BLOCH-TO-BMOA COMPOSITIONS IN SEVERAL COMPLEX
VARIABLES

OSCAR BLASCO, MIKAEL LINDSTROM, JARI TASKINEN

ABSTRACT. Given an analytic mapping ¢ : B,, — B,,, we study the boundedness and
compactness of the composition operator Cy, : f +— f o ¢ acting from the Bloch space

B(B,,) into BMOA(B,,). If the symbol satisfies a very mild regularity condition then
the boundedness of C,, is equivalent to du,(z) = W(ﬂl( ) being a Carleson
measure. The compactness of C, is also characterized.

1. INTRODUCTION.

We study analytic mappings ¢ : B,, — B,, and the corresponding analytic composition
operators Cy, : f — fop. Here n,m € N and B,, is the unit ball of C". In the one
complex variable case n = m = 1, D := B, the investigation of composition operators
from the Bloch space B(D) into BMOA(D) has only recently taken place. Boundedness
and compactness of C, : B(D) — BMOA(D), C, : By(D) — VMOA(D) and C,
B(D) - VMOA(D) has been studied in [SZ] by Smith and Zhao and by Makhmutov and
Tjani in [MT]. Madigan and Matheson [MM] proved that C, is always bounded on B(D).
Moreover, [MM] contains a characterization of symbols ¢ inducing compact composition
operators on B(D) and By(D). The essential norm of a composition operator from B(ID)
into ), (D) was computed in [LMT].

In the case of several complex variables, Ramey and Ullrich [RU] have studied the case
mentioned in the beginning: their result states that if ¢ : B, — D is Lipschitz, then
C, : B(D) — BMOA(B,) is well defined, and consequently bounded by the closed graph
theorem. Our results below are, of course, more general. The case of C, : B(B,,) — B(B,,)
was considered by Shi and Luo [SL], where they proved that C,, is always bounded and
gave a necessary and sufficient condition for C, to be compact.

Our main result states that if ¢ : B, — B,, satisfies a very mild regularity condition,
then the boundedness of C, : B(B,,) — BMOA(B,) is characterized by the fact that

dp,(z) = Wd/l( ) is a Carleson measure (see notations below).

Similarly, a corresponding o—growth condition characterizes the compactness.

Let N:={1,2,3,...}. For z,w € C" let (z,w) = Y | z;w; denote the complex inner
product on C" and |z| = (z,2)"/2. The radial derivative operator is denoted by R; so, if
f : B, — C is analytic, then

Rf(z) ::Z g(z) for z € B,,.
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The complex gradient of f is given by Vf(2) = (g—i(z), g—j;(z), . azn( 2)). Clearly Rf(z) =

(Vf(2),2). Let Vf(z) = V(f 0 ,)(0) denote the invariant gradient, where ¢, stands for
the Mobius transformation of B,, with ¢,(0) = a and ¢,(a) = 0. Note that on the other
hand Rf = ), kFy, if >, F}, is the homogeneous expansion of f. If ¢ : B,, — C™ with

© = (1,92, ..., Pm), then Ry := (Rp1, Rpa, ..., Rop).
The Rademacher functions r, : [0,1] — R, n € {0} UN, are defined by r,(t) :=

sign(sin(2"7t)).
The Bloch space B(B,,) is defined to consist of analytic functions f : B,, — C such that

£l := sup [V f(2)](1 — |2*) < o0
zeby
Timoney [T] proved that ||f||z and ||f|l1 := sup |Rf(2)|(1 — |2]|?) are equivalent. The
B

z€By
Bloch space B(B,) is a Banach space with the norm ||f|| := |f(0)| + ||f||z. The little
Bloch space By(B,,) is the subspace of B(B,,) for which lli|rn1 |IRf(2)|(1—|2?) =

Let g be the invariant Green function defined by

1
|

2

and let d\(z) = %, where dA is the normalized volume measure in C".

The space BMOA(B,,) can be defined (see [CC|] Theorem A, [OYZ1] Prop 1) as the
space of analytic functions f : B, — C with

sup / ¥ £(2) Pg(al(2))dA(2) < o0

(lGEn

We say that a positive Borel measure on B,, is a Carleson measure if there exists ¢ > 0
such that for any £ € dB,, and § > 0 we have

u(B(E,9)) < e,
where B(,0) = {2z € B, : 1 -0 < |z] < 1, & o€ S(&,6)} and S(&,9) = {v € 0B,
11— (v, &)| < 6}. It is well known that u is a Carleson measure if and only if

(1) Sup/B %du(z) < 0.

acB, Jp, |1 = (2,0)

We shall write |||dp||| = sup,ep,, an %du( ).

(z,a)|?™
There is a lot of bibliography concerning characterizations of BMOA in terms of Car-

leson measures (see [J1, J2] or see [ASX, OYZ2, Y] for @), spaces.) It is known that
f € BMOA(B,) (see [OYZZ Proposition 3.4) if and only if

sup/\Vf 2(1 — |pa(2)))"dA(2) < 0.

IZGBn

_ (—la)(a-|z[*)
: , [1—(z,a)[?

f € BMOA(B,) if and only if |Yf |(j|)2| dA(z) is a Carleson measure. Observe now that, a
direct computation shows

VP = 1= 2PV~ [Rf()P).

Now, taking into account that 1 — |p,(2)|* = , one obtains, using (1) that
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Therefore, using |Rf(2)| < |V f(2)||z], one gets

IVF)P = (1= 2V ()P = (1= 2’ Rf ()
Thus

(1= [zP)IRf(2)]PdA(z) < (1 = |21V f(2)|"dA(2) <

The following theorem is due to several authors. A complete proof of the equivalences
of (i), (ii) and (iii) has been presented by Zhu in [Z]. Further, (iii) and (iv) are equivalent
by (1).

Theorem 1. The following are equivalent.
(i) f € BMOA(B,).
(ii) (1 — |2)*)|Vf(2)[*dA(z) is a Carleson measure.
(iii) (1 — |z|? )|Rf( )|2dA(z) is a Carleson measure.
(iv) sup [ [Rf(2)(L—[2[*)*(1 = [@a(2)[*)"dA(2) < o0

a€ n]Bn

Hence we define the space BMOA(B,) (or just BMOA) to consist of all analytic
functions f : B,, — C with

[ fllBaoa = sup /|Rf 2112721~ ISOa(Z)IZ)"d)\(z)>1/2 < 0.

a€B,,

The space BMOA is a Banach space with the norm ||f|| := [ f(0)| + || f||Brmoa-
Since C,,, : B(B,,) — B(B,,) is always bounded and invertible, we assume that ¢(0) = 0
in our investigation of boundedness and compactness of C, : B(B,,) — BMOA(B,).

2. FIRST RESULTS.
We define F,(z) = A-ERIRe@E 1 write dpy(2) = Fy(2)dA(2).

(I=]e(2)?)?
Using (1) one has that j, is a Carleson measure if and only if
|Re(2)[? 242 2
2 sup [ A (L= PP~ a2 < .
acB, ) (1= [p(2)]?)?

n

We start by showing that this condition is sufficient for the boundedness of the com-
position operator. The result holds without any additional assumptions.

Theorem 2. Letn, m € N and let ¢ : B, — B,, be analytic. If

(1 - PR
T lepe

is a Carleson measure then the operator C, : B(B,,) — BMOA(B,) is bounded.

dﬂso( )=

Proof. We have, for every f € B(B,,),

Za—f DRy (),
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so [R(f o ¢)(z)| < |V [f(p(2))] [Re(z)|. Therefore

IC, fllBar0a = sup / [R(fo@)(2)*(1 = [2")*(1 = [a(2)[*)"dA(2)

aGn

< sup / V£ (o) PIR(2) FA — |42)2(1 — gu(2)2)dA(2)

aEBn

< 71 sup / L o) < il

G,En

U

This of course contains the case m = 1. In that case the reverse direction can also be
proven by existing methods, so we get

Theorem 3. Let n € N and let ¢ : B, — D be analytic. The operator C, : B(D) —
BMOA(B,) is bounded, if and only if ji, is a Carleson measure.

To prove the necessity, we take two analytic functions f; € B(D), j = 1,2, such that
|f1(2)] + |f4(2)] = C/(1 —|z]) for all z € D (see [RU]). Since the composition operator is
assumed bounded, we get

2 2
Cr 2 1ICfillBmoa = sup / [R(fi 0 0)(2)*(1 = [2")*(1 = |a(2)[*)"dA(2)
= =1 ac n

= supZ/lf NIPIRe(2)1P(1 = 2*)*(1 = [a(2)")"dA(2)

aeBn.:

a
> C?/2 sup/|1 lLP” o(2).

acB,,

Surprising difficulties arise when trying to generalize the above argument to the case
m > 2. We mention that Choe and Rim generalized in [CR] the construction of the ”test
functions” of Ramey and Ullrich to higher dimensions. However, this seems not to be
enough for a proof of the necessity of the Carleson measure condition of p,. The reason
is that as a consequence of the use of the chain rule in the expression R(f o ¢), one will
need a lower bound for |(y, Rp)|. This is analyzed in the later sections, see especially
(33) and (34) for the derivative of our test functions.

The following necessary conditions for the boundedness of C, : B(B,,) — BMOA(B,)
with general n, m, can be derived more easily:

[(Re() TTGEDE |\ oy ay
3 sw sup/ P (1 = 1P = oA < o

f:Bm—D analytic a€By,

@ s [ : (BT () (1~ () PYdA) < oo

wi=1acB, J (1 —[(p(2), w)[?)?

n
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Here (3) follows by applying Theorem 3 to the bounded composition operator C, :
B(D) - BMOA(B,). (4) is a special case of (3): f(z) := (z,w) for a fixed w € C™ with
lw| = 1.

In particular, if C,, : B(B,,) — BMOA(B,) is bounded then, for i =1,...,m

Q- EPIRAGE
o) = T T pmpe A

are Carleson measures.

3. BASIC REGULARITY CONDITION FOR THE SYMBOL.
Let us get a variant of Schwarz’s lemma that we need for the sequel.

Lemma 1. Let ¢ : B, — B, be an analytic map such that ¢(0) = 0. Then

(5) lp(2)] < 2],
(6) Re(2)| < %ﬁjf (m=1).
(7) Ro(z)| < 21 _1’f(|'?||22>1/2 (m>1).

Proof. Let us fix z € B, \ {0} and w € C™ with |w| = 1, and define F'(\) = (p(AF), w).
Note that F' : D — D is holomorphic and F(0) = 0. Then, from the classical Schwarz
Lemma, for any |A| < 1,

[EV <Al
( what gives (5) by taking A = |z|) and
1-|[FVP?
F'| < ———
PO < S
Using that F'(\) = GR@()‘T;)’ w) one gets, again for A = |z|, that

[{Rp(2),w)] < ]z|1 — Ho(2), w)|?

1—[z?

This shows (6) for m = 1.
For general m € N, we write

(Rp(a),w)] < 22—

In particular, for any 6 € [—7,7) and |w| = 1,
1 - 1
(G = 2P Re(2) + €% (2), w)] < (1= |2 (Rep(2), w)] + [{p(2), w)] < 1.
Therefore, for 6 € [—m, ),
1 .
|51 =12 Re(2) + ()] < 1.

Now integrating over # one obtains

i(l — [2")?|Re(2)]* + ()" < 1,
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and (7) is shown for any m. O

Recall that we used the notation F,(z) = %, and note that if F}, is bounded

then dp, < ||F,|ldA(2), and hence p,, is a Carleson measure and C,, is bounded invoking
Theorem 2.

In general F, ¢ L*(B,,dA), but, from (5) and (7), satisfies F,(z) < (1_|4‘2)2.

For 0 < s <1 we denote

4
e

Clearly () is an open subset of B,, contained into {z : |z| > s}.

Given z € B, and 0 < r < 1, we denote by I,.(z) C B, the line segment joining rz and
z: I.(z) :={C | ¢ = sz for some s € [r, 1] }.
Given z € B, and 0 < h < 1, we denote by J,(z) C B,, the non—tangential cone

‘<é |§Z§|>1 > 1}

Lemma 2. Assume that the holomorphic mapping ¢ : B, — B, satisfies ¢(0) = 0 and
the following condition for some 0 < h <1 and 0 < s < 1: For every z € ), there exists

0 < r <1 such that the line segment I.(z) is mapped by ¢ into the non—tangential cone
Jn(@(2)). Then

®) K§8r£§3NZhﬂ

0, :={z € By | [p(2)] > s, [Fy(2)] >

Jn(z) = { £eB,

for all z € Q.
Proof. Suppose that the contrary of (8) holds for a z € Q :

() Rp(z)\| K
©) (e meon <3

5"
By redefining the corresponding r to be smaller, if necessary, we may assume, by conti-
nuity, that

(10)

h
<0
100

(R@1(<1)7R902(<2)77R90m<<m>> . RQO(Z)
|[(Bep1 (1), Bepa(Ca), o Rom(Gm))| - [Rp(2)]

for all (1, (s, ..., Gn € I.(2); here ¢ := (91,02, s ©m)-
The radial derivative Rp(§) equals

L 916 —w((1=2)6)
e—0 g ’

hence, by the mean value theorem applied to the function ¢ : s +— ¥(s) := ¢(sz), s € [r, 1],
for € € I,(z),

€ — 2|

(11) (&) = @(2) + (R1(C1), Rpa(Ca), -y Rom(Cm)) 2]

for some points (1, (o, ., G € I(2).
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We note that the right hand side of (11) cannot be a point of J,(¢(2)): by (9), and

(10)7
(21 L) 6l2) (R (6. Rl R G 1)y
)] 19() = () + (Br (1) Rpa(Ga)r o Rom(G)lE —21/121 )]
L () (B Res) o ReatE 1y
I (R G) R o R G =1
oz) Rol2) 3
2 < Ko o+ %51

(o

Contradiction: ¢ does not map I,.(z) into J,(p(2)). Hence, (8) is true. O

4. PROPERTIES OF LACUNARY SERIES.

In Sections 4 and 5 the number h, 0 < h < 1, is fixed to be as in Lemma 2.
We define a pseudometric on the boundary of the unit ball:

(13) aco=(-1cor)”. ceeom,

Note that d satisfies the triangular inequality. Given § > 0 and ¢ € 0B, we denote the
d-ball with center ¢ and radius ¢ by

(14) E5(¢) :={¢ € OB, | d((,§) < 0}

We say that a set I' C dB,, is d-separated by ¢, if d-balls with radius ¢ and centers in the
points of ', are pairwise disjoint.
The following result is proved by Ullrich in [U]. See also Lemma 2.2 of [CR].

Lemma 3. For every (small) A > 0 there exists an M € N with the following property:
if 6 >0 and I' C 9B, is d-separated by A5/2, then T can be decomposed as T' = UM T
such that every I'y is d—separated by 6.

Let us fix 0 < A < 1072 such that

i h
1 2 2n—2 7m2/(4A) <
(15) mz_l(er ) =700 3%

and let then M € N be fixed as in Lemma 3. Further, let us fix p > 1 large enough, such
that

Iye _ 1
16 (1 - _) > 2 and
(16) S) z3.

108

(17) pA* > Tz
For every j =1,2,... , M, choose d;9 > 0 such that
(18) A 6Ty =1,
and then inductively choose the numbers ¢;, for v = 1,2, ... such that
(19) pMor, =07, .
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Clearly, since p > 1, every (d;,)52, is an exponentially decreasing sequence, and by (17)

h2
(20) 5]2-7,/ <10 for all 7, v.
Moreover,
2 vM+js2
(21) Ap 35]-’1, =1
for every j and v. For every j =1,... ,M and v = 1,2,..., let ['¥¥ C dB,, be a maximal

subset which is d-separated by Ad;, /2. (In particular, for every z € OB, there exists
¢ € I such that d(z,&) < Ad;,; otherwise [V is not maximal.) Using Lemma 3 we
define the sets I'; ,ar4%, which are d-separated by 0, ,, such that

M
(22) [ = U Ljunk-
k=1

Finally we define a set of functions; these depend on some unspecified factors, though
we do not display this dependence in the following.

Definition 1. Let j,k € {1,2,... ,M} and v € N be given. Let y;, : OB, x 0B,, — C be
an arbitrary function such that
() 17w (2, Ol = B/100 , if 2, ¢ satisfy d(z,C) < 0j.,
(i1) |Vjkp(2, Q)] <1 for all z and .
Let us define
vM+j_q

(23) Poonrss(2) = D w2 042,07 :

CEL u M +[k+4]
where [k+jl :=k+j,ifk+j<M,and k+jl:=k+j—M,if M <k+j<2M.

Lemma 4. For all v, the functions of Definition 1 satisfy the bounds
M
(24) 2M* > Y |Peonis(2)| = C = C(h) for » € OB,

jk=1

Remark. We emphasize that the last C' > 0 is independent of v and the choice of the
functions ;..

Proof. The proof is an improvement of [CR], Theorem 2.1.

Let v and z € 0B,, be given. By the constructions above we can pick j and k such that
for some & € I'j ,ar4[k1j) we have d(z,&) < Ad;, < 0;,. We have, by (21), Definition 1 (4)
and (16),

, i h pl/]\1+j/2
ik, €) (2, €7 2 (11— a%2,)
h 1 puAI+j/2 h
25 = —(1 - —) Z 200"
( ) 100 pVM+] — 300

We aim to show that the contribution of the other terms in (23) is negligible in comparison
with this term. Since we are proving a lower bound, it suffices to consider just the indices
7 and k fixed above.
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For 0 < r < 1 and ¢ € 0B, the normalized surface area measure o of E,.({) can be
calculated:

(26) o(E(Q)) ="
Let us define for every m = 0,1,2, ..., the set
27) Hon(2) = {C € Dynriuns) | mby < d(2,0) < (m +1)5,,).

The number #(Hy(z)), i.e. the cardinality of Hy(z), equals 1, by the construction of the
sets I'. To count #(H,,(z)) for m > 0, we have

U Eaj Q) C B2y, (2),
CEHm (2

hence, by (26),

05 (Hum(2)) = (B, (O)#(Him(2)) < 0(Egnras,, (2)).
We thus get
(2%) H(Hn(2)) < (m+ 2772,

By (27) and (13),
1—(m+1)%5;, <|(2,()]P <1-m?,,

if ( € H,(2).
Using this and (28),

Z Vikw (2, Q)] [{z, C>|pvl\l+j_1

CEL u M4 [k+]
¢#E

S Her =3 3 eor
m=1¢cH,,

CEL a4 [k+4]
C#E

IN

o0

S (1 - m2a2,) T (o (2))

m=1

S i1 2

IN

IN

IN

Z 6_§m262 ( I/Af-‘rj_l)(m —I— 2)2n—2

m=1
00
7m2(%7%) 2n—2
< e " 2az72) (m 4 2)
m=1

2 2
< —m /(414) 2 277,—2 <
B ;16 (m+ 2777 < T55 -3

by (21) and (15). Combining with (25), the lower bound in (24) follows. Finally, we see
that |Py n4j(2)| <2forall zeB,. O



10 OSCAR BLASCO, MIKAEL LINDSTROM, JARI TASKINEN

Lemma 5. For everyv € Nand j,k =1,... , M, let the set I'; ,ari k45 C By be as above,
and let (a,),en be a complex valued sequence with |a,,| < 1 for every v. Then every
analytic function

(29)  f(2) = Z o Quunii(2) == Zoéu Z (z, C)pVMH , 2 €B,,

veN veN Cerj,uM+[k+j]

belongs to B(B,,), and || f|lg < C (C is independent of v, j and k). If the sequence (o, )y en
tends to zero, then [ € By(B,).

Proof. It is elementary to show that R(Q,ar+) = " Qpuarr;. Then we obtain

- vM+3 A
B(Quunr)(2)] < P Quons (),
and moreover

vMtj

M
VMg pr M p D M v | 1M
|R(Qrwnrss)(2)] < CPMH " < C—— (=MD 5|7

TR (p p
This gives
[RF(2)] <Y | [R(Qraners)(2)]
veN
<ol D (M = M
; pM -1 veN

<o " » 3 <
- oMl 1z

veN p(Vfl)M+j §n<p1/]v[+j

If o, — 0, then we can choose N so big that |, | < ¢ for v > N. With

N-1 oo
f(z) = Z 0, Qrunr+5(2) + Z @, Qrurryi(2)
v=0 v=N

we see that
lim (1 — [2[*)|Rf(2)] < 2C, e

2| =1

foralle >0. O

5. MAIN RESULTS.

Recall that for ¢ : B, — B,, holomorphic with ¢(0) = 0, we defined F,(z) =
% and Q, = {z € B, | |p(z)] > r, |F,(2)] > ﬁ}, which is an open
subset of B,, for 0 < r < 1.

Let us use the notation dpu, s(2) = xa,(2)F,(2)dA(z). Clearly |||dpys||| < |||dpy]]-

Proposition 1. Let n € N. Then du,(z) = F,(2)dA(2) is a Carleson measure if and only
if dpp,s(2) = xa.(2)Fs(2)dA(2) is a Carleson measure for some 0 < s < 1.



BLOCH-TO-BMOA COMPOSITIONS IN SEVERAL COMPLEX VARIABLES 11

Proof. It suffices to show that

(30) sup / F,(z)
CLGB’I’L
B\

If z € B, \ Q then either F,(z) < (1:‘192)2 or [p(2)] < s.
If |p(2)] < s and a € B,, then

| R g < g [0 IR g A) <

(1 —af?)"

Wdfl(z) <C.

Bn\Qs Brn

where the last estimate follows from the embedding H*(B,) C BMOA(B,) and ¢; €
H>(B,) fori=1,...,m.
If Fi(2) < ﬁ and a € B,, then

UG PR S SV 15
\/ RO I e (el BT Bl

where the last integral is bounded by 1 — |a|? if n > 1 and by (1 — |a|?) log ﬁ ifn=1
(see Rudin [R], p.17 for this estimate). Hence (30) is shown. [

Theorem 4. Assume that ¢ satisfies the non—tangentiality condition of Lemma 2. Then
the composition operator C, : f +— f o is bounded from B(B,,) into BMOA(B,) if and
only if du,(z) = F,(2)dA(z) is a Carleson measure.

Proof. The “if”-statement is Theorem 2.
We turn to the "only if’—statement. Let h,s € (0,1) be fixed as in Lemma 2.
From Proposition 1 it suffices to show that

(31) sgﬁg/Fw(z)%dA(z) <C.

s

For every j,k=1,2,... ,M and t € [0, 1] we define the analytic function
Fina(2) = Zru<t>Qk,uM+j(2), z € B,,,

reN

where 7, is the vth Rademacher function and Qp,am+i(2) = Zcer‘ e v
I,V

Lemma 5 states that every f;. belongs to B(B,,) and that || f; .||z < Ci.

We are assuming that the composition operator C,, : B(B,,) — BMOA(B,) is bounded.
Defining the measure dpu,(z) := (1 —[2[*)?*(1 — |pa(2)|*)"d\(2) on B, this means that the
operator family

(z,Q)F

[k+34]

T, : B(Bn) — L*(dua) , fr— R(foyp),

is bounded uniformly with respect to a. (Denote the norm of L*(du,) by || - [|2.a- )
We thus find a constant Cy > 0 such that

sup [|R(fire 0 @)l50 < Co

G,EBH,
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for all 7, k and t. Integrating with respect to ¢, using Fubini’s theorem and the orthogo-
nality property of the Rademacher functions we get

(32) / S IR@Qeanrs © 9)(2)2dpa(2) = / IR(fye 0 @) |2udt < Co.

Bn veN

This inequality still holds with a different C5, if a summation over all indices j and k is
added to the left hand side; for each v there exist M indices j and k.

Let us fix v for a moment and bound R(Qa+; © ¢) from below. For all z € Q, we
have

R(Qrunmvjo)(2) .
= PN (). P Re(2), €)
CET ) » (k4]

(33) = P2

V]\/[+j71

Ro(2)] Y (), Q"™ ' (2),€).

CEL} v M+ [k+4)

where we denoted 7 := ¢/|p| and ' := Ry/|Ry|.
We claim that

(34) S|Y 0.0 w@.0| 2 o)

Jik=1"CEL; unr4[k+4]

for every z € Q. To prove this we use Lemma 4. Given z we find j and %k such that
d(n(z),§) < Adj,, < h107° for some & € T nripetg)- Let & =& — (€, m(2))n(z). Use the
definition of d to obtain that || < v/2 21075 and [(¢,n(z))| > 1.

By Lemma 2,

h
(35) (7' (2), &)1 = & n()] (' (=), ()] = 10 (=), €01 = 15
In Lemma 4 we choose w € 0B, such that w = n(2), and then v;;,(w, () = (7' (2),()
for all j, k. For other values w, the numbers 7, ,(w, () are set equal 1. In Lemma 4,

Py yar+5(w) coincides with

S O (2).0)

CEL uM 4 [ht4]

for all j, k, and because of (35), Lemma 4 applies. Hence, (34) follows. The result is just
for this z, but the estimate is z—independent.
Returning to (33) and observing that

(D [R(Qraarss 0 9)(2)))* < M? Y |R(Qrunrss 0 0) ()

jk=1 jk=1

it follows
al (v+1)
v v+1)M _
M* Y IR(Qrunirs 0 @)(2)F = C2(h)p™ M |p(2)]*® Y| Rp(z))?

jk=1
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for every z € ;. Hence by (32),

M2Cy > C2(h) sup / > M (@) PP R (2) Pdpa (2)

a€Brn JQ, veN
@) = Cosw [ %(1 PR~ [ga(2)P)raA(2),

s

for some constant Cy. In the last inequality we used (0 <b< 1)

o0

1
1—0)2 > (n+ 1"
n=0
co pAHDM+M

S Cl Z Z lenil

v=0 n:p(u+1)kl

oo prHDM+M

1MM (v+1)M _ 1
SECDIED DN

v=0 p—p+1)M

v (v+1)M _
< CQZP2( +1)Mbp + 1

v=0
o0
(v+1)M _
S 03 § pQVMbp 1.
v=0

Thus (31) is shown and the proof is finished. [

Proposition 2. Iflim, . |||dp,.||| =0, i.e.

(37) lim sup /Q Fw(z)wdfl(z) =0,

r—1locz, 1= (z,a)>"
then Cy, : B(B,,) = BMOA(B,) is compact.

Proof. For every ¢ > 0 there exists 0 € (0,1) such that as r € [¢,1) we have

(1 Jaf2)"
F, — 2 dA
o / A A <

This estimate and (30) show that 1, is a Carleson measure, and hence C, is bounded.
Let us now show that it is compact.

Let (f;) be a sequence in B(B,,), ||fi|]| < 1, which converges to zero uniformly on
compact subsets of B,,. We show that f; o ¢ — 0 in the norm of BMOA(B,). Since

151l < 1L and [R(fi 0 9)(2)| < [V filp(2))] |Ro(2)] < 1555, we have for all 4,

I=le(2)]*”

sup | [R(fio 0)(2)[* (1 = [2[*)*(1 = |pa(2)[*)"dA(2) < &

a€Bn J Qs
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Now f; — 0 on compact subsets of B,,, so we get that there exists 7o € N such that

sup |V fi(p(2))]? < e for all i > iy. Thus, if i > i,
ZEBn\Q(;

acB,

sup / [R(fio @) (2)]* (1= [2*)*(1 = [a(2)[*)"dA(2)
Br\Qs

< sup [Vfi(e(2))Psup [ [Ro(2)]” (1= [2")*(1 = |pa(2)[")"dA(2)

2€Bn\ Qs a€B, JB,

< sup V@)D leillbaoas, < C e,
z€BR\ Qs j=1

where in the last estimate we use that ¢; = C,(2;) € BMOA(B,) because C, is bounded.

Hence it follows that |f;(»(0))| + || fi o ¥|lBmoa,) — 0.
]

Lemma 6. Suppose that p, is a Carleson measure. If C, : B(B,,) — BMOA(B,) is
compact, then

(38) lm sup sup [ [R(fop)(2)]* (L= |2)*(1 = |@a(2)[")"dA(2) = 0.
— feBO(Em)z G‘EB” Qr
lI711<1

Proof. Since C,({f € Bo(B,,) : ||f|| < 1}) is relatively compact in BMOA(B,,), there
are, for each ¢ > 0, functions f; € By(B,,), ||fi|]] < 1, i« = 1,...N, such that for each
f € Bo(By), ||f]l <1, there exists j € {1, ..., N} with

sup | [R(f o @)(2) = R(fi 0 0)(2)]* (1 = [2]*)*(1 = |pa(2)[*)"dA(2) <e.

For every f; € By(B,,), i = 1,..., N, there is §; € (0,1) and 0 := maxj<;<y ¢; such that as
r € [0,1) we have

IV fi(w)|(1 = wl) < Ve

for all r < |w| < 1. Observe that r < |p(z)| < 1 for z € Q,. Therefore, for given a € B,
and f € Byo(By,), ||f]| <1, one obtains

/Q [R(f o @)(2)]* (1= [2[*)*(1 = |0a(2)[*)"dA(2)
< 2| [R(fop)(z) = R(fio9)(2)* (1= [2")*(1 — |ga(2)|")"dA(2)

+ 2/ [R(fj o @) ()] (1= [2*)*(1 = [@a(2)]*)"dA(2)
Q
(L — la[*)"

GEEn

This proves the lemma. [J
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Theorem 5. Suppose that ¢ satisfies the non—tangentiality condition of Lemma 2. Then
C, : B(B,,) — BMOA(B,) is compact if and only if
tin [ dpag ||| = 0.

Proof. The ”if”—statement is Proposition 2.
Suppose conversely that C,, : B — BMOA is compact. Let (o,)men € (5,1) be such
that |a,,| — 1. For every 5,k =1,2,... ,M, m € Nand t € [0,1] we define

Gigamt(2) = > _ 1)) Qronirs(2), 7 € By,
veN

where 7, is the vth Rademacher function and Q,n+i(2) = Zcer. . (2, OpuMH. It
J,V J

follows from Lemma 5 that every g; xm+ € Bo(B,,) and that ||g; xm.|lg < C1. Let h € (0,1)
and s € (3, 1) be fixed as in Lemma 2.
Let € > 0 be given. By Lemma 6 there exists d € (s, 1) such that as r € [0, 1) we have

sup /Q | R(gjme © ) (2)]* (1= [21*)*(1 = a(2)[*)"dA(2) < CTe,
acln r

for all 5, k,m,t.
Let a € B, be fixed. Integrating with respect to ¢, using Fubini’s theorem and the
orthogonality property of the Rademacher functions we obtain that

C2e > / / R(Ggms © ) (2) (1= |22(1 — |ia(2) [P (2t

(39) = /Q Dl P RQunres 0 9) ()P (1= 21°)(1 = Jpa(2)P)"dA(2).

" veN

Let us bound R(Qkam+; © @) from below as z € €,.. For all z € (2, we have

R(Quont+jo9)(2) =p™ T >~ (p(2), P N Re(2),¢)

CEL uM A [k+4]
vM+j VM _ MG
= pP"MHlp) T Re(z)] > (2), 0PN (2),0),
CEL M+ [k+4]

where we denoted 1 := ¢/|¢| and 1’ := Rp/|Ryp|. As in the proof of Theorem 4 we have
that

DI D DERUORV G ORI

Jk=1" CELj M4 (k4]

for every z € .. For each r € [,1) and z € Q,., we thus obtain

3 IRQraniss 0 2)(2)] = CR)P™M (=) 277" |R(2)].

jk=1

Since
M

(D [R@runrss 0 9)(2))* < M? Y |R(Qranrs 0 9)(2)

Jik=1 j.k=1
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it follows from (39) that
MC2% > 2 C2()27 " [ 37 M amp(2) 7 R () (1= 2121 = |pa(2)]?)"dA(2).

O veN
Using that

Co
(1= lame(2)?)?

for some constant Cy, we get that there is a constant C3 such that

|Rp(2) ] —2)2(] — N2V A\ (2
Cre 2 | el (1 R~ () Py aAe)

By Fatou’s lemma, we have for each r € [J, 1) that

M - 222 _ , 2m B
/Qr (1—|o(2)]2)? (1= 21)°(1 = |pa(2)]*)"dA(2)

< i [ OE 4 pra - eprae < ce

m=o0 1= Jamp(2)[?)?

Hence, as a € B,, was picked arbitrary, we get

IR e oo
sup /QTQ_WWG 2P)(L — [ga(2)P)dA(E) < Che.

This proves the statement. [

v vM _
Y P Mamp(2) P >

veN
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