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ABSTRACT. In recent papers (cf [3], [4],[5], [20]) the concept of (p,q)-
summing multiplier was considered in both general and special context.
It has been shown that some geometric properties of Banach spaces and
some classical theorems can be described using spaces of (p, ¢)-summing
multipliers. The present paper is a continuation of this study, whereby
multiplier spaces for some classical Banach spaces are considered. The
scope of this research is also broadened, by studying other classes of
summing multipliers. Let E(X) and F(Y") be two Banach spaces whose
elements are sequences of vectors in X and Y, respectively and which
contain the spaces cgo(X) and cgo(Y) of all X-valued and Y-valued se-
quences which are eventually zero, respectively. Generally spoken, a
sequence of bounded linear operators (u,) C L£(X,Y) is called a mul-
tiplier sequence from E(X) to F(Y) if the linear operator from coo(X)
into coo(Y) which maps (z;) € coo(X) onto (unzy) € coo(Y) is bounded
with respect to the norms on E(X) and F(Y) respectively. Several cases
where E(X) and F(Y) are different (classical) spaces of sequences, in-
cluding for instance the spaces Rad(X) of almost unconditionally sum-
mable sequences in X, are considered. Several examples, properties and
relations among spaces of summing multipliers are discussed. Impor-
tant concepts like R-bounded, semi-R-bounded and weak-R-bounded

from recent papers are also considered in this context.
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1. INTRODUCTION.

Let X and Y be two real or complex Banach spaces and let E(X) and
F(Y) be two Banach spaces whose elements are sequences of vectors in X
and Y (containing all eventually null sequence in X or Y'), respectively. A
sequence of operators (u,) C L(X,Y) is called a multiplier sequence from

E(X) to F(Y) if there exists a constant C' > 0 such that

\\(ijj)?=1|\F(Y) < C“(mj)?Zl“E(X)

for all finite families z1,...,z, in X.

The set of all multiplier sequences from E(X) to F(Y) is denoted by
(E(X),F(Y)). The reader is referred to [1] where (E(X), F(Y)) is consid-
ered in the setting of spaces of distributions. We refer to [7, 8, 10, 9, 13]
for the case of vector-valued Hardy and BMO spaces E(X) = H'(T, X) and
F(Y)=1¢,(Y)or F(Y) = BMOA(T,Y), to [2] for the case E(X) = By(X)
and F(Y) = By(Y) or F(Y) = £,(Y), where B,(X) stands for vector-
valued Bergman spaces and to [11] for the case E(X) = Bloch(X) and
F(Y) = £,(Y). Also, the cases E(X) = Rad(X) and F(Y) = Rad(Y),
were introduced by E. Berkson and T.A. Gillespie [6] and used for different
purposes.

In the papers [4, 12] the cases E(X) = £;(X) and F(Y) = £,(Y) where

considered (see also [3]). Given a real or complex Banach space X and
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1 < p < 00, we denote by £,(X), £;(X) and £,(X) the Banach spaces of se-

quences in X, which are endowed with the norms [|(z,)|l¢,(x) == (| Zn )],

epl(2)) = sup{ll(a*z) e, : 2* € X*, la*] < 1} and || ()5 =

sup{[|(z}z;)|le, : ep((z})) = 1}, respectively. The space £,(X) was first
introduced in [16] and recently it has been described in different ways (see
[3] for a description as the space of integral operators from £,y into X or [15]
and [20] for the identification with the projective tensor product £,&X).
We recall some basic notions in Banach space theory. Following standard
notation, £(X,Y’) will denote the space of bounded linear operators between
Banach spaces X and Y, Bx denotes the unit ball in X and by (e;) we denote
the canonical basis of the classical sequence spaces £, (1 < p < oo) and cy.
For 1 < p < oo, p’ will be the conjugate exponent of p, i.e. ;74— 1% =1
*

‘) will sometimes be used to denote the canonical basis of (£,)* = £,

and (€]

for 1 < p < oo and ¢ = ¢; to distinct between the standard bases of the
classical sequence space and its dual space. K denotes R or C if no difference
is relevant. Sequences in Banach spaces are denoted by (z;), (v;), etc. and
() (€ n):=(x1,29,...,2,,0,0...).

For 1 < g < p < o0, the space II, ,(X,Y) of (p,q)-summing operators
is the vector space of those operators which map sequences in Eg’(X ) onto
sequences in £,(Y’); more precisely, u € L(X,Y) is in II, (X, Y) if there
exists C > 0 such that ||(uzj)|s,v) < Ceq((z5)) for all finite families of
vectors z; in X; the least (meaning, infimum) of such C' > 0 is called the

(p, ¢)-summing norm of « and is denoted by 7, 4(u). Thus, u € II, ,(X,Y)
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< 0 : L4y (X) = £,(Y) = (z;) = (um;) is a bounded linear operator. Usu-
ally, (p,p)-summing is called p-summing and 1-summing operators are also
called absolutely summing, because for a 1-summing operator u € L(X,Y)
we have that ) uz; is absolutely convergent in Y for every unconditionally
convergent series ) z; in X.

Grothendieck’s theorem in this setting, says that, for any measure space
(2, 1) and any Hilbert space H, L(L'(u), H) = TI;(L'(u), H). Because
of this, a Banach space X is called a GT- space, i.e. X satisfies the
Grothendieck theorem, if £(X,¢y) = II; (X, £2) (see [25], page 71 ).

For each 1 < p < oo, we denote by Rad,(X) the space of sequences (z,,) in
X such that ||(zn)l|r, = supnen| >°7—1 m%;llLr(0,1),x) < 00, where (r;)jen
are the Rademacher functions on [0,1] (defined by r;(t) = sign(sin2/7t)).
It is easy to see that Rade(X) coincides with ¢ (X).

Making use of the Kahane’s inequalities (see [19], page 211) it follows that
the spaces Rad,(X) coincide up to equivalent norms for all 1 < p < co. The
unique vector space so obtained, will therefore be denoted by Rad(X), and
we agree to (mostly) use the norm || - ||z, on Rad(X).

For the fundamentals on type and cotype, the reader is referred to the
reference [19], pages 217 to 221. Rad(X) also allows us to formulate type
and cotype in familiar terms. For 1 < p < 2 < ¢ < oo, a Banach space X has
type p if and only if £,(X) is a linear subspace of Rad(X) and X has cotype
g if and only if Rad(X) is a linear subspace of /,(X ), both embeddings being

continuous (cf [19], Proposition 12.4).
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Furthermore, a Banach space X is said to have the Orlicz property if

there exists a constant C > 0 such that

71]

(S llzil12)"* < € sup IS zjri(0)]]
j=1 telo j=1

for any finite family z1, 2o, ...z, of vectors in X.

The basic theory of p-summing and (p, ¢)-summing operators, type and
cotype can be found, for example, in the books [18, 19, 23, 25, 26, 27]. In
this paper we shall consider some connections between different notions of

sequences of operators.

Notion 1.1. (see [4], [12]) Let X andY be Banach spaces, and let 1 < p,q <
0o. A sequence (uj)jen of operators in L(X,Y) is called a (p,q)-summing
multiplier, if there exists a constant C' > 0 such that, for any finite collection

of vectors x1,xo,... %y, in X, it holds that

- 1p - 1/q
(Z ||Ujfvj|\p> < C'sup {(Z I:v*mjlq) . z* € By~ }
J=1 j=1

The vector space of all (p, q)-summing multipliers from X into Y is de-
noted by (¢;(X),£,(Y)). Note that the constant sequence u; = u for all
j € N belonging to (¢/(X),£,(Y’)), corresponds to u being an operator in
(X, Y). Also the case (u;) = (Aj.u) € (£7(X),£1(Y)) for all (A;) € £y,
where % + z% = 1, corresponds to u € Tl ,(X,Y). These facts suggest the

use of the notation £, (X,Y) instead of (£;'(X),£,(Y)) and £, (X,Y) for

the case ¢ = p.
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Following the notation in the recent paper [3], we let

0 (X) =4y (X*,K) NE2(X)

Tp.q Tp,q

and call the elements of £, (X) the (p,q)-summing sequences in X. Note
that &z ,(X) = £,(X). Arregui and Blasco have shown in the paper [3]
that some geometric properties on X can be described using ¢, (X, K) and
also that classical theorems, like Grothendieck theorem and others, can be
rephrased into this setting. Some results on the spaces £, (X,Y) can be
found in [12] and [4]. The reader is also referred to [5, 20] for the particular
case p = ¢, X =Y and u; = a;jldx. In these papers a scalar sequence
(cj) is defined to be a p-summing multiplier if (u;) = (ojldx) belongs to

0 (X,Y).

Tp,p
In Section 2 we summarize some (recent) results on (p, ¢)-summing mul-
tipliers and discuss some examples of (p, ¢)-summing multipliers on classical
Banach spaces. We extend the idea of (p,q)-summing multiplier to other
families of multiplier sequences from E(X) to F(Y), considering some well
known and important Banach spaces of vector valued sequences in place of
E(X) and F(Y). Some duality results with application to spaces of opera-
tors are also considered.
In Section 3, we study R-bounded sequences and other variants thereof,
like for instance, semi-R-bounded and weak-R-bounded sequences in Banach

spaces. Relations of several types of sequences of bounded linear operators

(like R-bounded, weak-R-bounded, semi-R-bounded, uniformly bounded,
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unconditionally bounded and almost summing) are studied. These rela-

tions build on well known results on type and cotype and characterizations

of different families of operators.

2. (p,q)-SUMMING MULTIPLIERS.

We refer to Notion 1.1 for the notion of (p, ¢)-summing multiplier. Some

easy examples can be constructed by taking tensor products of some ele-

ments in classical spaces.

Proposition 2.1. (see [4]) Let X and Y be Banach spaces, 1 < p,q < oo.

(1) Lr, (X, K)@L(Y) C br, (X, Y) for L =14 L.

(2) £s&T1, 4(X,Y) C Ly, (X,Y) for % =141 In particular £,@X C

£y(X). Moreover, £L,0X = £,(X) isometrically (different

0 (X) =

Wl,p’

proofs of this fact are discussed in [20] and [15]).

(3) £5(Y)®X* C by, (X,Y) for p < q and % = %4— L

In particular, notice that

Remark 2.1. Let p,q,s > 1 be real numbers such that %
(i) If p < q, z* € X* and (yn) € Ls(Y) then (up)

le (X, Y).

(ii) If (M\n) € s and u € T1, 4(X,Y), then (un) = (Aqu) € £y, (X, Y).

We consider some (elementary) examples:
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Example 2.1. Let K be a compact set and p a probability measure on
the Borel sets of K. Let 1 < p < q < oo, 1/r = 1/p —1/q and (¢;) a
sequence of continuous functions on K. Consider uj : C(K) — LP(u) given
by uj(p) = ¢jrp. Then (uj) € £y, (C(K),LP (1)) if and only if

(325151 € LP ().

Example 2.2. Let (Q, %, u) and (¥',X', 4') be finite measure spaces.

Let1<p<g<oo, += % + é. For each n €N, let f, € LP(u, L' (i')) and

1
p

consider the operator uy : L (u') — LP(u), defined by

un(9)(-) = o P(W) fn () (") dp ().

1 1
T T

Put fu(,0') = fu() (W) and (Cp_y 1fel") (@)() = k=1 [frlw, )"
Then, (Xj— [fel")7 € LP(u, LN (1)) = (un) € Le,,, (L=(n'), LP (1),

Proof. Given n € N and ¢y, ¢, -+ , ¢, € L=(p'), then
> lon(6)l = LU ) oo il di
N1g % p & NTYE 1 VP .
< I IBOM oo(u,)/9</ﬂl<;|fk<w,w)|> A/ ()P dp)

1 .
Hence, since ||(¢n)llew (oo (u)) = (X g=1 16k ()]9) [ 2oy, it follows that

1
Tpag((ur)) < (k=1 [fr(w, ") 7 o (11 () - O
Example 2.3. Let 1 < p < ¢ < oo, % = %—i— % and (Ay) be a sequence of

infinite matrices. Consider T, € L(co,£p) given by T, ((A\g)) :=
. . ro1
(k= Anks DAR)j- I 2R {2021 (521 [An(k, §)IP)7 )7 < oo, then

(Th) € £r,,(co,p).
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Proof. (T,) is of the form T,, = Y77 | €} ® yy k, where y, j € £, is given by
Ynk = (An(k,));- For (z,) C co, we have

1 .
Lt 1T (@) 1P < (@) [ (o) DoRZ1 (2nZy 1ynkll) 7 ]P, showing that

(5 T (@)I?)7 < ()l eo) S A (D5 [An (k. )P) P}, O

Notion 2.2. Let X and Y be Banach spaces, and let 1 < p,q < oc. A
sequence (uj)jen of operators in L(X,Y) belongs to (£4(X),£,(Y)), if there

exists a constant C > 0 such that

& N - 1/q 1/p'
Sl <umiy; > [ <O(D llagl) " sup (Dy]w)
=1 i=1

llyll=1

for all finite collections of vectors x1,za,...zy in X and yi,y5,...y,, in Y™,

The infimum of the numbers C' > 0 for which the inequality holds, is denoted

by [ (wi)ll (e (x).6,0) -

Proposition 2.3. Let X and Y be Banach spaces, 1 < p,q < oo and let
(uj)jen be a sequence of operators in L(X,Y). Then (uj) € (£4(X),4,(Y))
if and only if (u}) € £r, ,(Y*,X"). In this case we have

| Cwi)ll ey (x),6, 7)) = T 2 (1))

Proof. Let (uj) € {r, ,(Y*,X"). For a finite set z1,--+ 2, in X and

(y;) € £y (Y™), we have > 0, [(wizi, y)| < mq pr ((uf)) ey ((47)) (@)l (x)

Taking the supremum over the unit ball in £J;(Y™), we conclude that (u;) €

(£q(X), 6,(Y)) and [[(wi) ¢, (x),6,0v)) < 7qr 7 ((67))-

Conversely, assume (u;) € (£4(X), £,(Y)). Let y7,--- ,y;, be a finite set in

Y* and let (z;) € £4(X). It follows that Y ., [(ufyf, z;)| <
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[ (wizi)ll e (7)) < 1(wi)ll ey (x).6, v0) 1( @) ey (xy € (7). 1f we take the

supremum over the unit ball in £,(X), we obtain (uj) € £, ,(Y™*, X*) and

g (7)) < (wa)ll gy (x), (7)) O

Example 2.4. Let p be a probability measure on Q. Let 1 < p < q < oo,
1/r = 1/p — 1/q and (¢;) a sequence of functions in LY (). Consider

uj : L) — L' () given by uj(yp) = ¢j1p. Then
16N € LT (n) = (u)) € (Lg(LU(1)), (L' ().
J

Proof. Let 11,19, ...,10, € L4(u). Taking into account that £,(L'(u)) =
(5t [ P) Pl

< IO 1931t (s 1519 O

LOL () = L' (i, £p), we have ||(ujp)]lg,r1 () = |

Remarks 2.1. (1) Under the conditions of Example 2.4, we let
vj: L>®(p) = LY (1), be defined by vj(x) = ¢jx. Then v; = uj, Vj
and Example 2.4 and Proposition 2.3 yield that
(vj) € b, ,(L(), ¥ (1),

(2) Let 1 < p,q < oo. If X is a Banach lattice and Y a Banach space,
then we call an operator v € L(X,Y) strongly (p,q)—concave (and
write w € SCpo(X,Y)) if there exists a ¢ > 0 such that for all
2y in X, we have [[(uz)(i < n)llgy < e (7 2117 x-
The infimum of the numbers ¢ > 0 such that the inequality holds for

all choices of finite sets in X, is denoted by ||ulsc,, -
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u € L(LYu),Y) is strongly (p,q)-concave iff there exists a ¢ > 0

such that for all finite sets x1,x2, "+, Xn in LI(u), we have

" 1 " 1
[(u(xi))(@ < n)|lp <c II(Z1 IXil D) | Lau) = ¢ (Zl il )7 -

Thus it follows that u € L(LY(u),Y) is strongly (p,q)—concave iff
the constant sequence (u,u,---) belongs to (£4(L9(p)),2p(Y)) and
moreover, |ullsc,, = I[(u,u, ) (e,(zau)), €,0vy)- Proposition 2.3
tells us that this is the case iff (u*,u*, ) € lx, (Y*, L9 (p)) =

(£5(Y*),£q (L7 (1)) This corresponds to u* € Ty (Y, LY ().
We have thus proved that u : LY(u) — Y is strongly (p,q)—concave

iff u* 2 Y* — L9 (n) is (¢',p')-summing, with ||lul|sc,, = [ {lx,, -

The following two examples are conclusions of Proposition 2.3 and ([12],

Example 2.2, 2.3).

Example 2.5. Let (2,5, ) and (V,2', 1) be finite measure spaces and
1 <p<oo. Let (f,) C LP(u, L' (1)) and consider the operator
St IV () = LN(W) = Su@)() = fo 9() () du(w), where (as before)
we let fulw,) = Fale)(). 17 supy|ful € LP(u, 1)) (where,

supy, |fal (@) () = supy | fa(w, )|), then (Sa) € (Ly (L (1)), by (L' (1))

Example 2.6. Let 1 < p < oo and (Ay) be a sequence of matrices. Consider
the bounded operators Sy, : £y — £y given by Sp((&5)) = (3272, An(k, 5)E))k-

Then (Sn) € (£so(ly), Loo(£1)) if Y52 sup, (X2 [ An(k, )[P)7 < oo.
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Notion 2.4. Let X and Y be Banach spaces, and let 1 < p,q < oo.
A sequence (uj)jen of operators in L(X,Y) belongs to (£ (X),£,(Y)), if
there exists a constant C > O such that, for all finite collections of vectors
x1,%2,...Ty n X and yi,y5,...y; in YY", it holds that

n

n 1/q n N 1/
E | <wjzj,y; > | < C sup ( g |x*xj|q) ”SIHJP ( E |y;ky|p> .
yll=1 =

j=1 [|z*[|=1 j=1
The infimum of all C' > O such that the inequality holds for all finite sets in

X and Y*, is denoted by H(ui)H(%u(X)’gMy)).

Proposition 2.5. Let X and Y be Banach spaces, 1 < p,q < oo and let

(uj)jen be a sequence of operators in L(X,Y). Then (u;) € (¢¥(X),£,(Y))

q

if and only if (u}) € (£, (Y™), £y (X™)) and

1 Cua)llew (x5 0vy) = 1) e (v, 00y

Proof. Consider (u}) € (£;(Y™), £y (X)) and let z1,22,-- , 7, € X. Veri-

fying the inequalities 377" ; [(uizi, )| < [|(uf2]) (i < n)ll(gy€q((z:)(i <))
< M@l o)., xpew ()@ < n))eq((2:) (@ < m)), for all () € £5(Y),
one obtains that [|(uizi)(i < n)llpy < () ey (o)., (x) ol(2i) (@ < 1))
and hence that [|(ui)ll ey (x).6,0v)) < 1) es v+, (x)-

Conversely, take (u;) € (£7(X),€p(Y)). Let y7,--- ,y,; be a finite set in

Y™ and let (z;) € Byw(x). Then

D iyl =Y Wiy < 1 (ui)llew (x0),, vy ea(() e (57)-
=1 i=1
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Taking the supremum over all sequences (x;) € Bez]u( x), we conclude that

(u7) € (b (V). £ (X)) and [[(wf)ll ez (v).0, xn) < N wille o600 B

Example 2.7. Let K be a compact set and pu a probability measure on
the Borel sets of K. Let1 < p < g < oo, 1/r = 1/p —1/q and (¢;) a
sequence of continuous functions on K. Consider uj : C(K) — L'(u) given

by u; () = ¢pj1p. Then

(D165 € LT (1) = (uy) € (65 (C(K)), (L' (n)))-

J

Proof. As in Example 2.4, if 1,19, ..., 1, € C(K) we have

g o)l < N1 131D 1
7=1 7=1

IN

O 151 Wy sup(Y Jap (8)]4)4
o tek
< AQC I8N gy sup Q| < gpjov > |9
j=1 Wl =1 j=1

O

In the discussion above we restricted ourselves to the Banach spaces
(¥(X), £p(Y)), (£7(X),£,(Y)) and (£4(X),£,(Y)); thus we considered spe-
cial cases of the vector space (E(X), F(X)) of multiplier sequences — intro-
duced in Section 1 — and defined suitable norms on them. Continuing in this
fashion, we shall in the following section discuss the important concept of
R-boundedness of sequences of operators and some related concepts in the

setting of multiplier sequences.
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3. R-BOUNDED SEQUENCES

In this section we consider notions that have been shown to be relevant

in some recent problems.

Definition 3.1. (c¢f. [17] and [21]) Let X and Y be Banach spaces. A
sequence of operators (uj) C L(X,Y) is said to be Rademacher bounded

i.e. R-bounded if there exists C > 0 such that

1 1
/nzwm Pty < /nzxm IR

for all finite collections x1,x9,...,Ty € X.

The space of R-bounded sequences of operators from X into Y is denoted
by R(X,Y) and |/(u;)||r denotes the infimum of the constants satisfying
the previous inequality for all finite subsets of X. It is easy to see that
(Rad(X,Y),||(u;)||r) is a Banach space which coincides with the multiplier

space (Rad(X),Rad(Y)).

Definition 3.2. (¢f. [24]) Let X and Y be Banach spaces. A sequence
of operators (u;) C L(X,Y) is called weakly Rademacher bounded,
shortly W R-bounded if there exists a constant C' > O such that for all

finite collections z1,--- ,x, € X and y7, -+ ,y,, € Y* we have

t\.m—‘

1
Z|ukmkayk|<c/ ||Z$J7"J ®)|1? dtl/ HZyJ?"] ! dt)
k=1
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The space of W R-bounded sequences in £(X,Y"), is denoted by WR(X,Y")
and |[(un)||wr is the infimum of the constants in the previous inequality,
taken over all finite subsets of X and Y*. Then ||(u,)|wgr is a norm on

WR(X,Y), which is exactly the norm of the bilinear map
Rad(X) x Rad(Y™) — €1 : ((zx), (yx)) = ((uer, yi))-

Definition 3.3. (cf. [12]) Let X and Y be Banach spaces. A sequence of
operators (u;) C L(X,Y) is said to be almost summing if there ezists

C > 0 such that for any finite set of vectors {z1,--- ,zn} C X we have

n

1 n )
(3.1) ( / 1S i) DI de <0 sup (3 [, m5)[)5
j=1

e ll=1 5=

We write £,,,(X,Y) for the space of almost summing sequences, which is
endowed with the norm ||(u;)||qs := inf{C > 0 | such that (3.1) holds}. No-

tice that £, (X,Y) = (¢5(X), Rad(Y")). If the constant sequence (u, u,u,...)

Tas
isin £, (X,Y), then the operator u is called almost summing (see [19], page
234). The space of almost summing operators is denoted by I,s(X,Y") and

the norm on this space is given by m.s(u) = ||(u, u,u...)||ss = ||4||, where

in this case @ : £5(X) — Rad(Y') is given by 4((z;)) = (uz;).

Definition 3.4. (cf. [24]) Let X and Y be Banach spaces. A sequence
of operators (u;) € L(X,Y) is called unconditionally bounded or U-

bounded if there exists a constant C' > O such that for all finite collections
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i1, ,2n € X and yi, -+ ,yr € Y* we have
n n n
> Nugzr, yi)] < C max || > epay| max || exyill-
ep==1 ep==1
k=1 k=1 k=1

We write UR(X,Y) for the space of U-bounded sequences in £(X,Y).
The space UR(X,Y) is endowed with the norm ||(uy,)| v r, which is given by
the infimum (taken over all finite subsets of X and Y*) of the constants in

the previous inequality.

Proposition 3.5. Let X and Y be Banach spaces. We have
lr, (X,Y) S R(X,Y) CWR(X,Y) CUR(X,Y) C £oo(L(X,Y)).

Proof. The inclusion 4., (X,Y) C R(X,Y) is a trivial consequence of the
embedding Rad(X) C ¢¥(X). Suppose (u;) € R(X,Y). Orthogonality of
the Rademacher variables, duality and the contraction principle, allow us to

write

n

S s = sup 3w, i)

ep==1

k=1 k=1
1
= s [ nOuan Y (o) d
ee==+1J0 k<n k<n
1 n
< s / ||Zukxkrk ROREY I i)
€k 0 k=1
< 1) / I\vam )I12at) % / nzykrk )|12dt) 2.

This proves the inclusion R(X,Y) C WR(X,Y). Theinclusion WR(X,Y) C

UR(X,Y) is clear from the definitions.
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If (up) € UR(X,Y), then from the definition of unconditional bounded-
ness there exists C' > 0 such that for x € X, y* € Y*, we have |[(ugz,y*)| <
C|lz|||ly*|l, for all & € N. Thus the inclusion UR(X,Y) C £ (L(X,Y)) also

follows. O

Remark 3.1. Ifu € L(X,Y) then (u,u,...) € R(X,Y) and ||(u,u,...)||r =
llu|l. However, (u,u,...) € £, (X,Y) if and only if u € Hys(X,Y). This

shows that £, (X,Y) C R(X,Y) is strict.

Recall that for 1 < p < oo, the p-convexity and p-concavity of LP(u)

imply the following equivalence of norms:

()l Raacze () = 1O 1051 21l 1o
j=1

for any collection ¢1, ¢a, ..., ¢ in LP(u) (cf [19], 16.11).

Also, if X = C(K) for any compact set K or if X = £/, then

n

en((9)) = D 15") 7 llx

j=1
for all finite subsets ¢1, ¢2, ..., ¢ of X.

Therefore we have the following versions of Definitions 3.1, 3.2 and 3.3 in

some special cases:

Proposition 3.6. (i) Let X = C(K) and Y = LY(v) for 1 < q < 0o. Then

(uj) € £y, ,(X,Y) if and only if there exists C > 0 such that

1O i @) ey < CUO 1631 P lle
j=1 j=1
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for any finite collection ¢1, ¢pa, ..., P in C(K).
(ii) Let X = LP(u) and Y = Li(v) for 1 < p,q < oo. Then (u;) €

R(X,Y) if and only if there exists C > 0 such that

1O 1ui (@) 2 sy < CUO 163l ()
Jj=1 j=1

for all finite collections ¢1, pay ..., oy in LP(p).
(iii) Let X =4y, and Y = ¢y for 1 < p < oo. Then (uj) € WR(X,Y) if

and only if there exists C > 0 such that

D ui(8), 001 < CUO 165 Pl IO o) e
j=1 j=1 j=1

for all collections @1, ¢pa, ..., ¢n in £, and 1,2, ..., n in L.

Proposition 3.7. Let 2 < r < oo. If u; = Aju for u € Il,,(X,Y) and
(Aj) € 4y then (uj) € (6 (X), Rad(Y')) for 1/g =1/2—1]r.
In particular, if u € Ha(X,Y) and (X\j) € Lo then (u;) = (Aju) €

‘eﬂ'as (X’ Y)

Proof. From u € Tl,4(X,Y), we have (fo1 3271w (z)r; (1) || dt)/? <

n o1\ 9
Tas (W[ (Aj)|]e, SUP||z2 =1 (Zj:1 |z* x| ) :

Remark 3.2. We would like to point out that U,IL, ,(X.Y) C I,4(X,Y)
(see [19], 12.5). Nevertheless this is not the case for sequences of operators.
Indeed, it suffices to take u, = * @y, for fired z* € X* and (yn) € loo(Y).
In this case, (uy) belongs to lr, ,(X,Y), but not to £y, (X,Y) (consider for

example Y = ¢ and y, = e, the canonical basis).
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Proposition 3.8. Let Y be a Banach space of type 1 < p = p(Y') and cotype
q=q(Y) <oo. Then by, ,(X,Y) C Ly, (X,Y) C Ly, ,(X,Y).

In particular if Y is a Hilbert space then Uy, ,(X,Y) = £, (X,Y).

Proof. Tt follows from the fact £,(Y) C Rad(Y) C £,(Y). O

Let us mention that it was pointed out in ([24]) that if X has nontrivial
type then WR(X, X) = R(X, X). Actually the assumption only needs to
be taken in the second space, i.e. WR(X,Y) = R(X,Y) if Y has nontrivial
type (see Proposition 3.9 below).

Recall that the notion of nontrivial type is equivalent to K-convexity (see
[19], page 260). X is said to be K-convex if f — (fU1 f@)rp(t)dt), defines a
bounded operator from LP([0,1]) onto Rad,(X) for some (equivalently for
all) 1 <p < oo.

For K-convex spaces one has Rad(X*) = Rad(X)* (see [26], or [14] for
more general systems). This shows that there are no infinite dimensional
K-convex GT-spaces of cotype 2. Indeed, assume X is K-convex and a
GT-space of cotype 2. On the one hand Rad(X) = ¢2(X) and on the other
hand Rad(X)* = Rad(X*) with equivalent norms. Therefore Rad(X*) =
(L2(X))* = £5(X™*). Hence the identity on X* is almost summing and then
X* is finite dimensional.

It is well known that, in general, one can only expect Rad(X*) to be
continuously embedded in Rad(X)*, but that the embedding needs not even

be isomorphically. Take, for instance, X = ¢;. Then Rad(¢1) = ly(¢;) =
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lo®Ly, that is to say (z,), C ¢1 (with z, = (z,(k));) belongs to Rad({1)
if and only if 3, (X ,en |70 (K)]?)Y/? < 0o. As a matter of fact, it follows

from earlier discussions that
Rad(ﬁl) == €2<€1> == €2®€1 = £1®£2 == El <€2> == 61(62)

Therefore Rad(X)* can be identified with L(¢3, /) or with £ (¢2), and

(@) Raaex)y = suppen(Epen o7, (K)[*)!/?. However,

1
%) | Radx) = / sup| S 2 (k) (8)]dt.
0 keN

neN

Proposition 3.9. IfY is a K-convex space, then WR(X,Y) = R(X,Y).

Proof. Let (u,) € WR(X,Y) and let z; € X for i = 1,...,n. Using that

Rad(Y)* = Rad(Y™*), we have

1 n n n
(/0 1D~ ujlay)ryO7d)'? ~ sup{l > (uizs)syp)l = 1Y yirilleeee) < 1}
j=1

n
< M)llwrl Y zrillrex)-
j=1

O

It is clear from the proof of Proposition 3.9 that WR(X,Y) = R(X,Y)
for all Banach spaces Y such that Rad(Y)* = Rad(Y™).

For later use, we point out that

Lemma 3.10. Let 1 < p,q < oo. For a sequence (uj) in L(X,Y) we

have (uj) € Lr, (X,Y) if and only if F' : £J(X) x £y(Y™) — £y defined
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by F((zn), (y})) = (unzn,y;)) is a bounded bilinear operator. In this case

[E[} = 7p,4((w7))-

Theorem 3.11. Let 1 < p < 2.
(i) If Y has type p then £y, ,(X,Y) C £y, (X,Y).
() If Y* has cotype p' then Ly, ,(X,Y) C WR(X,Y).
(i) If Y* has cotype p' then L, (X,Y) CUR(X,Y).

(iv) If Y* has the Orlicz property then {r, (X,Y) CUR(X,Y).

Proof. (i) This follows from £,(Y’) C Rad(Y).

(i) Assume Y* has cotype p’. Then Rad(Y*) C £y (Y™*) continuously,
whereby [[(y)lle, v+) < Cp (Y ) ()l Rady+) and Cp(Y™) is the cotype
p' constant of Y* (cf. [19]). Also, Rad(X) C £¥(X), with ex((z;)) <
(i)l Raacx) (cf. [19], p. 234). Suppose (u;) € £, ,(X,Y). Then
F :09(X) xLy(Y*) = £ : ((zn), () = ((unn,y,)) is bounded with
|| F'|| = mp,2((u;)). Thus for all finite sets of elements z;, z9,- - ,z, in X and
Yiree s yn i Y™, we have 370 [(upzr, yi)| = I1F (), (7))l <
7p,2((1i)) Cpr (Y ) (24) | Raa(x) 1197l Rad(y+)-

(iii) Use Lemma 3.10 and the fact that Y* of cotype p' gives £¥(Y*) C
Ly (Y™).

(iv) Same argument as in the proof of (iii), now using that by the Orlicz

property of Y*, we have £ (Y™*) C £5(Y™). O

Theorem 3.12. Let 1 < p < 2.

(i) If Y has cotype p' then L, (X,Y) C L, (X,Y).

Tp! 2
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(1) If Y has cotype p' then R(X,Y) C br, (X,Y).

(i1i) If Y* has type p then WR(X,Y) C £, (X,Y).

Tp 1

Remark 3.3. Let1 < p <2 < g < oo and denote by Cy(X,Y) and T,(X,Y)

the spaces of operators of cotype q and type p, that is

Co(X,Y)={u: X =Y :(uj); € (Rad(X),4q(Y)),u; = u,j € N}
and

Tp(X,Y)={u: X =Y :(u;); € ({,(X),Rad(Y)),u; =u,j € N}.

Let X and Y be Banach spaces.
(1) If (u)) € Rad(X,Y) and u € Cy(Y, Z) then (uu)) € £y, (X, 7).
(2) If (u;) € Rad(X,Y) and u € Ty(Z, X) then
(uju) € (4p(Z), Rad(Y)) C (6,(Z), £5(Y)).
(3) If (u;) € Rad(X,Y), v € Cy(Y,U) and u € Moy(Z, X) then (vuju) €

bry»(Z,U).

Theorem 3.13. Let 1 < p <2 and X be a Banach space such that X has
cotype p', let' Y be a GT-space of cotype 2 and let uj : X =Y be bounded

linear operators for all 7 € N. Then

(u;) € Ln,, (Y, X*) = (uj) € R(X,Y).

Proof. Recall from Proposition 2.3 that (u;) € (£, (X), 42(Y)). Since we can
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concerning £, ,(Y') = £2(Y')), it follows that there exists a C' > 0 such that

Jo 120y ()@ llde < [1(uj(2)) ey vy < Cll(wi)ll e, (x),020) 1)l

< Kfol | 3251 jrj(t)||dt, for some K > 0. O

Corollary 3.14. Let 1 < r < oo and uj : L"(u) — L'(v) be bounded
operators. If (uj) € EWP’Q(LOO(V),LTI(/J)) for p = min{r’,2}, then there
exists C' > 0 such that

1O T (@) 2 prwy < OO 18515 P llir

for any collection ¢1, ¢o, ..., Pn in L™ ().
Another related notion is the following;:

Definition 3.15. (c¢f. [22]) Let X and Y be Banach spaces. A sequence
of operators (uj) C L(X,Y) is said to be semi-R-bounded (i.e. (u,) €
SR(X,Y)) if there exists C > 0 such that for every x € X and a1,--- ,a, €
C we have

1 n n

1
(3.2) (/0 1D uj(@)rj®)a;)* dt) /> < € (3 lag|*)2 |l
3=1 J=1

l(ui)|lsr := inf{C > 0 | such that (3.2) holds} is the norm on SR(X,Y).

It was observed (see [22], Prop 2.1) that SR(X, X) = oo (L(X, X)) if and
only if X is of type 2. Note that R-boundedness of sequences in L£(X,Y)
implies semi-R-boundedness of the same. It is known that if X is a Hilbert

space or X is a GT-space of cotype 2, then SR(X, X) = R(X, X) (see [22] for
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a proof). The proof of this fact (in [22]) is however very much simplified in
the context of multiplier sequences and basically follows from the following

characterization of SR(X,Y).

Theorem 3.16. The space (SR(X,Y),||.|lsr) is isometrically isomorphic

to the space (£2(X),Rad(Y)).

Proof. Suppose (up) € SRad(X,Y) and {z1,--- ,z,} C X. From [20] we
know that [|(zi)]l¢2y = || Doim; € ® il a in £o®X. It is clear that if (X;) € £o
and z € X, then (Aju;z) € Rad(Y) and [|(Aju;z) || r, < [[(wi)llsrll(X)lel2]-
Hence (0,0, ,0,u;z;,0,---) = (d;5ujz;); € Rad(Y) and |[(d;;u;2;) ] R, <
([ (wi)llsrll(dij)jlle;l1zill = [[(ui) lsrllzslll[€;]le,. Therefore, (u;z;) =

> i1 (0ijujzs)j € Rad(Y) and [|(uizi)llry < (32521 lleslle, lzslDl (ue) lsr- By
definition of the projective norm || - || on £,&®X, we have ||(u;z;)| g, <
12251 €8 @ zillall(us)llsr = [1(@i)ll(2) [ (ui)lsr- This holds for all finite sets
{m1,--+ ,zn} C X, showing that (u;) € (£2(X), Rad(Y')) and || (us)|l((2),r,) <

[[(wi)llsr.

Conversely, suppose (u;) € (¢2(X),Rad(Y)) and let oy, -+ ,a, € C and
JR— 1

z € X. Then, ([y I 320 ri®)esusal® dt)> < ||(ui)ll2),m0) (i)l 2y <

I (wi)ll (29, ) (Din |az|2)%||m|\ Since this is true for all oy, -+, a, € C and

z € X, it follows that (ul) € SR(X,Y) and ||(’LL1)||5R < ||(’LL1)||(<2>’R2) O

It follows from the continuous inclusion ¢9(X) C Rad(X) and Theorem

3.16, that R(X,Y) C SR(X,Y) for all Banach spaces X and Y. The reader
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is referred to [22] (p. 380) for an example of a sequence of operators which is
semi-R-bounded, but not R-bounded; indeed, the authors in [22] show that
if (e}) is the standard basis of £y (where, 2 < ¢ < 00) and w = (&) € ¢, is
fixed, then the uniformly bounded sequence of operators (Si) := (ej @ w) in
L(4g,4,) is not WR-bounded, whereas it is semi-R-bounded because ¢, has
type 2.

The following proposition sheds more light on the question of when the

equality SR(X,Y) = R(X,Y) holds.

Proposition 3.17. (i) If X is a Grothendieck space of cotype 2, then
SR(X,Y) = R(X,Y) for all Banach spaces Y .
(ii) If for some Banach space Y (thus also for Y = X) the equality
SR(X.,Y) = R(X,Y) holds, then X has cotype 2.
(iii) If X is a Hilbert space and Y is a Banach space of type 2, then

SR(X,Y) = R(X,Y).

Proof. (i) This follows from Theorem 3.16 and the characterization of
Grothendieck spaces of cotype 2 by £5(X) = £o®X = Rad(X).

(ii) We show that SR(X,Y) = R(X,Y) implies that Rad(X) is a linear
subspace of /5(X). Consider (z;) € Rad(X) and let 27 € X*, with ||z}| =1
and z}(z;) = ||z;]|. Put u; = z] ® y, where y € Y is fixed, with ||y|| = 1.
Then, (u;) € SR(X,Y) = (¢2(X), Rad(Y)) , because of
Jo N Siqw ()OI dt = Jo I 52, rit)ai (i)l dt =
Jo 1S mia; ()17 dt = S |23 (z)17 < X2 [=l? < (=)

|%2>, for
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all (z;) € £(X) C ¥l3(X). Hence, (u;) € (Rad(X),Rad(Y)). How-
ever, for all n € N, we also have >, ||z;||* = fol | S0 () ||| | dt =
Jo WE ri@)ay (za)y|? dt = [y | S0y ra@)ui(@:)|* dt. Therefore, it fol-
lows that > 22, |lz;]|* < sup,, fol >0 ri(t)ui(z;)||? dt < oo, showing that
Rad(X) < ¢5(X) is a norm < 1 embedding.

(iii) Refer to Remarks 3.4 and 3.6 below, where a more general case is

discussed. O

In the following few remarks, we analyse the relationship of /o (L£(X,Y))

to the other families of multiplier sequences.

Remark 3.4. (see for instance [12]) Let X be a Banach space of cotype
q , Y be a Banach space of type p for some 1 < p < q < oo and r such
that 1/r = 1/p —1/q. Then £,(L(X,Y)) C R(X,Y) C l(L(X,Y)). In

particular, if X has cotype 2 and'Y has type 2 then R(X,Y) = {5 (L(X,Y)).

Remark 3.5. If X and Y* have the Orlicz property, then loo(L(X,Y)) =

UR(X,Y).

Proof. By Proposition 3.5 we need to show that /- (£(X,Y)) CUR(X,Y).
The continuous inclusions £7(X) C /o(X) and £(Y*) C £o(Y™) corre-
spond to the Orlicz properties of X and Y*, respectively. Then, for (u,) €
loo(L(X,Y)), we have 375 [(unzr, yi)| < Zj—q Nurllllzellllyzll <

(supg [[ue ) (Coy el )2 (25 il <

C(supy, |lugl]) max || >p_; exzg| max || 37, exyill, where in the last step
ep==1 ep==1
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of the proof the existence of C' > 0 such that the inequality holds, is a direct

consequence of the inclusions mentioned in the first line of the proof. (|

Remark 3.6. Let Y be a Banach space of type p for some 1 < p < 2 and

let > 1 satisfy 1/r =1/p —1/2. Then
M(L(X,Y)) CSR(X,Y) Cleo(L(X,Y)).
In particular if Y has type 2, then SR(X,Y) = £ (L(X,Y)).

Proof. We prove the inclusion ¢ (£(X,Y)) C SR(X,Y). There exists
C > 0 such that (fol I Z?:l wi(z)r;(t)a;||? di)/? <
O lluj(aja) )7 < Cllalll (ug) - (7 laj|2) 2.

The other inclusion is immediate. O

Remark 3.7. Neither SR(X,Y) C WR(X,Y) nor WR(X,Y) C SR(X,Y)
is generally true. For instance, if Y has type 2, then SR(X,Y) = £ (L(X,Y))
and WR(X,Y) = R(X,Y) . So, WR(X,Y) C SR(X,Y) for all X in this
case. On the other hand, if we consider a GT space X space having cotype
2, then SR(X,Y) = R(X,Y) for all Y (cf Proposition 3.17). So, in this

case, SR(X,Y) C WR(X,Y) for all Y.
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