Transference of bilinear multiplier operators on
Lorentz spaces.

Oscar Blasco, Francisco Villarroya*

AMS Class (2000) 42A45

Abstract

Let m(&,n) be a bounded continuous function in R x IR, 0 <
pi, ¢ < oo for i = 1,2 and 0 < p3,q3 < oo where 1/p; + 1/py = 1/ps.
It is shown that

o) = [ [ F©amm(e nem= gy

is a bounded bilinear operator from LP1:9 (IR) x LP>%(IR) into LP3%(IR)
if and only if

PDE m f, Z Z f €kf €k/) 2mi0(k+k')
keZ kel

are bounded bilinear operators from LP1% (T)x LP2:92(T) into LP3:93(T)
with norm bounded by uniform constant for all € > 0.

1 Introduction.

Let m(&1, &a, ..., &) be a bounded measurable function in IR"™ and define

Cm(fla f27 L) fn)(x) = /an fl (gl)fn(fn)m(éb 527 LKD) 5n)€2ﬂix(£1+§2+m+€n)d£

for Schwartz test functions f; in S fori=1,....n

*Both authors have been partially supported by grants DGESIC PB98-0146 and BMF
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Givennow 0 < p; < oofori=1,...nand 1/q = 1/p;+1/pa+...1/p,. The
function m is said to be a multilinear multiplier of strong type (p1, pa, ..., Pn)
(respect. weak type (p1,po, ..., pn)) if Cy extends to a bounded bilinear op-
erator from LP'(IR) x ... x LP*(IR) into L(IR) (respect. to L¥*(IR)).

The study of such multilinear multipliers was started by R. Coifman and
Y. Meyer (see [4, 5, 6]) for smooth symbols. However, in the last years people
got interested in them after the results proved by M. Lacey and C. Thiele
([21, 22, 23]) which establish that m(&,v) = sign(§ + av) are multipliers of
strong type (p1,p2) for 1 < p1,pa < 00, ps > 2/3 and each a € R\ {0, 1}.

New results for non-smooth symbols, extending the ones given by the
bilinear Hilbert transform, have been achieved by J.E. Gilbert and A.R.
Nahmod (see [10, 11, 12]) and by C. Muscalu, T. Tao and C. Thiele (see
[20)).

We refer the reader to [18, 17, 9, 13] for several results on bilinear multi-
pliers and related topics.

The first transference methods for linear multipliers were given by K.
Deleeuw. It is known that if m is continuous then

To(f)(@) = [ F©m(e)erdg
(defined for f € S(IR)) is bounded on LP(IR) if and only if

T (£)(0) = sz(k)m(€k)€2”9k

(defined for trigonometric polynomials f) are uniformly bounded on LP(T)
for all € > 0 (see [8], [29] page 264).

Although the results in the paper hold true for multilinear multipliers,
for simplicity of the notation we restrict ourselves to bilinear multipliers and
only state and prove the theorems in such a situation.

Let (my ) be a bounded sequence we use the notation

Po(f,9)0) = > > a(k)b(k'ymy, e 0+
keZ k'eZ
for f(t) = S ez a(n)e2™™ and g(t) = 3,.cz b(n)e?™ ™.
Let 0 < p1, pa < 0o and py such that 1/p;+1/ps = 1/p3. We write Pp_,m,
when the symbol is m(tk, tk') and say that m(tk, tk') is a bounded multiplier



of strong (respect. weak) type (p1,p2) on Z x Z if the corresponding Pp _,m
is bounded from LP'(T) x LP'(T) into LP3(T) (respect. LP3:°°(T)).

In a recent paper (see [9]) D. Fan and S. Sato have shown certain DeLeeuw
type theorems for transferring multilinear operators on Lebesgue and Hardy
spaces from IR" to T". They show that the multilinear version of the trans-
ference between IR and Z holds true, namely that for continuous functions
m(&,n) one has that m is a multiplier of strong (respect. weak) type (p1,p2)
on R xR if and only if (D.-1m) p» = (m(ck, ek’))y s are uniformly bounded
multipliers of strong (respect. weak) type (p1,p2) on Z x ZL.

The first author (see [1]) has shown a Deleeuw type theorem to transfer
bilinear multipliers from LP(IR) to bilinear multipliers acting on ¢, (7).

The aim of this paper is to get an extension of those results in [9] for
bilinear multipliers acting on Lorentz spaces (see [9], Remark 3).

We shall show that if m is a bounded continuous function on IR? then
(', defines a bounded bilinear map from LP*9 (IR) x LP>»%(IR) into L3 (IR)
if and only if the Pp ., the restriction to m(tk,tk’) for k, k' € Z, define
bilinear maps from LPV%(T) x LP2%(T) into LP*%(T) uniformly bounded for
t>0.

Throughout the paper |A| denotes the Lebesgue measure of A and we
identify functions f on T and periodic functions on IR with period 1 defined

on [~1,2), that is f(z) = f(e***) and Jy f(=)dm(=) = [*, f()dt. For 0 <

p < oo, we write D f(x) = f%f(tfla:) (with the notation D, = D;®),
M, f(x) = f(x)e*™* and T, f(z) = f(x —y) for the dilation, modulation and
translation operators. In this way (D{f) = Dfl,l f where, as usual, ¢’ stands
for the conjugate exponent of q.

Adknowledgement: We want to thank the referee for his or her carefull
reading.

2 Preliminaries

Let (2,3, 1) be a o-finite and complete measure space. Given a complex-
valued measurable function f we shall denote the distribution function of
f by pp(A) = p(Ey) for A > 0 where E), = {w € Q : |[f(w)] > A}, the
nonincreasing rearrangement of f by f*(¢) = inf{\ > 0 : ps(\) < t} and
7o) = L JE 1 (s)ds.



Now the Lorentz space LP9 consists of those measurable functions f such
that || f||>, < oo, where

1
© 4 dt q
{g/ th*(t)q—} . 0<p<oo, 0<q< o0,
pJo t
supt» f*(1) 0<p<oo, ¢=00

t>0

1f 1l =

It is well known that
|1 flpoo = sup Apzp(A)7.
A>0

Here we shall use the following fact: If 0 < p,q¢ < oo and f is a measurable
function then

1510 = (o [ s 0an) )

(This can be easily checked for simple functions).

Let us recall some facts about these spaces. Simple functions are dense
in LP9 for q # oo, (LP')* = LP»* for 1 < p < oo, and (LP4)* = LP"7 for
1 < p,q < oo as well. Replacing f* by f** and putting || f||,, = [|f**[|;, then
we get a functional equivalent to || - ||*, (for 1 < p < oo) for which L"" and
Pl for 1 <p<oo,1<qg<o0are Banach spaces.

The reader is referred to [19], [2], [29] or [25] for the basic information on
Lorentz spaces. We only condider p to be either the Lebesgue measure on IR
or the normalized Lebesge measure on T and the distribution function will
be denoted my in both cases.

Definition 2.1 Let m be a bounded measurable function on IR?. Let 0 <
pi,q; < oo fori=1,2,3. Fort >0 we define

Cppmlf,9)(@) = Culf)@) = [ [ F@atmmte, e dedy

for f,9 € S(R) .
We say that m is a bilinear multipier in (LP*9 (IR) x LP>%(IR), LP*%(IR))
if there exists C' > 0 such that

ICL(f5 9l rsasry < Ol fllzovar @wyll gl Lr2ae )
forall f,g € S(R) .



Definition 2.2 Let (my, ky )k ez kocz be a bounded sequence. Let p;,q; > 0
such that p3* = pi* —|—p2_1. We define

(f g Z Z Ay bkzmk1 ka 62m(k1+k2)x
k1€ ko€l
for all trigonometric polynomials f(x) = <y are®™™, g(x) = Xjk< s be€*™

and N, M € IN.
We say that my, g is a bilinear multiplier in (LPV%(T)x LP2%(T), LP39(T))
if there exists C' > 0 such that

| P (f, )l rs.as(wy < O fllzovar ()| g]| 22 (1

for all trigonometric polynomials f and g.

Remark 2.1 m is a multiplier in (LP»7(IR) x LP>%(IR), LP*%(IR)) if and
only if Dy-1m(&,n) = m(t&,tn) is also a multiplier for each t > 0.
Note that for each t > 0 we have mp,f(\) = tms(N). Hence

D f|Loaqwy = 7)1 fl] oo (w)- (2)

for 0 < p,q < 0.
Now the remark follows easily from the formula

Ct(fa g) = DtCI(Dt*1f7 thlg)'
Actually we have ||Cy|| = ||Cy|| for all t > 0.
Let us start by recalling some facts to be used in the sequel.

Definition 2.3 If f is a measurable function on IR such that max{|f(z)|, |f(z)|} <
A/(1 + |z|)* for some A > 0 and o > 0 then f stands for the well-defined
periodic function (see [29], pages 250-253)

=Y Jlatk) = 3 fR)em.

keZ keZL

Lemma 2.4 Let 0 <p < oo and 0 < ¢ < oco. If f € S(IR) we have

1HfHqu < hmmft PHthHqu < hmsupt PHthHqu(’]I‘ < 4HfHqu

where Dyf(2) = Spem Dif (x + k) is defined on T.
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Proof. Assume first that f has compact support. For ¢t > 0 small enough we

have supp(D,f) C [—3, 3] This gives that

In particular, for such ¢ we have

M) = o € =5, /1D @) > A} = [ € R/IF (0] > A} = tmy ()
and -

(Def)*(x) = Do(f*) (), x> 0.
Hence

qdx

wﬁﬂmwngzf@aﬁﬁr@»__
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and therefore

. I . q = L o« qu %
i 2 Defl oy =i (0 [ (057°(@)" )" = Wfllvacm

The case ¢ = oo is simpler.
For the general case, take f, = fX[—nn. Observe that, for |z| < 1/2

Dif(x) = Defalw) = 3 f(t7 x4+ k) = fult ™ (z + k)

keZ

D))

|k+z|>tn

Hence, for any m > 0, we have that

C C
n <t <Ot
(I+t=Yo+ k)™ — Z |z + k™ —

|k+z|>tn

Dif(@)=Difal@)] <3

|k+x|>tn

This shows that, selecting m > 1/p, we have

S Y I s W A O imtmUr —
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Given € > 0, choose n € N such that

(1 - 6)HfHLPvCI(lR) < an||Lqu(]R) < ||f||Lp,q([R)

Now since || - || r.a(r) is a quasi-norm with constant C' = 2% max(ﬁ_l, 1)
we have by the Aoki-Rolewic theorem [26] that || - ||r.a(mr) is equivalent to a
r-norm, namely | - |, for r = log; ' (2C). More precisely we have

1
LI < N fllepamy < 47| f]

and thus we can write a triangular inequality to the r-power in the following
way

1+ 9lzraqry < AU zra@m) + 191Lram))-
Hence, using this triangular inequality for ||.||Ep,q(nﬂn) for the corresponding

power r < 1, according to different values of p and ¢, and the previous case
we get the desired formula. W

Lemma 2.5 Let 0 <p,q <00, o = x[_1 1y, f € LPYT) and k € IN. Then

11l zraqry = 1f DRl Lraqmy
Proof. Using that f is periodic we get

mpp,(\) = Hz € R |f(@)k vy sy (k" 2)| > A}
k k 1
= Heel-5. 3 [f@)]> kA
11 1 1
= ko € (=5 5] @) > ko A} = kmy (k9.
Hence )
(fDYp)*(t) = inf{\ > 0 : kms(k? ) < t}
— kv inf{\ > 0 mp(\) < k') = DPf(t) = (DVf)*(¢)
Therefore gt
q [*,a .
17Dkl iy = [ 1 (FDR) (007
:gm%—%*—lq@:gm%* q@: q
R = [T 0 = 1y
|



Lemma 2.6 Let 0 < p < oo and f € LP>(T). If ¢ € S(R) is radial and
decreasing then

lim sup 1f D@l zoeeqry < Ml oyl £l Looo (T)-

Proof. Note that for each ¢ > 0 and A > 0 we have

IA

IN

IN

{z e R:|f(z)p(ex)| > t}] = [{[z] <27 A" 1 | f(x)p(ex)| > t}|
+ Z H2" 1 Ae™ < |z| < 2N 1 | f(z)p(ex)| >t}

n=0

{lzl <27 A" [ f(2)] > t(0) 7}

Y2 < fal < 2°A | F(@)] > tp(A2" )Y
n=0

{le] < 27 (AT + 1) < [ ()] > t0(0) )]

T i {2 ] < o] < 2]+ 1) < ()] > (02" )Y
(AT Dl € T2 17 (@) > t0)7)

+Z2““ A+ 1) = 2D I € T F(@)] > o2 )]
<Ae F Dz €T ()] > tp(0) Y]

+Z2“ A D)l {e € T [f()] > tp(A2" ) ).

Hence we get

me;1¢’(t) < ()\6_1+1)mf(tgp(0)_1)+(/\e_1+2) i Q”mf(tgo()\Q”_l)_l). (3)

. pOQ
Therefore, using that m(t) < Hfl',f’ ,

n=0

mppr o(s) = myp_p(se )
< O+ Des RO,
+ 22” o Des PPN,



< 5P A+ eI 1)

bsTY 2 (A+20002 WIS,

n=0
Hence, if ¢x = @(0)x[-r2-122-1] + Sns0 @(A2"7 1) X[Za2n x2n)\ [ azn—1 x2n—1]
we have
hmsup f Dol ipoem) < lloallem) ||f||Lpoo(T

Now pass to the limit as A goes to zero to get the result. B

Lemma 2.7 Let 0 < p,q < oo and f € LPY(T). If p € S(R) is radial and
decreasing then

Cp,sllol syl £l 1o o«T) = hmlnf 1fD?-1pl o
< limsup [|f D& pll ooy < Coarll@ller @yl oy
where Cp, p, = (QH - 1)_5, r =min(p, q) and s = max(p,q) .

Proof. Use (1) to write

o — — a
1D ey = [t (mp ()t

= [T ey )bt
0 €

Using the estimate in the previous lemma we have

EmeE—UP(t) < (A + e)mf(tgo(O)_l) + (A + 2¢) i 2”mf(t<p()\2”_1)_1).

n=0

Now we see that for » = min(p, q) we have

limsup | £ D2 o naqry < (A7(0) +Z (025002 ) || f - (4)



If ¢ < p then, for every \, we have
1D sy = [ at' (elfa € RIf@)pler)| > t}])"dt

< /0 gt (N + )myp(t(0) ™) + (A + 2¢) i 2"my(tp(A2")7))

n=0

S

dt

< a0 mislo) i
0

—1—/ qtql)\—l—2e 22 metgo()\Q" N~ )dt

n=0
- ()\—i—e / qt?™ 1mf() dt
+(A + 2¢)r Z2n5gp (A2 1) / qt?™ 1mf(t) v dt
n=0

= «A+@ﬂwmw+u+ao%2ﬂﬁw@w*>Mfmmm

n=0

Therefore
limsup | Dol namy < (AP (0) 1+ 02RO ) f s,
n=0

which gives (4).
In the case ¢ > p we can use Minkowski and get

Q3

1D lay = ([ (@00 Velfr € R | (@)pler)] > t}))Hat)
< ([ (@0 mite))

+ (A+20) 3 20t Dm(bp(A2"Y) ) ) )

n=0

ya
q

< u+o(A (4570 D (1p(0) ™)) dr)
(A 20) Z 2”(/:0 (g5 Dm(tlp(r2") ) dt)

P
q

p
q

= A+ 907 ( [ atrtm(t)3 )
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- n n—1\p o q—1 % %
+ (A+2e)n§)2 (A2 )(/0 qt*my (1) 5 dt)

= (A +)p(0) + (A +2¢) S 22ty o

n=0
Therefore
lims&lp HfoAQOHLPaQ(]R) < ( P+ Z A2"p 2n 1 ) HfHLM(’]T)?

and (4) is proved.
If Y\ = @(O)X[_/\Z—l)\Q—l}—'—EnZO ()0()\2’”_1)X[_AQn’)\Qn]\[_)\Zn—l7)\271,—1] then Clearly
we have that

eally = (Ap(0) + > A2"p(A2"1)P) ™.
n=0

Since ¢ and ¢, are radial and decreasing then ¢3}(t) = ¢\ (2t) for t > 0

and
0

leally = (A(0) + (25 — 1) S (x2mFp(a2 )

n=0
Hence, using that » < p, we have

1
T

(A e(0) +Z (22 ))" < (20 = )7 ol

Finally taking limits as A — 0 give
00 1
lim s&lp | f DY ol Lram) < /l\ir% ()\EQQ(O)T + Z(/\2")E<p(,\2n—1)r) r
€— - n=0
T 1. r -1
< (28 = )77l sup s oy = (25 = 17 el oor .

This gives one of the inequalities of the Lemma.
To get the other inequality, we use estimates from below to obtain

l1n11nf||fD 10| Lra(m) > ()\pgp (A271)* + Z (A2™)r p(A2") s);

where s = max(p, q).

11



Using now that s > p, we get, arguing as above, that

(Are(27h) 4 S (A2")5p(A2")*)" > (25 — 1) 75 [ oy
n=0

Whel"e SDA — ¢(A271)X[_k2717>\271} + ano (p()\Qn)X[_)\Qn7)\277,]\[_)\277.717)\27171].
Hence L

lim inf || f D7 | ooy = (27 — 1) 75

llos(m)-
Then proof is then completed.m

Corollary 2.8 Let 0 < p < oo and f € LP(T). If ¢ € S(IR) is radial and
decreasing then

el o 1 f 1| oy = Tim (L D pl| o my.-

In particular for p = 1 and the periodized function f = xa where A C
[—3, 3] we get

lim [ f(z)Dlip(x)dr = 11_{% ]R D.f(x)p(x)dz = m(A) /]R o(x)dx.

«—0JR

Now we are ready to proof our main theorem.

Theorem 2.9 Let m be a bounded continuous function on IR*. Let 0 <
Piy i < 00 fori=1,2, and 0 < p3,q3 < oo where 1/p; + 1/ps = 1/ps.

Then m is a multiplier in (LP2?(IR) x LP>2(IR), LP*%(IR)) if and only if
(Dy;1m)=o restricted to Z* are uniformly bounded multipliers in (L9 (T) x
LP>®(T), LP39(T)),i.e, denoting P, = P(thlm)k’k, where (Dy—1m)y i = m(tk, tk'),
there exists C' > 0 such that

1CL(f5 9l rsas vy < Ol fllzovar @wyll gl Lr2ae ()

or f,g € S(IR) if and only if there exists C' > 0 such that
for f,g€5( y

| P(f; 9)|lrsas(my < C|| fllzovar (|19l 2r2a2 ¢y

uniformly in t > 0 for all trigonometric polynomials f,g.

12



Proof. (=) Let ¢ = X[-1,1) and Y(x) = 72" Let t > 0 and let f(x) =
Sk are®™ and g(x) = 3, bpe®™".
Since m is continuous we can write

Pt(f? g)(l’) = Z Z aklbkzm(tkl’tkz)eQﬂ'i(kl+k2)x

k1€ kocZ

= 3 Y a by lim /]R /]R DYk — 1) DY (ks — 8)m(tr, ts)e2 9% drds

ki€ kocZL
- lim/ / 3" ap, DM(r—ki) Y b, DMb(s—ky) m(tr,ts) ¥ drds.
—O0JR IR oy ko€
That is
Pf,9)(@) = lm Ci( .. 9. @) )
where

fe = Z aleleeli/% ge = Z kaTngiw

k1€ ko €7

or, in other words,

f@) = Y2 a My, DEp(x) = 37 apdb(ex)e®™* = i) (ex) f(x),

k1€ k1€

and similar formula for g.. Moreover, this the convergence is uniform since

1P (f, 9)(x) — Cilfe, ge) ()]
<> |a||br,] /]R/]R |m(thy, thy) — m(tky — er, tko — €s)|t(r)1(s)drds

k1€ ko €7l

which tends to zero uniformly in € R because the continuity of m.
Thus

E(f,9) = lim Ci(fn, gn) (6)

where f,(z) = ¥(n"'z)f(z) and g,(z) = ¥(n"'z)g(x) with uniform conver-
gence and from Lemma 2.5 for £ € IN we also have

1B (fs 9| rsas (my = 15, 9) D3P @l oosias () (7)

get

13



Combining these two facts we write
1P, 9l sy = ([P (S, 9) D@l Los ()

< ||Ct(fmgn)D£3(P||LP3(IR) + HDn_l (Pt(fa g) - Ct(men))SOHLm(]R)

For the first sumand

“Ct(fm gn>DfL390||Lp3’q3(]R) - “Dfﬁ (@anlct(fm gn)) ||L1737Q3(]R)
lpDp-1C(frs gn) ’lLPSvQS(]I{)
| D1 Co( frs gn) || Lrsias () |0 oo (m)

L
= n " ||Ci(fa, gn)llLrsas(w)

IN

IN

_1
- #3 O|| foll Lovar w1 gn || rz-ae (m)

_1 _1
= O full s @y 7 [ gall o iy

where, using Lemmas 2.6 and 2.7, we know

. 1 T _ 1 .
lim 7 | foll o @ < 27 = 1) Lo e ol ey

n—o0

and

. -1 r2 _1 -
lim n ez ”gnHLP2vq2(]R) S (23’2 — 1) T2 ”g”LP2v‘12(’]I‘)”¢HLP2,T2(]R)

with r; = min(p;, ¢;) for i = 1,2.
Thus
1B(fs 9)lzrs(wy < 1 {|Co(frs gn) DR @l Lrs.as ()

+ lim [[P(f,9) = Ce(fns gn)ll Loy = Alpr, p2) [1f | ovar (|9l L2z ()

and the proof of this implication is completed.

(<) Assume D, 1m restricted to Z? are uniformly bounded multipliers
on Z* and let f, g € S(IR) such that f and ¢ have compact support contained
in K.

Using Poisson formula

£ f(th)e*™ 1 = S(Dyf)(kr)e™™ 1 = 3~ Dy f(w + k1) = Dy f (x)
k1

kl kl

14



Therefore, since m is continuous, we can write

Gif.g)@) = [ F©atmmigme € dgay
- hmtzsztkl (ths) (tkl,th)eZﬂ'it(lirkg)z

k1 ko
= %E%H(th,Dtu(])(tx)

Note that

{r € R:|Cu(f.0)@)] > M| < liminf [{|] < £'/2 | Pi(Def, Dig)(tx)| > A}
< liminfr|{ja] < 1/2: |PADif. Dig)(@)] > A}

Therefore, formula (1) and Fatou’s lemma give

1CL (. 0)| sy < Climnint ¢~ |Pu(DLf Dig)| [

An application of the assumption and Lemma 2.4 lead to

HCl(f’g)HLpS’qS(IR) = Chrtriionftil/psHD;}HLPLM(T)"D\tquLpz,tn(T)
< Cllfleeva @llgllzero @)

This finishes the proof W.

It is known that transference theorems can be extended to symbols more
general than continuous (see [8], [7], [9]). Actually a bounded measurable
function my defined on IR is called regulated if

1oy
EIE(% % /_6 my(z + t)dt = my(x)
for all z € R.

It is pointed out in [8] (see Corollary 2.5 ) that if m, is regulated and ¢
is non-negative, symmetric, smooth with compact support and [ ¢(t)dt = 1
then

}iﬁ% ]le(x —et)p(t)dt = lim 1, * Dlo(x) = mi(z)

for all z € IR.

15



This acually implies that

lim [ my(z — et)(t)dt = limm, * D p(x) = my () (8)
e—0t JIR e—0

where 9 is non-negative symmetric, smooth and [ ¥ (t)dt = 1.

Indeed, given ¢ take non-negative, symmetric, smooth functions ¢, with
compact support and [ ¢, (t)dt = 1 such that lim, . ||V — ¢n|l1 = 0 and
observe that

[ (mao = et) = mu(@))(t)dt] < 2Afmills [ 1DLOE) = Dioa(B)]de

| [ (= et) =i ()6 (t)d
= 2ol [ = Gulls + | [ (m1 (@ et) = moa (2)) gt

Definition 2.10 Let G(t,s) = 7~ 'e"+5") A bounded measurable function
m defined on IR? is G-requlated if

lir% m(z — et,y — es)G(t, s)dtds = lin(l)m * DIG(z,y) = m(z,y)
€e— RQ €e—

for all (z,y) € R

A look at the proof of the previous theorem shows that m needs not be
continuous but only G-regulated for the argument to work.

Theorem 2.11 Let m be a bounded G-requlated function on IR?, 0 < p;, q; <
oo fori=1,2 and 0 < p3,q3 < 0o where 1/p; + 1/py = 1/ps.

If m is a multiplier in (LP»9(IR) x LP>%(IR), L9 (IR)) then m restricted
to Z? is a bounded multiplier in (LPV%(T) x LP»%(T), LP*9%(T)).

Now we can apply this result to transfer results for the bilinear Hilbert trans-
form because of the following remark.

Remark 2.2 If my be a requlated function defined in R then my(z,y) =

mi(x + ay) is G-regulated in IR
In particular, m(x,y) = sign(z + ay) is G-regulated.
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Indeed, observe that

/]R2 mi(r —t+a(y — s))DIG(t,s)dtds = /IR /Ile(x + ay — €(t + as))G(t, s)dtds

— /Ile(x + ay — et)( /IR G(t — as, s)ds)dt

- /R ma(z + ay — et)ia(t)dt

where 1, (t) = [ G(t — as, s)ds. Hence we have, from (8), that

lim [ ma(z -ty — s)D!G(t, s)dtds = mu(z,v).

e—0 JIR
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