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Abstract. Inequalities of the form
∑∞

k=0
|f̂(mk)|

k+1
≤ C ‖f‖1 for all f ∈ H1, where {mk} are

special subsequences of natural numbers, are investigated in the vector-valued setting. It

is proved that Hardy’s inequality and the generalized Hardy inequality are equivalent for

vector valued Hardy spaces defined in terms of atoms and that they actually characterize

B-convexity. It is also shown that for 1 < q < ∞ and 0 < α < ∞ the space X = H(1, q, α)

consisting of analytic functions on the unit disc such that
∫ 1
0 (1 − r)qα−1Mq

1 (f, r)dr < ∞
happens to satisfy the previous inequality for vector valued functions in H1(X), defined

as the space of X-valued Bochner integrable functions on the torus whose negative Fourier

coefficients vanish, for the case {mk} = {2k} but not for {mk} = {ka} for any a ∈ N.

Introduction.

In this paper we shall deal with the vector-valued formulation of certain inequalities in
the theory of Hardy spaces. The first one, due to G. H. Hardy ([Du], page 48), reads

∞∑
n=0

|f̂(n)|
n + 1

≤ C ‖f‖1 for all f ∈ H1 (H)

where H1 = {f ∈ L1(T) : f̂(n) = 0 for n < 0} and, as usual, T stands for the unit circle
and f̂(n) =

∫ π

−π f(t)e−int dt2π for n ∈ Z.
Recently K. M. Dyakonov [D] considered the following generalized Hardy inequality:
There exists a constant C > 0 such that, for any increasing subsequence {nk} of N

satisfying

δ = inf
k∈N

k
nk+1 − nk

nk
> 0 (∗)

one has
∞∑
k=0

|f̂(nk)|
k + 1

≤ C(1 +
1
δ
) ‖f‖1 for all f ∈ H1. (GH)
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In particular, besides the classical Hardy’s inequality (H), we have the cases nk = ka

for any a ∈ N or nk = 2k (or any other lacunary sequence), these last cases being also a
consequence of Paley’s inequality (see [Du], page 104).

All of these facts can be regarded as special cases of multiplier inequalities between
H1 and l1. Recall that a sequence {mn} is an (H1 − l1)-multiplier, to be denoted by
{mn} ∈ (H1 − l1), if Tmn

(f) = (f̂(n)mn) defines a bounded operator from H1 into l1.
The (H1 − l1)-multipliers were characterized by C. Fefferman in the following way (see

[AS] and [SW,SS] for a proof ):

(H1 − l1) = {{mn} : sup
s≥1


∑
k≥1

(
(k+1)s∑
j=ks+1

|mj |)2



1/2

< ∞}. (∗∗)

The proof of this fundamental result depends upon the atomic decomposition of func-
tions in H1.

In [BP] the vector valued analogues of several classical inequalities in the theory of
Hardy spaces were investigated. Here we use several techniques from that paper and from
[B2] to deal with the properties corresponding to the vector valued version of (GH) and
some of its particular cases.

A complex Banach space X is said to satisfy the vector valued Hardy inequality (for
short X is an (HI)-space) if there exists a constant C > 0 such that

∞∑
n=0

‖f̂(n)‖
n + 1

≤ C ‖f‖1 for all f ∈ H1(X) (H)

where H1(X) = {f ∈ L1(T, X) : f̂(n) = 0 for n < 0}.
A complex Banach space X is said to have (H1 − l1)-Fourier type if for any {mn} ∈

(H1 − l1) there exists a constant C > 0 such that

∞∑
n=O

‖f̂(n)‖|mn| ≤ C ‖f‖1 for all f ∈ H1(X). (F )

Given 2 ≤ q < ∞ a complex Banach space X is said to be a q-Paley space if there exists
a constant C > 0 such that

(
∞∑
k=0

‖f̂(2k)‖q)1/q ≤ C ‖f‖1 for all f ∈ H1(X). (P )q

The reader is referred to [BP] for examples of spaces with or without these properties
and for their connection with other well known properties in the theory of Banach spaces.

Let us now introduce the vector-valued extension of (GH) and some of its particular
cases.
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Definition 1.1. Let a ∈ N. A complex Banach space X is said to satisfy the vector valued
Hardy inequality for {nk} = {ka} (for short X is an (HI)a-space) if

∞∑
n=0

‖f̂(na)‖
n + 1

≤ C ‖f‖1 for all f ∈ H1(X). (H)a

Definition 1.2. A complex Banach space X is said to satisfy the vector valued Hardy
inequality for nk = 2k (for short X is a (HI)lac-space) if there exists a constant C > 0
such that ∞∑

n=0

‖f̂(2n)‖
n + 1

≤ C ‖f‖1 for all f ∈ H1(X). (H)lac

Definition 1.3. A complex Banach space X is said to verify generalized vector valued
Hardy inequality (for short X is an (GHI)-space) if there exists C > 0 such that for any
{nk} verifying (*)

∞∑
k=0

‖f̂(nk)‖
k + 1

≤ C (1 +
1
δ
)‖f‖1 for all f ∈ H1(X). (GH)

Using (**) it is easy to see that any space of (H1 − l1)-Fourier type must be a 2-Paley
(hence q-Paley for any q ≥ 2) and an (HI)-space (see [BP]).

Actually repeating the proof in [D] one sees that any space of (H1 − l1)-Fourier type
must be an (GHI)-space.

It should be noted that now the use of vector-valued atoms is still at our disposal but
the spaces H1(X) and H1

at(X) (see definition below) are not isomorphic. The aim of this
paper is to make it clear that actually one can get the generalized Hardy inequality for
H1
at(X) using only the classical Hardy inequality for H1

at(X).
Let me now recall the following definitions (see [B1], [Bo1])

Definition 1.4. Given a complex Banach space X, we denote by H1
max(X) the space of

functions f ∈ L1(T, X) such that P ∗(f)(t) = sup
0<r<1

‖Pr ∗ f(t)‖ ∈ L1(T) where Pr stands

for the Poisson kernel.
We endow this space with the norm ‖f‖max,X = ‖P ∗(f)‖1.

Definition 1.5. Given a complex Banach space X, we denote by H1
at(X) the space of

functions f ∈ L1(T, X) such that f =
∑

n∈N
λnan (in the sense of distributions) where∑

n∈N
|λn| < ∞ and an are X-valued atoms, that is an is either a constant function or it

has the following three properties:
(i) an ∈ L∞(T, X) and supp(an) ⊂ In for some interval In,
(ii)

∫
In

an(t)dt = 0,

(iii) ‖an‖∞ ≤ 1
|In| where |In| stands for the normalized Lebesgue measure on T.

As usual the norm is given by ‖f‖at,X = inf{
∑
n∈N

|λn|} where the infimum is taken over

all possible decompositions.
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The facts that H1
max(X) = H1

at(X) and ‖f‖at,X ∼ ‖f‖max,X can be established by
repeating the scalar-valued proof in [CW].

It is also well known (see [B1]) that H1(X) ⊂ H1
max(X) but they are not the same space

unless X has the so-called UMD property.
Because of this, it makes sense to consider the analogs of (H), (H)a and (H)lac with

H1
at(X) in place of H1(X). The arising “atomic” properties, denoted by (H)at, (H)ata , (H)atlac,

are stronger than their respective counterparts discussed above.
Let us now recall some fundamental notions in geometry of Banach spaces to be used

in the sequel. Although they are usually defined in terms of the Rademacher functions we
shall replace these by lacunary sequences ei2

nt, which gives an equivalent definition ([MPi,
Pi ]).

Given 1 ≤ p ≤ 2 ≤ q ≤ ∞, a Banach space X has cotype q (respectively type p) if there
exists a constant C > 0 such that for all N ∈ N and for all x0, x1, x2, ...xN ∈ X one has

(
N∑
k=0

||xk||q
) 1

q

≤ C||
N∑
k=0

xke
2kit||1

(respectively

||
N∑
k=0

xke
2kit||1 ≤ C

(
N∑
k=0

||xk||p
) 1

p

.)

A Banach space is called B-convex if it has type > 1.
Given a complex Banach space X and a function f(z) =

∑∞
n=0 xnz

n with xn ∈ X we
write P(f) =

∑∞
n=0 x2nz2n

for the vector-valued version of the Paley projection acting on
f .

It is well known that X is B-convex space if and only if the Paley projection bounded on
Hp(X) for some (or any) 1 < p < ∞. This can be extended to p = 1. It is a result due to
Pisier (see [BP], Proposition 4.2) that X is B-convex if and only if ‖P(f)‖at,X ≤ C‖f‖at,X
for all f ∈ H1

at(X).

Definition 1.6. We say that X satisfies the Paley projection property ( for short X ∈
(PP )) if the Paley projection is bounded in H1(X).

In [L-PP] this property was studied for the case of Schatten classes.

Remark 1.1. Observe that, since X = c0 /∈ (PP ), then the inclusion X ∈ (PP ) implies
that X has finite cotype.

Remark 1.2. If X ∈ (PP ) and X has cotype q for some 2 ≤ q < ∞ then X ∈ (P )q.
Combining both remarks one easily gets the following result.

Proposition 1.1. If X has the Paley projection property then it also has q-Paley property
for some 2 ≤ q < ∞ and satisfies the Hardy inequality for nk = 2k.

We shall be also using the notion of Fourier-type introduced by J. Peetre ([Pee]). Let
us recall that for 1 ≤ p ≤ 2, a Banach space X is said to have Fourier type p if there exists
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a constant C > 0 such that( ∞∑
n=−∞

||f̂(n)||p′
) 1

p′

≤ C||f ||Lp(X) for all f ∈ Lp(T, X).

It is not hard to see that X has Fourier type p if and only if X∗ has Fourier type p.
Typical examples are the spaces Lr for p ≤ r ≤ p′ or those obtained by interpolation
between any Banach space and a Hilbert space.

Let us now state the fundamental theorem, due to J. Bourgain, which connects the last
two properties.

Theorem A. ( [Bo2, Bo3]) Let X be a complex Banach space. Then X has Fourier type
bigger than 1 if and only if Xis B-convex.

Throughout the paper Lp(µ, Y ) (respectively Lp(Y )) stands for the space of Y -valued
strongly measurable functions on a σ-finite measure space (Ω,Σ, µ) (respectively (T,B, dt2π ))
such that ‖f‖ ∈ Lp(µ) and we denote by Hp(Y ) the subspace of Lp(Y ) consisting of
functions such that f̂(n) =

∫ π

−π f(t)e−int dt2π = 0 for n < 0. We write Hp(D, X) for
the space of analytic functions f from D into X such that sup

0<r<1
Mp(f, r) < ∞ where

Mp,X(f, r) = (
∫ π

−π ‖f(reit)‖p dt2π )
1
p .

Clearly if f ∈ Hp(X) then f(reit) = f ∗ Pr(t) ∈ Hp(D, X), but in general the space
Hp(D, X) can not be identified with Hp(X) or, in other words, the functions in Hp(D, X)
do not necessarily have radial boundary limits.

A complex Banach space X for which any function in H∞(D, X) has radial boundary
limits a.e. is said to have the analytic Radon-Nikodym property, for short X ∈ (ARNP ).
This was first introduced in [BuD] where it was shown, among other things, that L1(µ) ∈
(ARNP ).

2.- Hardy type inequalities for H1(X).

We shall first show an extension to the vector valued setting of one inequality by Hardy
and Littlewood (see [Du, HL]). Our proof follows ideas in [F] and uses the Marcinkiewicz
interpolation theorem.

Theorem 2.1. Let X be a Banach space and let 1 < p < ∞. If f ∈ H1(X) then∫ 1

0

(1 − r)−
1
p Mp,X(f, r)dr ≤ C||f ||1.

Proof. Let us first recall that if 0 < p ≤ q ≤ ∞ and g is an X-valued analytic function
then (see [Du, page 84])

(2.1) Mq,X(g, r2) ≤ (1 − r)
1
q − 1

p Mp,X(g, r).

To prove the result let us first fix p1 < 1 < p2 < p. For i = 1, 2, using (2.1) one has

(1 − r)−
1
p Mp,X(f, r) ≤ (1 − r)−

1
pi ||f ||Hpi (D,X).
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Hence

|{r ∈ [0, 1] : (1 − r)−
1
p Mp,X(f, r) > λ}| ≤ C

||f ||pi

Hpi (D,X)

λpi
.

This actually gives that
f → F (r, eit) = (1 − r)−

1
p f(reit)

defines a bounded operator from Hpi(D, X) into Lpi,∞ (dr, Lp(X)) where Lpi,∞ (dr, Lp(X))
stands for the corresponding vector valued Lorenz space.

Now using the standard real method of interpolation for θ ∈ (0, 1) such that 1−θ
p1

+ θ
p2

= 1
we have (see [BL])

(
Lp1,∞(

dr, Lp(X)
)
, Lp2,∞(

dr, Lp(X)
))

θ,1
= L1

(
dr, Lp(X)

)
.

On the other hand, since the Banach space X is the same for both indices, it is not difficult
to extend the scalar-valued proof (see [BX] and references there) to get

(Hp1(D, X), Hp2(D, X))θ,1 = H1(D, X).

Hence the operator is bounded from H1(X) to L1 (dr, Lp(X)), that is

∫ 1

0

(1 − r)−
1
p Mp(f, r)dr ≤ C||f ||1. �

Corollary 2.1. ([BP], [Bo3]) If X is a B-convex space then X satisfies the vector valued
Hardy inequality, i.e. ∑

n=0

||xn||
n + 1

≤ C||
∞∑
n=0

xne
int||1.

Proof. From Theorem A we have that X has Fourier type p for some p > 1. Then applying
Hölder’s inequality and Theorem 2.1 for such a p, one has

m∑
n=0

||xn||
n + 1

=
∫ 1

0

m∑
n=0

||xn||rndr

≤
∫ 1

0

(
m∑
n=0

||xn||p
′
rnp

′

) 1
p′ (

m∑
n=0

rnp

) 1
p

dr

≤ C

∫ 1

0

(1 − r)−
1
p Mp,X(f, r)dr ≤ C||f ||1. �

The following is a simple modification of a proof in [B2] regarding Paley spaces (corre-
sponding to 2-Paley property).



HARDY INEQUALITY 7

Lemma 2.1. Let 2 ≤ q < ∞ and 1 ≤ p ≤ q . If Y is a q-Paley space then so is Lp(µ, Y ).

Proof. Put r =
(
q
p

)′
= q

q−p . Let us take f(t) =
∑

n≥0 xn eint where xn ∈ Lp(µ, Y ). Then
we have


∑
k≥0

‖x2k‖qLp(µ,Y )




1/q

=


∑
k≥0

(∫
Ω

‖x2k(w)‖pY dµ(w)
)q/p




1/q

= sup∑
|αk|r=1


∑
k≥0

∫
Ω

‖x2k(w)‖pY αk dµ(w)




1/p

≤


∫

Ω


∑
k≥0

‖x2k(w)‖qY



p/q

dµ(w)




1/p

≤ C


∫

Ω


 1

2π

∫ π

−π
‖

∑
n≥0

xn(w)eint‖Y dt



p

dµ(w)




1/p

= C sup
‖h‖p′=1

∫
Ω

∫ π

−π
‖

∑
n≥0

xn(w)eint‖Y h(w)dt dµ(w)

≤ C

∫ π

−π
‖

∑
n≥0

xn(w)eint‖Lp(µ,Y )dt

= C

∫ π

−π
‖f(t)‖Lp(µ,Y )dt. �

Theorem 2.2. Let 2 ≤ q < ∞. Then Lp1(µ,Lp2(ν)) is a q-Paley space if and only if
1 ≤ p1, p2 ≤ q.

Proof. It is clear from the definition that a q-Paley space must have cotype q. Now the
cotype q condition forces the values of p1, p2 to be in the required range.

To get the converse, observe that the classical Paley inequality together with Lemma
2.1 for Y = C gives that Lp2 is a q-Paley space for 1 ≤ p2 ≤ q. Now apply Lemma 2.1
again. �

Lemma 2.2. Let 1 ≤ p < ∞ and X ∈ (PP ). Then Lp(µ,X) ∈ (PP ).
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Proof. Using Kahane’s inequality we can write

‖
∞∑
n=0

x2nz2n‖H1(Lp(µ,X)) ∼ (
∫

Ω

‖
∞∑
n=0

x2n(ω)z2n‖pH1(X)dµ(ω))
1
p

≤ C(
∫

Ω

‖
∞∑
n=0

xn(ω)zn‖pH1(X)dµ(ω))
1
p

≤ C

∫ π

−π
(
∫

Ω

‖
∞∑
n=0

xn(ω)eint‖pXdµ(ω))
1
p
dt

2π
. �

Theorem 2.3. Let 1 ≤ p, q ≤ ∞. Then Lp(µ,Lq(ν)) is an (HI)lac-space if and only if
1 ≤ p, q < ∞
Proof. Observe first that c0 is not an (HI)lac-space (take the canonical example fN (z) =∑N

n=1 enz
n to check this fact). Consequently, if X is an (HI)lac-space then it must have

finite cotype.
Assume that Lp(µ,Lq(ν)) is a (HI)lac-space. Now the cotype condition forces the values

of p, q to be finite.
To get the converse, observe that the classical Paley inequality gives that Y = C ∈ (PP ).

Now, applying Lemma 2.2 twice, one has that Lp(µ,Lq(ν)) ∈ (PP ) for 1 ≤ p, q < ∞.
Finally apply Proposition 1.1 to finish the proof. �

Now we shall consider some classes of analytic functions that will serve us to get exam-
ples of spaces satisfying (HI)lac but failing to satisfy (HI)a. The reader is referred to [B2]
for the fact that lp(H1) fails to satisfy (HI) for 1 < p ≤ 2 but it is a 2-Paley space.

Let us recall that, given 1 ≤ p, q ≤ ∞ and 0 < α < ∞, H(p, q, α) stands for the space
of analytic functions on the unit disc such that

(
∫ 1

0

(1 − r)αq−1Mq
p (f, r)dr)

1
q = ‖f‖p,q,α < ∞.

Theorem 2.4. Let 1 < q < ∞, 0 < α < ∞ and a ∈ N. Then H(1, q, α) is an (HI)lac-
space but fails to be an (HI)a-space.

Proof. That H(1, q, α) is an (HI)lac-space follows from Theorem 2.3, since

‖f‖1,q,α = ‖g‖Lq( dr
1−r ,L

1(T))

where g(r, θ) = (1 − r)αf(reiθ).
To see that it does not satisfy (H)a, let us consider the function

φ(z) =
1

(1 − z)α+1

z

log 1
1−z

=
∞∑
n=0

anz
n.
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It is known (see [L],page 93-96) that

(2.2) an ∼ nα

log n
(n → ∞)

and

(2.3) M1(φ, r) ∼
(1 − r)−α

log 1
1−r

(r → 1).

Consider now f(z)(w) = φ(zw) =
∑∞

n=0 an wnzn and write xn(w) = anw
n.

Since we have
‖xn‖1,q,α = |an|‖wn‖1,q,α = |an|B

1
q (αq, qn + 1)

then, (2.2) together with the estimate B(β,m) ∼ m−β as m → ∞, give

(2.4) ‖xn‖1,q,α ∼ 1
log(n)

This allows us to say that f(z) =
∑∞

n=0 xn zn is an analytic function on the open unit disc
with values in H(1, q, α).

Using now (2.3) and the assumption q > 1 we have that

‖f(z)‖1,q,α = (
∫ 1

0

(1 − r)αq−1Mq
1 (φ, |z|r)dr) 1

q

≤ C(
∫ 1

0

(1 − r)αq−1 (1 − r)−αq

logq 1
1−r

dr)
1
q

≤ C(
∫ 1

0

1
(1 − r) logq 1

1−r
dr)

1
q < ∞.

Therefore f ∈ H∞(D, H(1, q, α)). Using the fact that H(1, q, α) has the analytic Radon-
Nikodym property (recall that Lq( dr

1−r , L
1(T)) ∈ (ARNP )) we can show that the radial

limits exist almost everywhere and hence, in particular f ∈ H1(H(1, q, α)).
On the other hand, from (2.4) we have

∑∞
n=0

‖xna‖1,q,α

n+1 = ∞. �.

3.- Generalized Hardy inequalities for H1
at(X)

Let us start by showing the differences appearing when dealing with the vector-valued
versions H1

at(X) and H1(X).
It follows rather easily, using Fubini’s theorem and the scalar-valued result by K.

Dyakonov, that L1(µ) verifies the generalized Hardy’s inequality, i.e. L1(µ) ∈ (GHI).
Actually the same argument shows that L1(µ) even has (H1 − l1)-Fourier type (see [BP]).

Nevertheless L1(T) fails to have (HI)ata for any value of a ∈ N as the following propo-
sition shows.
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Proposition 3.1. Let a ∈ N. Then L1(T) is not an (HI)ata -space.

Proof. It is well known (see [Zy]) that φ(t) =
∑

|n|≥2
eint

log(|n|) ∈ L1(T).
Now consider f : T → L1 given by f(t)(s) = φ(ei(t+s)). It is clear that f ∈ L∞(L1) and

that

P ∗(f)(t) = sup
0<r<1

∫ π

−π
|
∑
n 	=0

r|n|ein(t+s)

log(|n|) | ds
2π

≤ ‖φ‖1.

Therefore, in particular, f ∈ H1
max(L

1).
On the other hand f̂(n)(t) = 1

log(n)e
int for n ∈ N, which gives

∑
n∈N

‖f̂(ka)‖1
k = ∞ for

all a ∈ N. �
Let us now prove a couple of lemmas to be used later on.

Lemma 3.1. Let f ∈ L1(X) and let J be an interval in Z. If g(t) = f(t)(1 − e−it) then

(3.1) sup
j∈J

‖f̂(j)‖ ≤ 1
card(J)

∑
j∈J

‖f̂(j)‖ +
∑
j∈J

‖ĝ(j)‖.

Proof. Let us fix j ∈ J . For any k ∈ J we can write

‖f̂(j)‖ ≤ ‖f̂(k)‖ + ‖f̂(k) − f̂(j)‖

≤ ‖f̂(k)‖ +
max(J)−1∑
l=min(J)

‖f̂(l) − f̂(l + 1)‖.

Averaging over k ∈ J we get

‖f̂(j)‖ ≤ 1
card(J)

∑
k∈J

‖f̂(k)‖ +
max(J)−1∑
l=min(J)

‖f̂(l) − f̂(l + 1)‖.

Finally, taking into account that f̂(l) − f̂(l + 1) = ĝ(l), we get (3.1). �
Lemma 3.2. Let M ∈ N and let {nk} be an increasing sequence in N ∪ {0} such that
there exists a constant A > 0 for which

nk − nk−1

nk
≥ A

k
(k ∈ N).

Then for any l ∈ N

(3.2)
∑

{k:lM<nk≤lM+M}

1
k
≤ (1 +

1
A

)
1
l
.

Proof. For a fixed l ∈ N we may assume that there exists nk ∈ (lM, lM + M ]. Let kl be
the smallest index with this property, so that nkl−1 ≤ lM < nkl

.



HARDY INEQUALITY 11

Observe now that

∑
{k:lM<nk≤lM+M}

1
k
≤ 1

kl
+

1
A

kl+1∑
k=kl+1

nk − nk−1

nk

≤ 1
kl

+
1

Ankl

(nkl+1 − nkl
).

Since kl ≥ l, nkl
≥ lM and nkl+1 − nkl

≤ M we get (3.2). �
Theorem 3.1. Let X be a Banach space. The following statements are equivalent:

(1) There exists a constant C > 0 such that

∞∑
n=1

‖f̂(n)‖
n

≤ C ‖f‖at,X for all f ∈ H1
at(X).

(2) For any increasing sequence {nk} in N ∪ {0} satisfying that

(3.3)
nk − nk−1

nk
≥ A

k
(k ∈ N)

for some A > 0 there exists a constant C > 0 such that

∞∑
k=1

‖f̂(nk)‖
k

≤ C(1 +
1
A

) ‖f‖at,X for all f ∈ H1
at(X)

Proof. Obviously (2) implies (1).
To see that (1) implies (2) let us fix a sequence {nk} satisfying (3.3). It suffices to show

that there exists a constant C > 0 such that

∞∑
k=1

‖â(nk)‖
k

≤ C(1 +
1
A

)

for any M ∈ N and any X-valued atom a supported on (− π
M , π

M ).
Take such an X-atom, say a. Given n ∈ N, using that a has zero mean, we have

(3.4) ‖â(n)‖ = ‖
∫ π

M

−π
M

a(t)(e−int − 1)
dt

2π
‖ ≤ n‖a‖∞

∫ π
M

−π
M

|t| dt
2π

≤ C
n

M
.

Let us write F = {k : nk ≤ M} and G = {k : nk > M}.
On the one hand

(3.5)
∑
k∈F

‖â(nk)‖
k

≤ C

M

∑
k∈F

nk
k

≤ C

MA

∑
k∈F

(nk − nk−1) ≤
C

A
.
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On the other hand, denoting Gl = {k : lM < j ≤ lM + M}, we have

∑
k∈G

‖â(nk)‖
k

=
∞∑
l=1

∑
k∈Gl

‖ank
‖

k
≤

∞∑
l=1

sup
lM<j≤lM+M

‖â(j)‖
∑
k∈Gl

1
k
.

Now applying Lemmas 3.1 and 3.2 and denoting b1(t) = a(t)(1 − e−it) we have

∑
k∈G

‖â(nk)‖
k

≤ (1 +
1
A

)
∞∑
l=1

1
lM

lM+M∑
j=lM+1

‖â(j)‖ + (1 +
1
A

)
∞∑
l=1

1
l

lM+M∑
j=lM+1

‖b̂1(j)‖

≤ (1 +
1
A

)
∞∑
l=1

lM+M∑
j=lM+1

‖â(j)‖
j

+ (1 +
1
A

)
∞∑
l=1

lM+M∑
j=lM+1

‖Mb̂1(j)‖
j

≤ (1 +
1
A

)
∞∑

j=M+1

‖â(j)‖
j

+ (1 +
1
A

)
∞∑

j=M+1

‖Mb̂1(j)‖
j

.

To finish the proof note that b(t) = M(b1(t) −
∫ π

M
−π
M

b1(t) dt2π ) is also an X-valued atom

and b̂(j) = Mb̂1(j).
Therefore applying Hardy’s inequality to a and b we get∑

k∈G

‖â(nk)‖
k

≤ 2(1 +
1
A

)C.

We now finish the proof by combining this last estimate with the one in (3.5). �
Corollary 3.1. (see [BP, Bo3]) Let X be a Banach space. The following statements are
equivalent.

(1) X is B-convex.
(2) X is an (HI)at-space.
(3) X is an (GHI)at-space.

Proof. (1) ⇒ (2). As in the previous theorem it suffices to show that there exists a constant
C > 0 such that

∞∑
k=1

‖â(n)‖
n

≤ C

for any M ∈ N and any X-valued atom a supported at (− π
M , π

M ).
Using Theorem A we may assume that X has Fourier type p > 1. It is clear that if a is

such an X-valued atom then ‖a‖p ≤ M
1
p′ . Hence, in view of (3.4),

∞∑
n=1

‖â(n)‖
n

=
M∑
n=1

‖â(n)‖
n

+
∞∑

n=M+1

‖â(n)‖
n

≤ C + (
∞∑

n=M+1

‖â(n)‖p′)
1
p′ (

∞∑
n=M+1

1
np

)
1
p

≤ C + C‖a‖p
1

M
1
p′

≤ C.
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(2) ⇒ (3). It follows from Theorem 3.1.
(3) ⇒ (1). By a finite representability argument (see Prop. 2.6 in [BP]) it is enough to

show that L1 fails (GHI)at. This now follows from Proposition 3.1. �

As a corollary of our previous theorems we get some improvements of results by H.
König and V. Tarieladze (see [K] and Prop. 3 in [T]).

Corollary 3.2. Let X be a B-convex Banach space and let a ∈ N. If f ∈ ∪p>1L
p(X)

with f̂(0) = 0 and F (t) =
∫ t

0
f(s) ds2π then

∑
n∈Z

na−1‖F̂ (na)‖ < ∞.

Proof. Since f ∈ H1
at(X) and ‖f̂(n)‖ = |n|‖F̂ (n)‖ we can apply Corollary 3.1 for nk = ka

to the function f . �
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