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Abstract

Given three Banach spaces X, Y and Z and a bounded bilinear map B : X×Y → Z,
a sequence xxx = (xn)n ⊆ X is called B-absolutely summable if

∑∞
n=1 ‖B(xn, y)‖Z <

∞ for any y ∈ Y . Connections of this space with `1
weak(X) are presented. A sequence

xxx = (xn)n ⊆ X is called B-unconditionally summable if
∑∞

n=1 |〈B(xn, y), z∗〉| < ∞
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for any y ∈ Y and z∗ ∈ Z∗ and for any M ⊆ N there exists xM ∈ X for which∑
n∈M 〈B(xn, y), z∗〉 = 〈B(xM , y), z∗〉 for all y ∈ Y and z∗ ∈ Z∗. A bilinear version

of Orlicz-Pettis theorem is given in this setting and some applications are presented.

Key words: 40F05 Absolute and strong summability, 46A45 Sequence spaces,
46B45 Banach sequence spaces.

1 Notation and preliminaries.

Throughout this paper X, Y and Z denote Banach spaces over K (R or C) and
B : X × Y → Z is a bounded bilinear map. As usual L (X, Y ) denotes the
set consisting of all linear and continuous maps T defined from X into Y , BX

denotes the closed unit ball of X and X∗ the topological dual X∗ = L (X,K).

We use the notations `1(X) and `1weak(X) for the spaces of all sequences xxx =
(xn)n ⊆ X such that

‖xxx‖`1(X) =
∥∥∥(‖xn‖X)n

∥∥∥
`1

=
∞∑

n=1

‖xn‖X <∞,

‖xxx‖`1
weak

(X) = sup
x∗∈BX∗

∥∥∥(〈xn, x
∗〉)n

∥∥∥
`1

= sup
x∗∈BX∗

∞∑
n=1

|〈xn, x
∗〉| <∞.

The sequences in `1(X) and `1weak(X) are called absolutely summable and wea-
kly absolutely summable sequences respectively.

A sequence xxx = (xn)n is called unconditionally summable if the series
∑∞

n=1 xn

is unconditionally convergent, i.e.
∑∞

n=1 xσ(n) is convergent for each permuta-
tion σ : N → N. Among other things —see (11)— the unconditional summa-
bility of a sequence is equivalent to

(a)
∑∞

n=1 εnxn converges for any choice of εn = ±1.
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(b)
∑∞

n=1 xnk
converges for any increasing (nk)k ⊆ N.

(c) For any ε > 0 there exists Nε ∈ N so that ‖∑k∈M xk‖ < ε whenever
minM ≥ Nε.

The set consisting of these sequences will be denoted by UC(X). It is well
known the fact that if X is a normed space:

X is complete if and only if `1(X) ⊆ UC(X) .

A sequence xxx = (xn)n ⊆ X is called weakly unconditionally summable if the
series

∑∞
n=1 xσ(n) is weakly convergent for each permutation σ : N→ N. Equi-

valently if we have that xxx ∈ `1weak(X) and for all M ⊆ N there is an xM ∈ X
such that ∑

n∈M

〈xn, x
∗〉 = 〈xM , x

∗〉, for all x∗ ∈ X∗.

The set consisting of those sequences will be denoted by wUC(X).

Of course we have the following chain of inclusions for any Banach space X:

`1(X) ⊆ UC(X) ⊆ wUC(X) ⊆ `1weak(X).

Clearly for finite dimensional Banach spaces X one has `1(X) = `1weak(X)
but, in the general, both spaces are different. Actually the so called weak
Dvoretzky-Rogers theorem —see (11, p. 50)— asserts that

A Banach space X has finite dimension if and only if `1(X) = `1weak(X).

In fact using the Dvoretzky-Rogers theorem —see for instance (11, p. 2)—
which says that in each infinite dimensional Banach space X for each (λn) ∈ `2
it is possible to find sequences xxx = (xn)n ⊆ X which are unconditionally
summable and ‖xn‖ = λn one obtains that

X is finite dimensional if and only if `1(X) = UC(X).

On the other hand, in general, `1weak(X) and UC(X) are different. For instante
take X = c0 and xxx = (en)n ⊆ c0 —as usual en is the canonical basis— which is
clearly in `1weak(c0), but xxx /∈ UC(c0) since limn ‖en‖c0 = 1 6= 0. Actually we have
the following important result that characterizes when `1weak(X) = UC(X).
This goes back to 1958 and it is due to Bessaga and Pelczyński —see for
instance (11, p. 22)—:

X does not contain copies of c0 if and only `1weak(X) = UC(X).

The classical Orlicz-Pettis theorem —see for instance (11, p. 7)— states that
weakly unconditional convergence is equivalent to unconditional convergence.
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wUC(X) = UC(X) for any Banach space X.

The Orlicz-Pettis theorem is one of the most celebrated theorems concerning
series in Banach spaces. It has been used in many different situations in func-
tional analysis —see for instance (10) for applications in integration theory—.
The main objective of this paper is to give a more general version of the Orlicz-
Pettis theorem in the setting summability with respect to bounded bilinear
maps.

We plan to develop the previous notions of summability in a general setting
adapted to a given bounded bilinear map B : X × Y → Z where Y and Z
are also Banach spaces. We say that a vector sequence xxx = (xn)n ⊆ X is
B-absolutely summable if the Z-valued sequence (B(xn, y))n belongs to `1(Z)
for all y ∈ Y . The set of this sequences will be denoted by `1B(X).

We need to impose some conditions on the bilinear map B : X × Y → Z for
the basic theory to be developed. Let us denote

φB : X → L (Y, Z), given by φB(x) = B(x, ·) = Bx.

We say that B is admissible if φB is injective. This assumption gives that

‖xxx‖`1B(X) = sup
y∈BY

∥∥∥(B(xn, y))n

∥∥∥
`1(Z)

is a norm in the space `1B(X). In fact if there exists k > 0 such that

‖x‖ ≤ k‖Bx‖L (Y,Z), for all x ∈ X,

the space X is said to be B-normed. This concept is basic to get, among other
things, that `1B(X) is complete. These notions have recently been considered
when handling problems in integration with respect to a bounded bilinear
map —see (1; 2)— or developing a theory of Fourier Analysis with respect to
a bounded bilinear map —see (3)—.

We say that a sequence xxx = (xn)n ⊆ X is B-unconditionally summable if for
all y ∈ Y and z∗ ∈ Z∗ we have that (〈B(xn, y), z

∗〉)n ∈ `1 and for all M ⊆ N
there is xM ∈ X such that∑

n∈M

〈B(xn, y), z
∗〉 = 〈B(xM , y), z

∗〉, for all y ∈ Y, z∗ ∈ Z∗.

We use the notation B−UC(X) for the space of B-unconditionally summable
sequences.

From this point of view we have that, using the notation B,D and D1, for the
standard bilinear maps

B : X ×K→ X, given by B(x, α) = αx, (1)
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D : X ×X∗ → K, given by D(x, x∗) = 〈x, x∗〉, (2)

D1 : X∗ ×X → K, given by D1(x
∗, x) = 〈x, x∗〉, (3)

the spaces become

`1B(X) = `1(X), `1D(X) = `1weak(X) and `1D1
(X∗) = `1weak∗(X

∗).

Note that a sequence in `1D1
(X∗) is always D1-unconditionally summable, i.e.

`1D1
(X∗) = D1 − UC(X∗). However, by considering X = `∞ and the standard

canonical sequence xxx = (en)n one sees that xxx = (en)n is D1-unconditionally
summable but not unconditionally summable. Hence Orlicz-Pettis theorem
does not hold for B = D1.

On the other hand both B-unconditional summability and D-unconditional
summability correspond to the weak unconditional summability. Then the
classical Orlicz-Pettis theorem can be rewritten as:

D − UC(X) = UC(X) or B − UC(X) = UC(X) for any Banach space X.

The question that we would like to address is the validity of Orlicz-Pettis
theorem for bilinear maps: Given B : X × Y → Z an admissible bounded
bilinear map,

Under which conditions does one have B − UC(X) = UC(X)?

The key point to understand the difference between D and D1 in the corres-
ponding version of the Orlicz-Pettis theorem is the observation that X embeds
not only into L (X∗,K) but actually into the weak∗-norm continuous opera-
tors in L (X∗,K). So to present our main result we need then to consider
the Banach space W ∗(X∗, Y ) consisting of all bounded linear maps from X∗

into Y that are weak∗-norm continuous. The reader may consult to (12) for
information on this space.

We are now ready to state the main result of the paper.

Theorem 1 (Bilinear Orlicz-Pettis) Let B : X × Y ∗ → Z be a bounded
bilinear map such that

(a) X is B-normed,
(b) Y is w∗-sqcu, i.e., BY ∗ is weak∗ sequentially compact,
(c) φB(X) ⊆ W ∗(Y ∗, Z).

Then every B-unconditionally summable sequence in X is unconditionally
summable.

The paper consists of two more sections: In the first one we introduce the
spaces under consideration, present some particular bilinear maps and deal
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with the inclusions between `1B(X) and `1weak(X). In particular, it is shown
that the inclusion `1B(X) ⊆ `1weak(X) holds if and only if X is B-normed and
the inclusion `1weak(X) ⊆ `1B(X) is described in terms of absolutely summing
operators. The last section contains the proof of the bilinear version of Orlicz-
Pettis theorem and provides some applications.

2 BBB-summability of sequences.

2.1. Absolute summability with respect to the bilinear maps.

We start this section with the definitions of the spaces to be used throughout
the paper.

Let X, Y and Z be Banach spaces and B : X ×Y → Z be a bounded bilinear
map. Denote

φB : X → L (Y, Z), given by φB(x) = B(x, ·) = Bx, (4)

and
ψB : Y → L (X,Z), given by ψB(y) = B(·, y) = By. (5)

We also denote B∗ the adjoint bilinear map

B∗ : X × Z∗ → Y ∗, given by 〈B∗(x, z∗), y〉 = 〈B(x, y), z∗〉. (6)

In other words B∗
x = (Bx)

∗.

Definition 2 Let B : X × Y → Z be a bounded bilinear map. We say that
a vector sequence xxx = (xn)n ⊆ X is B-summable if the Z-valued sequence
(B(xn, y))n belongs to `1(Z) for all y ∈ Y . The set of these sequences will be
denoted by `1B(X) and we write

‖xxx‖`1B(X) = sup
y∈BY

∥∥∥(B(xn, y))n

∥∥∥
`1(Z)

= sup
y∈BY

∞∑
n=1

‖B(xn, y)‖Z . (7)

Remark 3 One might think on defining `1B,weak(X) as the vector space consis-
ting of all sequences xxx = (xn)n ⊆ X verifying that the (B(xn, y))n ∈ `1weak(Z)
for all y ∈ Y . That is defined by the condition

∞∑
n=1

|〈B(xn, y), z
∗〉| <∞, for all y ∈ Y, z∗ ∈ Z∗.

However this notion is actually the same as above for a different bilinear map.
Indeed, for any B : X × Y → Z we can define a bounded bilinear map

B̃ : X × (Y ⊗̂πZ
∗) → K, given by B̃(x, y ⊗ z∗) = 〈B(x, y), z∗〉,
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where Y ⊗̂πZ
∗ stands for the projective tensor norm. Clearly `1B,weak(X) =

`1
B̃

(X).

Note that for x∗0 ∈ X∗ \ {0}, we can define the bounded bilinear map

B: X ×X → K

(x1, x2) 7→ x∗0(x
1)x∗0(x

2) .

Taking xxx = (xn)n ⊆ ker(x∗0) then B(xn, x) = 0 for all x ∈ X and n ∈ N. Thus
‖xxx‖`1B(X) = 0 but xxx 6= 0.

This difficulty leads us to restrict ourselves to the following class of bilinear
maps.

Definition 4 We say that a bounded bilinear map B : X × Y → Z is admis-
sible for X if

B(x, y) = 0 for all y ∈ Y implies that x = 0.

Proposition 5 Let B : X × Y → Z be a bounded bilinear map. The space
(`1(X), ‖ · ‖`1B(X)) is normed if and only if B : X × Y → Z is admissible

Proof. Given xxx = (xn)n ∈ `1B(X) we define the linear operator

TB,xxx: Y → `1(Z)

y 7→ (B(xn, y))n .
(8)

Observe first that this operator has closed graph. Let (yk, TB,xxx(yk))k be a
convergent sequence in Y × `1(Z) and write (y,zzz) for its limit. The continuity
of B provides that, for every n ∈ N, the sequence (B(xn, yk))k converges to
B(xn, y) in Z. Thus, for each n ∈ N,

‖zn − TB,xxx(y)n‖Z ≤‖zn −B(xn, yk)‖Z + ‖B(xn, yk)− TB,xxx(y)n‖Z

≤ (
∞∑

n=1

‖zn −B(xn, yk)‖Z) + ‖B(xn, yk)−B(xn, y)‖Z

≤‖TB,xxx(yk)− zzz‖`1(Z) + ‖B‖ · ‖xn‖X‖yk − y‖Y .

Taking limits when k →∞ we obtain that TB,xxx has closed graph. Hence using
Closed Graph theorem the operator defined in (8) is continuous and

‖xxx‖`1B(X) = sup
y∈BY

∞∑
n=1

‖B(xn, y)‖Z

is finite.
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Clearly the expression (7) verifies that ‖xxx + yyy‖`1B(X) ≤ ‖xxx‖`1B(X) + ‖yyy‖`1B(X)

and ‖αxxx‖`1B(X) = |α| · ‖xxx‖`1B(X) for every xxx,yyy ∈ `1B(X) and α ∈ K.

Observe that the condition ‖xxx‖`1B(X) = 0 implies xxx = 0 is actually equivalent
to φB being injective, which corresponds to the notion of admissibility. �

Let us now study the completeness of the spaces `1B(X). The following example
shows that in general the space `1B(X) is not complete.

Proposition 6 Let T : X → Z be a bounded linear map such that T (X) is
not a closed subspace of Z (for example the inclusion map defined in `1 into
c0). Define the bounded bilinear map

I : X ×K→ Z, given by I (x, α) = αT (x). (9)

Then `1I (X) is not complete.

Proof. Observe that xxx ∈ `1I (X) means
∑∞

n=1 ‖T (xn)‖Z < ∞. Let us take a
sequence x0x0x0 = (x0

m)m ⊆ X verifying that (T (x0
m))m converges to z ∈ Z \T (X).

Now define, for each m ∈ N,

xmxmxm =

(
x0

m

2n

)
n

.

Using that for all m, k ∈ N we have that ‖xmxmxm −xkxkxk‖`1I (X) = ‖T (x0
m − x0

k)‖Z so

(xmxmxm)m is a Cauchy sequence in `1I (X). On the other hand for each xxx in `1I (X)
then

1

2
‖T (x0

m)−T (2x1)‖Z = ‖T (
x0

m

2
−x1)‖Z ≤

∞∑
n=1

‖T (
x0

m

2n
−xn)‖Z = ‖xmxmxm−xxx‖`1I (X).

Hence if xxxm converges to xxx in `1I (X) then z = T (2x1) ∈ T (X). Thus xxxm does
not converges in `1I (X). �

Let us mention an elementary but useful fact.

Proposition 7 Let B : X×Y → Z be a bounded bilinear map, Y1, Z1 Banach
spaces and let R : Z → Z1, S : Y1 → Y two bounded linear maps. Consider

BR,S : X × Y1 → Z1, given by BR,S(x, y1) = R(B(x, Sy1)).

Then `1B(X) is continuously embedded in `1BR,S
(X) and

‖xxx‖`1BR,S
(X) ≤ ‖R‖ · ‖S‖ · ‖xxx‖`1B(X), for all xxx ∈ `1B(X).

Remark 8 If B1 : X × Y1 → Z1 and B2 : X × Y2 → Z2 are bounded bilinear
maps, we say that B1 < B2 if there exist R : Z2 → Z1 and S : Y1 → Y2 such
that B1(x, y1) = R(B2(x, Sy1)), i.e. (B2)R,S = B1.
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Proposition 7 says that B1 < B2 implies `1B2
(X) ⊆ `1B1

(X) and there is C > 0
verifying that ‖xxx‖`1B1

(X) ≤ C‖xxx‖`1B2
(X) for any xxx ∈ `1B2

(X).

We present now some general admissible bounded bilinear maps naturally
defined for any Banach space X and that generalize those given in (1), (2)
and (3).

Example 9

(a) πY : X × Y → X⊗̂πY given by

πY (x, y) = x⊗ y, (10)

where X⊗̂πY is the projective tensor norm.
Note that πK = B given in (1). Clearly `1πY

(X) = `1(X) ⊆ `1weak(X).

(b) ÕY : X ×L (X, Y ) → Y given by

ÕY (x, T ) = Tx. (11)

In this case ÕK = D given in (2), π∗Y = ÕY ∗ and

`1
ÕY

(X) = { xxx = (xn)n : sup
T∈BL (X,Y )

∞∑
n=1

‖T (xn)‖ <∞}.

Note also that `1
ÕY

(X) ⊆ `1weak(X). Indeed, given xxx ∈ `1
ÕY

(X) and fixing

‖y‖ = 1 = ‖x∗‖ we can consider the bounded linear map y⊗x∗ : X → Y
given by y ⊗ x∗(x) = 〈x, x∗〉y. Then

‖xxx‖`1
weak

(X) = sup
x∗∈BX∗

y∈BY

∥∥∥((y ⊗ x∗)(xn)
)

n

∥∥∥
`1(Y )

≤ sup
T∈BL (X,Y )

∥∥∥(T (xn))n

∥∥∥
`1(Y )

= ‖xxx‖`1
ÕY

(X).

(c) For spaces of operators, we consider O : L (X,Y )×X → Y given by

O(T, x) = Tx. (12)

Now if Y = K then O = D1 given in (3) and

`1O(L (X, Y )) = { TTT = (Tn)n ⊆ L (X, Y ) : sup
x∈BX

∞∑
n=1

‖Tnx‖ <∞}.

This space was studied in (4) where it was denoted by `1s(X,Y ) and
shown to satisfy

`1(L (X, Y )) ( `1O(L (X, Y )) ( `1weak(L (X, Y )).
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Using vector-valued continuous functions, we can consider other natural ad-
missible bilinear maps.

Example 10

(a) C : X × C([0, 1], X∗) → C[0, 1] given by

C(x,fff) = 〈x,fff〉. (13)

(b) Let (Ω,Σ, µ) be a positive measure space and 1 ≤ q < ∞, we can
consider Vq : X × Lq(µ,X∗) → Lq(µ) given by

Vq(x,fff) = 〈x,fff〉. (14)

For more concrete Banach spaces, there are also natural admissible bilinear
maps

Example 11

(a) Let X(µ) be a function space of measurable functions in a σ-finite
measure space, and X(µ)′ its associate space. Let us define A : X(µ)×
X(µ)′ → L1(µ) given by

A(f, g) = fg. (15)

(b) Let (Ω,Σ, µ) be a σ-finite measure space, 1 ≤ p ≤ ∞ and X = Lp(µ).
For 1 ≤ q ≤ ∞ and 1/p + 1/q = 1/r, we can consider Hq : Lp(µ) ×
Lq(µ) → Lr(µ) given by

Hq(f, g) = fg. (16)

(c) Let 1 ≤ p ≤ ∞ and X = Lp(Rn). For 1 ≤ q ≤ ∞ and 1/p + 1/q =
1/r − 1, we can consider Yq : Lp(Rn)× Lq(Rn) → Lr(Rn) given by

Yq(f, g) = f ∗ g. (17)

Finally also mention in the case X is a Banach space vector-valued functions,
the natural admissible bilinear maps:

Example 12 Let µ be a finite measure space, 1 ≤ p ≤ ∞ and X = Lp(µ, Y ).

(a) Wp : Lp(µ, Y )× Y ∗ → Lp(µ) given by

Wp(fff, y
∗) = 〈fff, y∗〉. (18)

(b) W̃p : Lp(µ, Y )× Lp′(µ) → L1(µ, Y ) given by

W̃p(fff, φ) = fffφ. 6= (19)
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It is well-known —see for instance (11)— that the space `1weak(X) can be
identified with L (c0, X) or L (X∗, `1). Let us investigate the analogues for
`1B(X).

Proposition 13 Let B : X ×Y → Z be an admissible bounded bilinear map.

(a) `1B(X) is isometrically isomorphic to a subspace of L (Y, `1(Z)).
(b) `1B(X) is isometrically isomorphic to a subspace of `1s(Y, Z).
(c) `1B(X) is isometrically isomorphic to a subspace of L (c0(Z

∗), Y ∗).
(d) `1B(X) is isometrically isomorphic to a subspace of L (`∞(Z∗), `1weak∗(Y

∗)).

Proof. (a) follows using the embedding xxx→ TB,xxx given in (8).
(b) Since X ⊆ L (Y, Z) using x→ Bx we can embed `1B(X) in `1O(L (Y, Z)) =
`1s(Y, Z) as follows. Given the linear operator φB defined in (4) the correspon-
dence

φ̃B((xn)n) = (φB(xn))n

induces a linear and continuous operator from `1B(X) into `1O(L (Y, Z)). Mo-
reover, ‖xxx‖`1B(X) = ‖φ̃B(xxx)‖`1O(L (Y,Z)) for any xxx ∈ `1B(X).

(c) Note that, given xxx = (xn)n and y ∈ Y , N,M ∈ N, one has

M∑
n=N

‖B(xn, y)‖= sup
z∗n∈BZ∗

M∑
n=N

|〈B(xn, y), z
∗
n〉|

= sup
z∗n∈BZ∗
εn∈BK

|〈
M∑

n=N

B∗(xn, εnz
∗
n), y〉|

= sup
z∗n∈BZ∗

|〈
M∑

n=N

B∗(xn, z
∗
n), y〉|.

This shows that

‖xxx‖`1B(X) = sup
z∗n∈BZ∗

N∈N

‖
N∑

n=1

B∗(xn, z
∗
n)‖Y ∗ .

This allows to show that if xxx = (xn)n ∈ `1B(X) and (z∗n)n ∈ c0(Z
∗) then∑∞

n=1 B∗(xn, z
∗
n) ∈ Y ∗ and the map xxx = (xn)n → Φxxx where Φxxx : c0(Z

∗) → Y ∗

is given by

Φxxx((z
∗
n)n) =

∞∑
n=1

B∗(xn, z
∗
n) ∈ Y ∗

defines an isometric embedding from `1B(X) into L (c0(Z
∗), Y ∗).

(d) Given xxx = (xn)n ∈ `1B(X) let us consider the linear map

Φ̃xxx : `∞(Z∗) → `1weak∗(Y
∗), given by Φ̃xxx(z

∗z∗z∗) = (B∗(xn, z
∗
n))n.

Using the duality `1(Z)∗ = `∞(Z∗) we obtain that
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‖Φ̃xxx‖= sup
z∗z∗z∗∈B`∞(Z∗)

y∈BY

∞∑
n=1

|〈y,B∗(xn, z
∗
n)〉| = sup

z∗z∗z∗∈B`∞(Z∗)
y∈BY

∞∑
n=1

|〈B(xn, y), z
∗
n〉|

= sup
z∗z∗z∗∈B`∞(Z∗)
y∈BY ,|εn|=1

|
∞∑

n=1

〈B(xn, y), εnz
∗
n〉| = sup

y∈BY

∞∑
n=1

‖B(xn, y)‖Z

= ‖xxx‖`1B(X).

�

2.2. Relations between the spaces `1B(X) and `1weak(X).

It is trivial that `1(X) ⊆ `1B(X) for any bounded bilinear map B : X×Y → Z,
and

‖xxx‖`1B(X) ≤ ‖B‖ · ‖xxx‖`1(X), for all xxx ∈ `1(X). (20)

Clearly the containment can be strict. For example if we take the bounded
bilinear map D defined in (2) then `1(X)  `1weak(X) = `1D(X). Thus, in the
general case `1(X)  `1B(X). A natural question now is,

What is the relation between `1B(X) and `1weak(X)?

For instance, the bounded bilinear maps B, πY , D , D1, ÕY and O are examples
of bilinear maps verifying that the inclusion operator i : `1B(X) → `1weak(X)
are continuous.

For B = C or B = Vq in Example 10 it suffices to select f(t) = x∗1[0,1] or f =
x∗1Ω for each x∗ ∈ X∗ to show the continuous inclusion `1B(X) ⊆ `1weak(X).

Also for B = A or B = Hq in Example 11 it easily follows from Proposition
7 to see `1B(Lp(µ)) ⊆ `1weak(L

p(µ)).

To produce examples where `1weak(X) ⊆ `1B(X) it suffices to work with the case
Z = K. Indeed, take T ∈ L (Y,X∗) and define BT (x, y) = 〈x, Ty〉. Clearly
xxx = (xn)n ∈ `1BT

(X) if

sup
y∈BY

∞∑
n=1

|〈xn, T y〉| <∞,

and xxx = (xn)n ∈ `1weak(X) if

sup
x∗∈BX∗

∞∑
n=1

|〈xn, x
∗〉| <∞.

Hence `1weak(X) ⊆ `1BT
(X) and ‖xxx‖`1BT

(X) ≤ ‖T‖·‖xxx‖`1
weak

(X). Moreover `1weak(X) =

`1BT
(X) is equivalent to ‖T ∗x‖ ≈ ‖x‖ for any x ∈ X.

12



Example 14 Consider the bounded bilinear map

A2 : `2 × `2 → R, given by A2(α, β) =
∞∑

n=1

1

n
αnβn. (21)

Note that this corresponds to BT for T : `2 → `2 given by T (α) = ( 1
n
αn)n.

Let xxx = (ek)k where ek is the canonical basis. It is clear that xxx ∈ `1A2
(`2) \

`1weak(`
2).

Hence, in general `1B(X) is not continuously embedded into `1weak(X). However
we always have that `1B(X) ⊆ `1weak(L (Y, Z)). Indeed using that `1weak(L (Y, Z)) =
L (c0,L (Y, Z)), one has that for each xxx ∈ `1B(X) we can consider the linear
map SB,xxx : c0 → L (Y, Z), given by SB,xxx(ααα)(y) =

∑∞
n=1 B(xn, y)αn. Duality

gives

‖SB,xxx‖ ≤ sup
y∈BY
ααα∈Bc0

∞∑
n=1

‖B(xn, y)‖Z |αn| ≤ ‖xxx‖`1B(X).

Remark 15 Observe that Proposition 7 gives another general inclusion, is
that `1B(X) ⊆ `1Bz∗

(X) for every z∗ ∈ Z∗ where

Bz∗ : X × Y → K, given by Bz∗(x, y) = 〈B(x, y), z∗〉.

Moreover sup{‖xxx‖`1Bz∗
(X) : z∗ ∈ BZ∗} ≤ ‖xxx‖`1B(X) for each xxx ∈ `1B(X).

So the natural question now is,

When is `1B(X) continuously included into `1weak(X)?

The answer of this question relies upon the notion of (Y, Z,B)-normed space
X.

Definition 16 (see (1; 2)) Let B : X × Y → Z be a bounded bilinear map.
We say that a Banach space X is (Y, Z,B)-normed —or simply B-normed
space— if there exists a constant k > 0 such that

‖x‖X ≤ k‖Bx‖L (Y,Z), for all x ∈ X. (22)

The following result characterizes when a Banach space is B-normed.

Theorem 17 Let B : X × Y → Z be a bounded bilinear map admissible for
X. The following assertions are equivalent:

(a) The inclusion i : `1B(X) → `1weak(X) is continuous.
(b) X is (Y, Z,B)-normed.

13



(c) There exists a constant k > 0 such that for each x∗ ∈ X∗ there exists a
functional ϕx∗ ∈ L (Y, Z)∗ verifying ‖ϕx∗‖ ≤ k‖x∗‖ and

〈x, x∗〉 = ϕx∗(Bx), for all x ∈ X.

Proof. (a)⇒(b) Fix x ∈ X and consider the sequence xxx = (x, 0, 0, . . .). Apply
the assumption to xxx to obtain ‖xxx‖`1

weak
(X) = ‖x‖X and ‖xxx‖`1B(X) = ‖Bx‖L (Y,Z).

(b)⇒(c) Let us assume that X is (Y, Z,B)-normed and we denote by X̂ =
{Bx : x ∈ X} ⊆ L (Y, Z). According to the assumption X̂ is a closed subspace
of L (Y, Z). Given x∗ ∈ X∗ one has that

|〈x∗, x〉| ≤ k‖x∗‖ · ‖Bx‖, for all x ∈ X.

Hence the map x̂∗ : Bx → 〈x, x∗〉 is bounded and linear in X̂∗ with ‖x̂∗‖ ≤
k‖x∗‖. Therefore, by Hahn-Banach theorem, there is an extension ϕx∗ to
L (Y, Z)∗ such that ‖ϕx∗‖ ≤ k‖x∗‖ where k > 0 is the constant in (22).

(c)⇒(a) For each xxx ∈ `1B(X) using that `1(N)∗ = `∞(N) for all N ∈ N we
have that

‖xxx‖`1
weak

(X) = sup
x∗∈BX∗

N∈N

N∑
n=1

|〈xn, x
∗〉| = sup

ααα∈B`∞(N)
x∗∈BX∗ ,N∈N

∣∣∣∣∣
N∑

n=1

〈xn, x
∗〉αn

∣∣∣∣∣
= sup

ααα∈B`∞(N)
x∗∈BX∗ ,N∈N

∣∣∣ϕx∗(B∑N

n=1
αnxn

)
∣∣∣

≤ k sup
ααα∈B`∞(N)
y∈BY ,N∈N

‖B∑N

n=1
αnxn

(y)‖Z

≤ k sup
ααα∈B`∞(N)
y∈BY ,N∈N

N∑
n=1

‖B(xn, y)‖Z |αn|

≤ k sup
y∈BY
N∈N

N∑
n=1

‖B(xn, y)‖Z = k‖xxx‖`1B(X).

�

Remark 18 Of course X is a (Y, Z,B)-normed means that the norms ‖ · ‖X

and ‖B·‖L (Y,Z) are equivalent and therefore B : X ×Y → Z is admissible for
X (see Definition 4) and consequently ‖ · ‖`1B(X) defines a norm in the space

`1B(X).

Observe that X is a (Y, Z,B)-normed space if the bounded linear map

φt
B : L (Y, Z)∗ → X∗, (23)

is surjective.
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Corollary 19 Let B : X × Y → K be a scalar bounded bilinear map. The
following are equivalent:

(a) X is (Y,K,B)-normed.
(b) There is a constant C1 > 0 such that C1‖x‖ ≤ ‖φB(x)‖ ≤ ‖B‖·‖x‖ for

all x ∈ X.
(c) `1weak(X) = `1B(X) and the norms ‖·‖`1

weak
(X) and ‖·‖`1B(X) are equivalent.

Let us point out that in many cases it is possible to give a explicit definition
for the functional ϕx∗ appearing in Theorem 17.(c) when a Banach space X
is (Y, Z,B)-normed.

Example 20

(a) For the bounded bilinear map B and x∗ ∈ X∗ take

ϕx∗ : L (K, X) → K, given by ϕx∗(T ) = 〈T (1), x∗〉.

(b) For the bounded bilinear map πY and x∗ ∈ X∗, select y0 ∈ Y and
y∗0 ∈ Y ∗ verifying that 〈y0, y

∗
0〉 = 1 and take

ϕx∗ : L (Y,X⊗̂πY ) → K, given by ϕx∗(T ) =
∑
n

〈xn, x
∗〉〈yn, y

∗
0〉

where T (y0) =
∑

n xn ⊗ yn.
(c) For the bilinear map D just take for every x∗ ∈ X∗

ϕx∗ : L (X∗,K) → K, given by ϕx∗(x
∗∗) = 〈x∗, x∗∗〉.

(d) For the bilinear map D1 just take for every x∗∗ ∈ X∗∗

ϕx∗∗ : L (X,K) → K, given by ϕx∗∗(x
∗) = 〈x∗, x∗∗〉.

(e) For the bilinear map O and x∗ ∈ (L (X, Y ))∗,

ϕx∗ : L (X, Y ) → K, given by ϕx∗(T ) = 〈T, x∗〉.

(f) For ÕY for each x∗ ∈ X∗, select y0 ∈ Y and y∗0 ∈ Y ∗ such that 〈y0, y
∗
0〉 =

1 and take the functional

ϕx∗ : L (L (X, Y ), Y ) → K, given by ϕx∗(T ) = 〈T (y0 ⊗ x∗), y∗0〉.

(g) For the bilinear map C and x∗ ∈ X∗, let us fix t0 ∈ [0, 1] and f0 ∈ C[0, 1]
verifying f0(t0) = 1 we take

ϕx∗ : L (C([0, 1], X∗),C[0, 1]) → K, given by ϕx∗(T ) = T (f0⊗x∗)(t0).
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(h) For the bilinear map Vq and x∗ ∈ X∗, let us consider E ∈ Σ such that
µ(E) > 0 and take

ϕx∗ : L (Lq(µ,X∗), Lq(µ)) → K, given by ϕx∗(T ) =
∫
Ω
T (
x∗1E

µ(E)
)dµ.

(i) For the bilinear map A in the case X(µ)′ = X(µ)∗ and x∗ ∈ X∗, let us
consider

ϕx∗ : L (X(µ)′, L1(µ)) → K, given by ϕx∗(T ) =
∫
Ω
T (x∗)dµ.

Theorem 21 Let B : X × Y → Z be a bounded bilinear map such that X is
(Y, Z,B)-normed. Then (`1B(X), ‖ · ‖`1B(X)) is a Banach space.

Proof. Let (xmxmxm)m be a Cauchy sequence in `1B(X) and let us fix ε > 0. There
exists k0 ∈ N such that for each m, k ≥ k0 we have that ‖xmxmxm − xkxkxk‖`1B(X) ≤ ε.
In particular for every y ∈ BY and m, k ≥ k0 we have that

∞∑
n=1

‖B(xm
n − xk

n, y)‖Z ≤ ε. (24)

This implies that ‖Bxm
n −xk

n
‖L (Y,Z) ≤ ε for all n ∈ N and m, k ≥ k0. Hence

using that X is a (Y, Z,B)-normed space we conclude that ‖xm
n − xk

n‖X ≤ cε
for some c > 0 and all n ∈ N and m, k ≥ k0. This means that for all n ∈ N
the sequence (xk

n)k is a Cauchy sequence in the Banach space X. Then (xk
n)k

converges in X to a certain element —say xn—. Consider then the sequence
xxx = (xn)n. Taking limits when m→∞ in expression (24) we have that for all
y ∈ BY and k ≥ k0

∞∑
n=1

‖B(xn − xk
n, y)‖Z ≤ ε.

This means that xxx − xkxkxk ∈ `1B(X) and thus xxx = (xxx − xkxkxk) + xkxkxk ∈ `1B(X). In
addition we have that the sequence (xkxkxk)k converges to xxx in `1B(X). �

Let us now analyze the converse question:

When does `1weak(X) is continuously embedded into `1B(X)?

Recall that a linear map T : X → Y is called absolutely summing if there is a
constant k > 0 verifying that for every finite family x1, . . . , xn ∈ X we have
that

n∑
i=1

‖T (xi)‖X ≤ k sup
x∗∈BX∗

n∑
i=1

|〈xi, x
∗〉|. (25)

The vector space of those bounded linear maps is denoted by Π(X,Y ) or
Π1(X, Y ). Endowed with the norm

π(T ) = inf{k > 0 : the inequality (25) holds },
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the space Π1(X, Y ) is a Banach subspace of L (X, Y ). We recall here that
any bounded linear operator from L1(µ) into a Hilbert space H is absolutely
summing by Grothendieck’s theorem —see (11, p. 15)—, i.e.

L (L1(µ), H) = Π1(L
1(µ), H). (26)

A Banach space X is called a GT -space if L (X,H) = Π1(X,H) for any
Hilbert space H. The reader is referred to (11) for information about the class
of absolutely summing operators and properties related to them.

Proposition 22 Let B : X ×Y → Z be an admissible bounded bilinear map.
The following are equivalent:

(a) `1weak(X) is continuously embedded into `1B(X).
(b) ψB(Y ) ⊆ Π1(X,Z) and there exists C > 0 such that π(By) ≤ C‖y‖ for

all y ∈ Y .

Proof. (a) ⇒ (b) For each y ∈ Y and xxx = (xn)n ∈ `1weak(X) we have that for
each y ∈ Y

∞∑
n=1

‖By(xn)‖Z ≤ ‖y‖ · ‖xxx‖`1B(X) ≤ C‖y‖ · ‖xxx‖`1
weak

(X).

This shows that By belongs to Π1(X,Z) and π(By) ≤ C‖y‖ for every y ∈ Y .
(b) ⇒ (a) Given xxx = (xn)n ∈ `1B(X)

‖xxx‖`1B(X) = sup
y∈BY

∞∑
n=1

‖By(xn)‖Z ≤ sup
y∈BY

π(By)‖xxx‖`1
weak

(X) ≤ C‖xxx‖`1
weak

(X).

�

Corollary 23 `1
ÕY

(X) = `1weak(X) ⇐⇒ L (X, Y ) = Π1(X, Y ).

In particular, `1
Õ`2

(X) = `1weak(X) if and only if X is a GT -space.

From the previous results we observe that not only for Z = K (or even finite
dimensional spaces Z) one can obtain that `1weak(X) ( `1B(X) whenever X
is not B-normed, but it is possible to have `1weak(X) ( `1B(X) for infinite
dimensional spaces Z.

Corollary 24 Let X = L1(R) and consider the bilinear map

Y2 : L1(R)× L2(R) → L2(R), given by Y2(f, g) = f ∗ g. (27)

Then `1weak(L
1(R)) ( `1Y2

(L1(R)).
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Proof. Let us see that L1(R) is not (L2(R), L2(R),Y2)-normed. Assume the
contrary, i.e. there exists k > 0 with

‖f‖L1(R) ≤ k sup
g∈BL2(R)

‖f ∗ g‖L2(R).

Then
‖f‖L1(R) ≤ k sup

h∈BL2(R)

‖f̂h‖L2(R) = k‖f̂‖L∞(R),

which is clearly false in general.

Therefore combining Theorem 17, Proposition 22 and (26) one concludes
`1weak(L

1(R))  `1Y2
(L1(R)). �

Example 25 Let Y be an infinite dimensional , X = L1([0, 1], Y ) and consi-
der the bilinear map

W1 : L1([0, 1], Y )× Y ∗ → L1([0, 1]), given by W1(f, y
∗) = 〈f, y∗〉. (28)

Then `1weak(L
1([0, 1], Y )) ( `1W1

(L1([0, 1], Y )).

Proof. In order to see the inclusion just observe that —since (L1([0, 1], Y ))∗ =
L(L1([0, 1]), Y ∗)— given y∗ ∈ Y ∗ then the function y∗1Ω ∈ L(L1([0, 1], Y ∗) de-
fines an element of (L1([0, 1], Y ))∗.
Let us see now that L1([0, 1], Y ) is not (Y ∗, L1([0, 1]),W1)-normed. Assume
the contrary, i.e. there exists k > 0 with

‖f‖L1([0,1],Y ) ≤ k sup
y∗∈BY ∗

∫ 1

0
〈f(t), y∗〉dt.

Now it suffices to take (yn)n ∈ `1weak(Y ) \ `1(Y ) and define

f =
∞∑

n=1

2n+1yn1[2−(n+1),2−n[

to get a contradiction. Hence Theorem 17 gives that the inclusion is strict. �

3 The proof of the theorem and consequences.

Definition 26 We say that a sequence xxx = (xn)n ⊆ X is B-unconditionally
summable if for all y ∈ Y and z∗ ∈ Z∗ we have that (〈B(xn, y), z

∗〉)n ∈ `1 and
for all M ⊆ N there is xM ∈ X such that∑

n∈M

〈B(xn, y), z
∗〉 = 〈B(xM , y), z

∗〉, for all y ∈ Y, z ∈ Z∗.
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Let us observe that using classical Orlicz-Pettis this is equivalent to the fo-
llowing: for all y ∈ Y and z∗ ∈ Z∗ we have that (〈B(xn, y), z

∗〉)n ∈ `1 and for
all M ⊆ N there is xM ∈ X such that

∑
n∈M

B(xn, y) = B(xM , y), for all y ∈ Y. (29)

There is several ways to prove the classical Orlicz-Pettis theorem. For instance
it is possible to prove this result using the Bochner integral —see for instance
(9)—. Another possibility is based in the use of Schur theorem and Mazur
theorem —see (11)—. We shall use the approach in this last reference.

Theorem 27 (Bilinear Orlicz-Pettis) Let B : X × Y ∗ → Z be a bounded
bilinear map such that

(a) X is B-normed,
(b) Y is w∗-sqcu, i.e., BY ∗ is weak∗ sequentially compact,
(c) φB(X) ⊆ W ∗(Y ∗, Z).

Then every B-unconditionally summable sequence in X is unconditionally
summable.

Proof. Let xxx = (xn)n ⊆ X be a B-unconditionally summable sequence and
define the bilinear map

S : Y ∗ × Z∗ → `1, given by S (y∗, z∗) = (〈B(xn, y
∗), z∗〉)n. (30)

Step 1: S is bounded. Note that, since xxx is B-unconditionally summable,
then for all y∗ ∈ Y ∗ and every z∗ ∈ Z∗

∞∑
n=1

|〈B(xn, y
∗), z∗〉| <∞,

so S is well defined. Now, using Closed Graph theorem it is easy to see
that the two linear maps

S y∗ : Z∗ → `1, given by S y∗(z∗) = S (y∗, z∗), for all y∗ ∈ Y ∗,

S z∗ : Y ∗ → `1, given by S z∗(y∗) = S (y∗, z∗), for all z∗ ∈ Z∗,

are bounded and hence S is separately continuous and thus continuous.
Step 2: S is compact. Let (y∗n, z

∗
n)n be a sequence in BY ∗×BZ∗ . In particular,

since (y∗n)n ⊆ BY ∗ and BY ∗ is weak∗ sequentially compact there exists a
subsequence (y∗nk

)k convergent to a certain y∗0 in the weak∗ topology of Y ∗,
i.e.,

(〈y, y∗nk
〉)k converges to 〈y, y∗0〉, for all y ∈ Y.
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Using now that φB(X) ⊆ W ∗(Y ∗, Z) since (y∗nk
)k is weak∗ convergent then

for every x ∈ X

(B(x, y∗nk
))k converges to B(x, y∗0), in the norm topology of Z. (31)

Consider now the separable subspaceD of Z given byD = span(B(xn, y∗0))n.
According to Alauglu’s theorem, BD∗ is a weak∗ compact. For each k ∈ N
denote by z̃∗nk

the restriction of z∗nk
to D. Since ‖z∗nk

‖ ≤ 1 then z̃∗nk
belongs to

the compact BD∗ . This allows us to extract a subsequence of z̃∗nk
—denoted

also, by simplicity, by z̃∗nk
— convergent in the weak∗ topology of Z∗ to an

element in Z∗ that we call z̃∗0 . That is

(〈z̃, z̃∗nk
〉)k converges to 〈z̃, z̃∗0〉, for all z̃ ∈ D. (32)

Since z̃∗0 ∈ D∗ using Hahn-Banach theorem there exists z∗0 a continuous
extension of z̃∗0 to Z∗ —with the same norm—. On the other hand, there is
x0 ∈ X verifying that for all z∗ ∈ Z∗

lim
N→∞

N∑
n=1

〈B(xn, y
∗
0), z

∗〉 =
∞∑

n=1

〈B(xn, y
∗
0), z

∗〉 = 〈B(x0, y
∗
0), z

∗〉.

This means that B(x0, y
∗
0) belongs toD

w
so by Mazur’s theorem B(x0, y

∗
0) ∈

D = D. Replacing in (32) we obtain that

(〈B(x0, y
∗
0), z̃

∗
nk
〉)k converges to 〈B(x0, y

∗
0), z̃

∗
0〉. (33)

To prove the compactness of S it remains to show that S ((ynk
, z∗nk

))k

converges in `1. But using Schur’s theorem all we need to show is the con-
vergence in the weak topology of `1. The continuity of S allows us to show

〈(S (y∗nk
, z∗nk

))k,ααα〉 converges to 〈S (y0, z
∗
0),ααα〉, (34)

for all ααα in some norm dense subset of `∞. By linearity to prove (34) it
suffices to take ααα = 1M for every M ⊆ N. Fixing k ∈ N take then an
arbitrary M ⊆ N

〈S (y∗nk
, z∗nk

),1M〉 =
∑

n∈M

〈B(xn, y
∗
nk

), z∗nk
〉 = 〈B(xM , y

∗
nk

), z∗nk
〉. (35)

On the other hand

〈S (y∗0, z
∗
0),1M〉 =

∑
n∈M

〈B(xn, y
∗
0), z

∗
0〉 = 〈B(xM , y

∗
0), z

∗
0〉. (36)

Replacing (35) and (36) in (34) we obtain that in order to finish the proof
it is enough to prove that for all M ⊆ N

(〈B(xM , y
∗
nk

), z∗nk
〉)k converges to 〈B(xM , y

∗
0), z

∗
0〉.
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But for every k ∈ N and M ⊆ N we have that

|〈B(xM , y
∗
nk

), z∗nk
〉 − 〈B(xM , y

∗
0), z

∗
0〉|

≤ |〈B(xM , y
∗
nk

), z∗nk
〉 − 〈B(xM , y

∗
0), z

∗
nk
〉|

+|〈B(xM , y
∗
0), z

∗
nk
〉 − 〈B(xM , y

∗
0), z

∗
0〉|

= |〈B(xM , y
∗
nk

)−B(xM , y
∗
0), z

∗
nk
〉|

+|〈B(xM , y
∗
0), z

∗
nk
〉 − 〈B(xM , y

∗
0), z

∗
0〉|

≤ ‖B(xM , y
∗
nk

)−B(xM , y
∗
0)‖Z ‖z∗nk

‖
+|〈B(xM , y

∗
0), z

∗
nk
〉 − 〈B(xM , y

∗
0), z

∗
0〉|.

Using (31), (32) and (33) we have that S ((ynk
, z∗nk

))k converges in the weak
topology of `1 and by Schur theorem also converges in the topology of the
norm of `1. Thus S is compact.

Step 3: xxx = (xn)n is unconditionally summable. Recall that a set K is rela-

tively compact in `1 if and only if limn sup
{∑

k≥n |ak| : (ak)k ∈ K
}

= 0. In

particular, since S (BY ∗ × BZ∗) is a relatively compact in `1 then

lim
n→∞

sup
y∗∈BY ∗
z∗∈BZ∗

∞∑
k=n

| 〈B(xk, y
∗), z∗〉 | = 0. (37)

Let (ns)s be an increasing sequence in N. Using that X is (Y, Z,B)-normed
there exists a constant k > 0 such that for every N ∈ N∥∥∥∥∥

N−1∑
s=1

xns − x0

∥∥∥∥∥
X

≤ k

∥∥∥∥B∑N−1

s=1
xns−x0

∥∥∥∥
L (Y ∗,Z)

≤ k sup
y∗∈BY ∗
z∗∈BZ∗

∞∑
s=N

|〈B (xns , y
∗) , z∗〉| .

Taking limits when N → ∞ and using (37) we have that xxx is what it
is called subseries summable and this is equivalent —see (11)— to have
unconditional summability. �

Remark 28 Recall that a linear map T from a Banach space X into a Banach
space Y is called completely continuous if it takes weakly null sequences in X to
norm null sequences in Y , or, equivalently, if T maps every weakly convergent
sequence in X into a norm convergent sequence in Y . The set consisting of
those maps are denoted by W (X, Y ) —see the notation V (X, Y ) in (11)—.
We can also state a result when the space Y is not necessarily a dual space.
The reader can check that our proof can easily be adapted —using reflexivity
and completely continuous operators— by replacing the above assumptions by

(a) X is B-normed,
(b) Y is reflexive,
(c) φB(X) ⊆ W (Y, Z),

to get the same conclusion.
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Remark 29 We would like to point out that the classical Orlicz-Pettis theo-
rem is not needed to get this bilinear version and actually it follows as a
corollary. Note that we can use (29) in the case Z = K when assuming weak-
unconditionality. Now observe that X is D-normed and we can assume that
X is separable — since all the actions happens inside the weakly closed linear
span of xn— and consequently X is w∗-sqcu. Finally φD(X) ⊆ W ∗(X∗,K).
Hence we obtain wUC(X) = UC(X) for any Banach space.

Corollary 30 Let B : X × Y ∗ → `1 be a bounded bilinear map such that
X is B-normed and Y is reflexive. Then every B-unconditionally summable
sequence is an unconditionally summable sequence.

Proof. Note first that every bounded linear map from a Banach space into `1

is completely continuous, so φB(Y ∗) ⊆ W (Y ∗, `1). Since every reflexive space
is w∗-sqcu and satisfies that every weakly∗ convergent sequence in Y ∗ is also
weakly convergent, in particular —see (12)— we have that

W (Y ∗, Z) ⊆ K (Y ∗, Z) ⊆ W ∗(Y ∗, Z)

where K (X, Y ) stands for the compact operators. Hence all the assumptions
in Theorem 27 are satisfied. �

Let X be a Banach space and (Ω,Σ, µ) a finite space. Given 1 ≤ p < ∞
we denote by p′ the (extended) real number given by 1

p
+ 1

p′
= 1. Let us

denote by P p(µ,X) the completion of simple functions on the space of strongly
measurable Pettis p-integrable functions, that is, the space consisting of all
strongly measurable functions f : Ω → X verifying that 〈f, x∗〉 ∈ Lp(µ) for
all x∗ ∈ X∗ and for any E ∈ Σ there exists xE ∈ X such that∫

E
〈f, x∗〉dµ = 〈xE, x

∗〉, for all x∗ ∈ X∗.

We set the norm

‖f‖P p(µ,X) = sup
x∗∈BX∗

(
∫
Ω
|〈f, x∗〉|pdµ)

1
p .

Corollary 31 Let X be a reflexive Banach space, 1 ≤ p < ∞, (Ω,Σ, µ) a
finite space and (fn)n ∈ P p(µ,X). Assume that for any x∗ ∈ X∗, φ ∈ Lp′(µ)

∞∑
n=1

∫
Ω
|〈fn, x

∗〉φ|dµ <∞

and there exists f ∈ P p(µ,X) such that

∞∑
n=1

∫
Ω
〈fn, x

∗〉φ dµ =
∫
Ω
〈f, x∗〉φ dµ
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for any x∗ ∈ X∗, φ ∈ Lp′(µ). Then
∑

n fn converges unconditionally in P p(µ,X).

Proof. We may assume that X is separable (because the fn has essentia-
lly separable range for any n ∈ N). Take the bilinear map B : P p(µ,X) ×
X∗ → Lp(µ) defined by B(f, x∗) = 〈f, x∗〉. It is B-normed and P p(µ,X) ⊆
L (X∗, Lp(µ)) satisfies that P p(µ,X) ⊆ K (X∗, Lp(µ)) ⊆ W ∗(X∗, Lp(µ)). The
assumption means that (fn)n is B-unconditionally summable. Then apply the
bilinear Orlicz-Pettis theorem to conclude the result. �

Let m : Σ → X be a (countable) additive vector measure defined on a σ-
algebra of subsets Σ of a nonempty set Ω. A measurable function f : Ω → R
is called weakly integrable (with respect to m) if f ∈ L1(|〈m,x∗〉|) for every
x∗ ∈ X∗. The space L1

w(m) of all (equivalence classes of) weakly integrable
functions (with respect to m) becomes a Banach space when it is endowed
with the norm

‖f‖1,m = sup
x∗∈BX∗

∫
Ω
|f |d|〈m,x∗〉|.

We say that a weakly integrable function f is integrable (with respect to m) if
for every E ∈ Σ there is xE ∈ X such that∫

E
fd(〈m,x∗〉) = 〈xE, x

∗〉, for all x∗ ∈ X∗.

The vector xE is unique and it is denoted by
∫
E fdm. The space of all (equiva-

lence classes of) integrable functions (with respect to m) is denoted by L1(m)
and is a closed subspace of L1

w(m). The integral operator is the bounded linear
map

I(1)
m : L1(m) → X, given by I(1)

m (f) =
∫
Ω
fdm.

For 1 < p < ∞ denote by p′ the conjugate index of p —that is the real
number given by 1

p
+ 1

p′
= 1—. The function f is p-integrable with respect

to m (resp. weakly p-integrable with respect to m) if |f |p ∈ L1(m) (resp.
|f |p ∈ L1

w(m)). The space Lp(m) (resp. Lp
w(m)) of (equivalence classes of) p-

integrable functions with respect to m (resp. weakly p-integrable with respect
to m) is a Banach space with the norm

‖f‖p,m = sup
x∗∈BX∗

( ∫
Ω
|f |pd|〈m,x∗〉|

) 1
p .

See for instance (5; 6; 7) for the unexplained information. It is known that
Lp(m) need not be reflexive for p > 1. However if X is weakly sequentia-
lly complete Lp(m) is reflexive for all p > 1 and Lp(m) = Lp

w(m) —see (6,
Corollary 3.10)—.

Corollary 32 Let X be a weakly sequentially complete Banach space and let
m : Σ → X be a (countable) additive vector measure verifying that the inte-
gration map I(1)

m : L1(m) → X is completely continuous. Given 1 < p < ∞
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and (fn)n ∈ Lp(m) let us assume that

∞∑
n=1

∥∥∥ ∫
Ω
fngdm

∥∥∥
X
<∞, for all g ∈ Lp′(m)

and that there exists a function f ∈ Lp(m) such that

∞∑
n=1

∫
Ω
fngdm =

∫
Ω
fgdm, for all g ∈ Lp′(m).

Then
∑∞

n=1 fn converges unconditionally in Lp(m).

Proof. Let us consider the bounded bilinear map

M (p)
m : Lp(m)× Lp′(m) → X, given by M (p)

m (f, g) =
∫
Ω
fgdm.

Following (7, Proposition 8) it is not difficult to prove that

‖f‖p,m = sup
g∈B

Lp′ (m)

∥∥∥ ∫
Ω
fgdm

∥∥∥
X
.

Hence Lp(m) is M (p)
m -normed. Also the weak sequential completeness of X

implies that Lp(m) is reflexive. On the other hand fixing f ∈ Lp(m) then (8,
Theorem 7) gives that the multiplication operator M (p′)

m : Lp′(m) → L1(m)
given by M (p′)

m (g) = fg is weakly compact. But by the assumption the in-
tegration map I(1)

m : L1(m) → X is completely continuous. Hence for every
f ∈ Lp(m)

(M (p)
m )f = I(1)

m ◦ (M (p′)
m )f

is a compact operator so φ
M

(p)
m

(Lp(m)) ⊆ K (Lp′(m), X) ⊆ W (Lp′(m), X).
The result is then a consequence of the theorem. �

Remark 33 There are many situations for which the hypotheses of the pre-
vious result are fulfilled. We present some of them —see (5) for more informa-
tion—.

(a) Given 0 < (αn)n ∈ `1 = X let us take

m : 2N → `1, m(A) = (αn)n1A.

In this case L1(m) = 1
(αn)n

`1 and the integration map I(1)
m : L1(m) → `1

is completely continuous.
(b) Let T = {z ∈ C : |z| = 1}. Given λ a non zero measure on the Borel

σ-algebra B(T) verifying that the Fourier Stieljes Transform λ̂ : Z→ C
belongs to c0(Z) consider the L1(T)-valued measure given by the convo-
lution

vλ : B(T) → L1(T), vλ(A) = 1A ∗ λ.
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In this case L1(vλ) = L1(|vλ|) = L1(T) and the integration map is
I(1)
vλ

(f) = f ∗ 1A for every f ∈ L1(T) which it is also completely conti-
nuous.
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Birkhäuser.

[6] Fernández, A., Mayoral, F., Naranjo, F., Sáez, C. and Sánchez Pérez,
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