exists a constant

K so that

|
∫ 1/2

−1/2

∫ 1/2

−1/2
Pa(t)Pb(s)Pc(t+ s)m̃(t, s)dtds| ≤ K‖a‖p1‖b‖p2‖c‖p′3

for all finite sequences (a(n))n, (b(n))n, (c(n))n where Pa(t) =
∑

n a(n)e
2πint.

Lemma 3.2 Let (mk,k′) be a bounded sequence on Z × Z

m is a (p1, p2)-multiplier on Z × Z if and only if there exists a constant
K so that

|
∑
k∈Z

∑
k′∈Z

mk,k′P̂ (k)Q̂(k′)R̂(k + k′)| ≤ K‖P‖p1‖Q‖p2‖‖R‖p′3

for all trigonometric polinomials P,Q and R.

Theorem 3.3 (See [9]) Let m(ξ, η) be a regulated bounded function on IR×
IR. If m(ξ, η) is a (p1, p2)-multiplier on IR×IR then (m(k, k′))k,k′ is a (p1, p2)-
multiplier on Z × Z.

Proof. According to Lemma 3.2 we have to show that there exists a constant
K so that

|
∑
k∈Z

∑
k′∈Z

m(k, k′)P̂ (k)Q̂(k′)R̂(k + k′)| ≤ K‖P‖p1‖Q‖p2‖‖R‖p′3

for all trigonometric polinomials P,Q and R.
This follows by selecting in Theorem 2.5 the measures µ, ν, λ such that

µ̂ = P , ν̂ = Q and λ̂ = R. �
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Theorem 3.4 Let m(ξ, η) be a bounded regulated function on IR × IR. The
following are equivalent:

(i) m(ξ, η) is a (p1, p2)-multiplier on IR × IR.
(ii) m(ε., ε.)χ[− 1

2ε
, 1
2ε

]χ[− 1
2ε

, 1
2ε

] are uniformly bounded (p1, p2)-multipliers on
TT × TT.

Proof. (i)⇒(ii). Using Lemma 3.1, it suffices to show that for any finite
sequences (a(n))n, (b(n))n and (c(n))n with ‖a‖p1 = ‖b‖p2 = ‖c‖p′3

= 1 there
exists a constant K > 0 such that

|
∫ 1/2

−1/2

∫ 1/2

−1/2
m(ξ, η)Pa(ξ)Pb(η)Pc(ξ + η)dξdη| ≤ K

where Pa(ξ) =
∑

n a(n)e
2πinξ.

Since Pa(x)χ[−1/2,−1/2](x) = φ̂a(x) where φa(x) =
∑

n a(n)
sin(π(x−n))

π(x−n)
and

Pc(x)χ[−1,−1](x) = ψ̂c(x) where ψc(x) =
∑

n c(n)
sin(2π(x−n))

π(x−n)
we can write

∫ 1/2

−1/2

∫ 1/2

−1/2
m(ξ, η)Pa(ξ)Pb(η)Pc(ξ + η)dξdη

=
∫
IR

∫
IR
m(ξ, η)φ̂a(ξ)φ̂b(η)ψ̂c(ξ + η)dξdη

Using now the assumption and the known facts that ‖φa‖Lp(IR) ≈ ‖a‖�p ≈
‖ψa‖Lp(IR) for all 1 ≤ p ≤ ∞ we obtain the desired inequality.

Now we apply Lemma 2.3 to get the result for each ε.
(ii)=⇒(i) Let us take φ and ψ such that suppφ and suppψ are contained

in [−1/4, 1/4]. For a fixed u ∈ [−1/2, 1/2] consider the periodic extension of
the functions φ̂(ξ)e2πiuξ, ψ̂(η)e2πiuη to be denoted P̃u and Q̃v respectively.

If au(n) =
∫ 1/2
−1/2 P̃u(ξ)e

−i2πnξdξ, bu(n) =
∫ 1/2
−1/2 Q̃u(ξ)e

−i2πnξdξ for all n ∈ Z

we have that if x = k + u for some k ∈ Z and u ∈ [−1/2, 1/2)∫
IR

∫
IR
m(ξ, η)φ̂(ξ)ψ̂(η)e2πix(ξ+η)dξdη =

=
∫ 1/2

−1/2

∫ 1/2

−1/2
m(ξ, η)P̃u(ξ)Q̃u(η)e

2πik(ξ+η)dξdη.

Denote m̃(ξ, η) = m(ξ, η)χ[−1/2,1/2](ξ)χ[−1/2,1/2](η). Hence for x = u+ k

Cm(φ, ψ)(x) = Dm̃(au, bu)(k).
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Now ∫
IR
|Cm(φ, ψ)(x)|p3dx =

=
∑
k

∫ 1/2

−1/2
|Cm(φ, ψ)(k + u)|p3du

=
∫ 1/2

−1/2

∑
k

|Dm̃(au, bu)(k)|p3du

≤ ‖Dm̃‖p3

∫ 1/2

−1/2
(
∑
k

|au(k)|p1)p3/p1(
∑
k

|bu(k)|p2)p3/p2du

≤ ‖Dm̃‖p3(
∫ 1/2

−1/2

∑
k

|au(k)|p1du)p3/p1(
∫ 1/2

−1/2

∑
k

|bu(k)|p2du)p3/p2

= ‖Dm̃‖p3(
∫ 1/2

−1/2

∑
k

|φ(u+ k)|p1du)p3/p1(
∫ 1/2

−1/2

∑
k

|ψ(u+ k)|p2du)p3/p2

= ‖Dm̃‖p3‖φ‖p3
p1
‖ψ‖p3

p2

In the general case if φ, ψ are such that φ̂, ψ̂ have compact support, then
there exists ε > 0 so that φ̂ε, ψ̂ε have their support in [−1/4, 1/4]. Now
observe that

Cm(φ, ψ)(x) = ε2Cm(ε.,ε.)(φε, ψε)(εx).

Applying the previous case and the assumption we obtain

‖Cm(φ, ψ)‖p3 = ε2−1/p3‖Cm(ε.,ε.)(φε, ψε)‖p3

≤ Kε2−1/p3‖φε‖p1‖ψε‖p2

= Kε2−1/p3‖φ‖p1ε
−1/p′1‖ψ‖p1ε

−1/p′2

= K‖φ‖p1‖ψ‖p1 .

�

References

[1] Aucher,P. and Carro, M.J., On relations between operators on
IRn,TTn,Zn. Studia Math., 101 [1992] pp. 165-182.

10



[2] Blasco, O. and Villarroya, F., Transference of bilinear multiplier opera-
tors on Lorentz spaces. To appear.

[3] Coifman R.R., Meyer Y. Commutateurs d’ integrarles singulières et
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