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Abstract. Given an analytic mapping ϕ : Bn → Bm we study the boundedness and
compactness of the composition operator Cϕ : f �→ f ◦ ϕ acting from the Bloch space
B(Bm) into BMOA(Bn). If the symbol satisfies a very mild regularity condition then
the boundedness of Cϕ is equivalent to dµϕ(z) = (1−|z|2)|Rϕ(z)|2

(1−|ϕ(z)|2)2 dA(z) being a Carleson
measure. The compactness of Cϕ is also characterized.

1. Introduction.

We study analytic mappings ϕ : Bn → Bm and the corresponding analytic composition
operators Cϕ : f �→ f ◦ ϕ. Here n,m ∈ N and Bn is the unit ball of C

n. In the one
complex variable case n = m = 1, D := B1, the investigation of composition operators
from the Bloch space B(D) into BMOA(D) has only recently taken place. Boundedness
and compactness of Cϕ : B(D) → BMOA(D), Cϕ : B0(D) → V MOA(D) and Cϕ :
B(D) → V MOA(D) has been studied in [SZ] by Smith and Zhao and by Makhmutov and
Tjani in [MT]. Madigan and Matheson [MM] proved that Cϕ is always bounded on B(D).
Moreover, [MM] contains a characterization of symbols ϕ inducing compact composition
operators on B(D) and B0(D). The essential norm of a composition operator from B(D)
into Qp(D) was computed in [LMT].

In the case of several complex variables, Ramey and Ullrich [RU] have studied the case
mentioned in the beginning: their result states that if ϕ : Bn → D is Lipschitz, then
Cϕ : B(D) → BMOA(Bn) is well defined, and consequently bounded by the closed graph
theorem. Our results below are, of course, more general. The case of Cϕ : B(Bn) → B(Bn)
was considered by Shi and Luo [SL], where they proved that Cϕ is always bounded and
gave a necessary and sufficient condition for Cϕ to be compact.

Our main result states that if ϕ : Bn → Bm satisfies a very mild regularity condition,
then the boundedness of Cϕ : B(Bm) → BMOA(Bn) is characterized by the fact that

dµϕ(z) = (1−|z|2)|Rϕ(z)|2
(1−|ϕ(z)|2)2

dA(z) is a Carleson measure (see notations below).

Similarly, a corresponding o–growth condition characterizes the compactness.
Let N := {1, 2, 3, . . . }. For z, w ∈ C

n let 〈z, w〉 =
∑n
i=1 ziw̄i denote the complex inner

product on C
n and |z| = 〈z, z〉1/2. The radial derivative operator is denoted by R; so, if

f : Bn → C is analytic, then

Rf(z) :=
n∑
j=1

zj
∂f

∂zj
(z) for z ∈ Bn.
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The complex gradient of f is given by ∇f(z) = ( ∂f
∂z1

(z), ∂f
∂z2

(z), ..., ∂f
∂zn

(z)). Clearly Rf(z) =

〈∇f(z), z̄〉. Let ∇̃f(z) = ∇(f ◦ ϕz)(0) denote the invariant gradient, where ϕa stands for
the Möbius transformation of Bn with ϕa(0) = a and ϕa(a) = 0. Note that on the other
hand Rf =

∑
k kFk, if

∑
k Fk is the homogeneous expansion of f . If ϕ : Bn → C

m with
ϕ := (ϕ1, ϕ2, ..., ϕm), then Rϕ := (Rϕ1, Rϕ2, ..., Rϕm).

The Rademacher functions rn : [0, 1] → R, n ∈ {0} ∪ N, are defined by rn(t) :=
sign(sin(2nπt)).

The Bloch space B(Bn) is defined to consist of analytic functions f : Bn → C such that

‖f‖B := sup
z∈Bn

|∇f(z)|(1 − |z|2) < ∞.

Timoney [T] proved that ‖f‖B and ‖f‖1 := sup
z∈Bn

|Rf(z)|(1 − |z|2) are equivalent. The

Bloch space B(Bn) is a Banach space with the norm ||f || := |f(0)| + ||f ||B. The little
Bloch space B0(Bn) is the subspace of B(Bn) for which lim

|z|→1
|Rf(z)|(1 − |z|2) = 0.

Let g be the invariant Green function defined by

g(z) =

∫ 1

|z|
(1 − t2)n−1t−2n+1dt,

and let dλ(z) = dA(z)
(1−|z|2)n+1 , where dA is the normalized volume measure in C

n.

The space BMOA(Bn) can be defined (see [CC] Theorem A, [OYZ1] Prop 1) as the
space of analytic functions f : Bn → C with

sup
a∈Bn

∫

Bn

|∇̃f(z)|2g(ϕa(z))dλ(z) < ∞.

We say that a positive Borel measure on Bn is a Carleson measure if there exists c > 0
such that for any ξ ∈ ∂Bn and δ > 0 we have

µ(B(ξ, δ)) ≤ cδn,

where B(ξ, δ) = {z ∈ Bn : 1 − δ < |z| < 1, z|z| ∈ S(ξ, δ)} and S(ξ, δ) = {ν ∈ ∂Bn :

|1 − 〈ν, ξ〉| < δ}. It is well known that µ is a Carleson measure if and only if

sup
a∈Bn

∫
Bn

(1 − |a|2)n
|1 − 〈z, a〉|2ndµ(z) < ∞.(1)

We shall write |||dµ||| = supa∈Bn

∫
Bn

(1−|a|2)n

|1−〈z,a〉|2ndµ(z).

There is a lot of bibliography concerning characterizations of BMOA in terms of Car-
leson measures (see [J1, J2] or see [ASX, OYZ2, Y] for Qp spaces.) It is known that
f ∈ BMOA(Bn) (see [OYZ2] Proposition 3.4) if and only if

sup
a∈Bn

∫

Bn

|∇̃f(z)|2(1 − |ϕa(z)|2)ndλ(z) < ∞.

Now, taking into account that 1 − |ϕa(z)|2 = (1−|a|2)(1−|z|2)
|1−〈z,a〉|2 , one obtains, using (1) that

f ∈ BMOA(Bn) if and only if |∇̃f(z)|2
1−|z|2 dA(z) is a Carleson measure. Observe now that, a

direct computation shows

|∇̃f(z)|2 = (1 − |z|2)(|∇f(z)|2 − |Rf(z)|2).
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Therefore, using |Rf(z)| ≤ |∇f(z)||z|, one gets

|∇̃f(z)|2 ≥ (1 − |z|2)2|∇f(z)|2 ≥ (1 − |z|2)2|Rf(z)|2.
Thus

(1 − |z|2)|Rf(z)|2dA(z) ≤ (1 − |z|2)|∇f(z)|2dA(z) ≤ |∇̃f(z)|2
1 − |z|2 dA(z).

The following theorem is due to several authors. A complete proof of the equivalences
of (i), (ii) and (iii) has been presented by Zhu in [Z]. Further, (iii) and (iv) are equivalent
by (1).

Theorem 1. The following are equivalent.
(i) f ∈ BMOA(Bn).
(ii) (1 − |z|2)|∇f(z)|2dA(z) is a Carleson measure.
(iii) (1 − |z|2)|Rf(z)|2dA(z) is a Carleson measure.
(iv) sup

a∈Bn

∫
Bn

|Rf(z)|2(1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z) < ∞.

Hence we define the space BMOA(Bn) (or just BMOA) to consist of all analytic
functions f : Bn → C with

‖f‖BMOA := sup
a∈Bn

( ∫

Bn

|Rf(z)|2(1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z)
)1/2

< ∞.

The space BMOA is a Banach space with the norm ||f || := |f(0)| + ||f ||BMOA.
Since Cϕa : B(Bm) → B(Bm) is always bounded and invertible, we assume that ϕ(0) = 0

in our investigation of boundedness and compactness of Cϕ : B(Bm) → BMOA(Bn).

2. First results.

We define Fϕ(z) = (1−|z|2)|Rϕ(z)|2
(1−|ϕ(z)|2)2

and write dµϕ(z) = Fϕ(z)dA(z).

Using (1) one has that µϕ is a Carleson measure if and only if

sup
a∈Bn

∫

Bn

|Rϕ(z)|2
(1 − |ϕ(z)|2)2

(1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z) < ∞.(2)

We start by showing that this condition is sufficient for the boundedness of the com-
position operator. The result holds without any additional assumptions.

Theorem 2. Let n, m ∈ N and let ϕ : Bn → Bm be analytic. If

dµϕ(z) =
(1 − |z|2)|Rϕ(z)|2

(1 − |ϕ(z)|2)2
dA(z)

is a Carleson measure then the operator Cϕ : B(Bm) → BMOA(Bn) is bounded.

Proof. We have, for every f ∈ B(Bm),

R(f ◦ ϕ)(z) =
m∑
j=1

∂f

∂zj
(ϕ(z))Rϕj(z),
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so |R(f ◦ ϕ)(z)| ≤ |∇f(ϕ(z))| |Rϕ(z)|. Therefore

‖Cϕf‖2
BMOA = sup

a∈Bn

∫

Bn

|R(f ◦ ϕ)(z)|2(1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z)

≤ sup
a∈Bn

∫

Bn

|∇f(ϕ(z))|2|Rϕ(z)|2(1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z)

≤ ‖f‖2
B sup
a∈Bn

∫

Bn

(1 − |a|2)n
|1 − 〈z, a〉|2ndµϕ(z) ≤ C‖f‖2

B.

�
This of course contains the case m = 1. In that case the reverse direction can also be

proven by existing methods, so we get

Theorem 3. Let n ∈ N and let ϕ : Bn → D be analytic. The operator Cϕ : B(D) →
BMOA(Bn) is bounded, if and only if µϕ is a Carleson measure.

To prove the necessity, we take two analytic functions fj ∈ B(D), j = 1, 2, such that
|f ′

1(z)| + |f ′
2(z)| ≥ C/(1 − |z|) for all z ∈ D (see [RU]). Since the composition operator is

assumed bounded, we get

C1 ≥
2∑
j=1

‖Cϕfj‖2
BMOA =

2∑
j=1

sup
a∈Bn

∫

Bn

|R(fj ◦ ϕ)(z)|2(1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z)

= sup
a∈Bn

2∑
j=1

∫

Bn

|f ′
j(ϕ(z))|2|Rϕ(z)|2(1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z)

≥ C2/2 sup
a∈Bn

∫

Bn

(1 − |a|2)n
|1 − 〈z, a〉|2ndµϕ(z).

Surprising difficulties arise when trying to generalize the above argument to the case
m ≥ 2. We mention that Choe and Rim generalized in [CR] the construction of the ”test
functions” of Ramey and Ullrich to higher dimensions. However, this seems not to be
enough for a proof of the necessity of the Carleson measure condition of µϕ. The reason
is that as a consequence of the use of the chain rule in the expression R(f ◦ ϕ), one will
need a lower bound for |〈ϕ,Rϕ〉|. This is analyzed in the later sections, see especially
(33) and (34) for the derivative of our test functions.

The following necessary conditions for the boundedness of Cϕ : B(Bm) → BMOA(Bn)
with general n, m, can be derived more easily:

sup
f :Bm→D analytic

sup
a∈Bn

∫

Bn

|〈Rϕ(z),∇f(ϕ(z))〉|2
(1 − |f(ϕ(z))|2)2

(1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z) < ∞,(3)

sup
|w|=1

sup
a∈Bn

∫

Bn

|〈Rϕ(z), w〉|2
(1 − |〈ϕ(z), w〉|2)2

(1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z) < ∞.(4)
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Here (3) follows by applying Theorem 3 to the bounded composition operator Cf◦ϕ :
B(D) → BMOA(Bn). (4) is a special case of (3): f(z) := 〈z, w〉 for a fixed w ∈ C

m with
|w| = 1.

In particular, if Cϕ : B(Bm) → BMOA(Bn) is bounded then, for i = 1, ...,m

dµϕi
(z) =

(1 − |z|2)|Rϕi(z)|2
(1 − |ϕi(z)|2)2

dA(z)

are Carleson measures.

3. Basic regularity condition for the symbol.

Let us get a variant of Schwarz’s lemma that we need for the sequel.

Lemma 1. Let ϕ : Bn → Bm be an analytic map such that ϕ(0) = 0. Then

|ϕ(z)| ≤ |z|,(5)

|Rϕ(z)| ≤ 1 − |ϕ(z)|2
1 − |z|2 (m = 1).(6)

|Rϕ(z)| ≤ 2
(1 − |ϕ(z)|2)1/2

1 − |z|2 (m ≥ 1).(7)

Proof. Let us fix z ∈ Bn\{0} and w ∈ C
m with |w| = 1, and define F (λ) = 〈ϕ(λ z

|z|), w〉.
Note that F : D → D is holomorphic and F (0) = 0. Then, from the classical Schwarz
Lemma, for any |λ| < 1,

|F (λ)| ≤ |λ|
( what gives (5) by taking λ = |z|) and

|F ′(λ)| ≤ 1 − |F (λ)|2
1 − |λ|2 .

Using that F ′(λ) = 〈 1
λ
Rϕ(λ z

|z|), w〉 one gets, again for λ = |z|, that

|〈Rϕ(z), w〉| ≤ |z|1 − |〈ϕ(z), w〉|2
1 − |z|2

This shows (6) for m = 1.
For general m ∈ N, we write

|〈Rϕ(z), w〉| ≤ 2
1 − |〈ϕ(z), w〉|

1 − |z|2 .

In particular, for any θ ∈ [−π, π) and |w| = 1,

|〈1
2
(1 − |z|2)Rϕ(z) + eiθϕ(z), w〉| ≤ 1

2
(1 − |z|2)|〈Rϕ(z), w〉| + |〈ϕ(z), w〉| ≤ 1.

Therefore, for θ ∈ [−π, π),

|1
2
(1 − |z|2)Rϕ(z) + eiθϕ(z)| ≤ 1.

Now integrating over θ one obtains

1

4
(1 − |z|2)2|Rϕ(z)|2 + |ϕ(z)|2 ≤ 1,
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and (7) is shown for any m. �

Recall that we used the notation Fϕ(z) = (1−|z|2)|Rϕ(z)|2
(1−|ϕ(z)|2)2

, and note that if Fϕ is bounded

then dµϕ ≤ ‖Fϕ‖∞dA(z), and hence µϕ is a Carleson measure and Cϕ is bounded invoking
Theorem 2.

In general Fϕ /∈ L1(Bn, dA), but, from (5) and (7), satisfies Fϕ(z) ≤ 4
(1−|z|2)2

.

For 0 < s < 1 we denote

Ωs := {z ∈ Bn | |ϕ(z)| > s, |Fϕ(z)| >
4

(1 − s2)2
}.

Clearly Ωs is an open subset of Bn contained into {z : |z| > s}.
Given z ∈ Bn and 0 < r < 1, we denote by Ir(z) ⊂ Bn the line segment joining rz and

z: Ir(z) := {ζ | ζ = sz for some s ∈ [r, 1] }.
Given z ∈ Bn and 0 < h < 1, we denote by Jh(z) ⊂ Bn the non–tangential cone

Jh(z) :=
{

ξ ∈ Bn

∣∣∣
∣∣∣
〈 z

|z| ,
z − ξ

|z − ξ|
〉∣∣∣ ≥ h

}
.

Lemma 2. Assume that the holomorphic mapping ϕ : Bn → Bm satisfies ϕ(0) = 0 and
the following condition for some 0 < h < 1 and 0 < s < 1: For every z ∈ Ωs there exists
0 < r < 1 such that the line segment Ir(z) is mapped by ϕ into the non–tangential cone
Jh(ϕ(z)). Then

∣∣∣
〈 ϕ(z)

|ϕ(z)| ,
Rϕ(z)

|Rϕ(z)|
〉∣∣∣ ≥ h/2(8)

for all z ∈ Ωs.

Proof. Suppose that the contrary of (8) holds for a z ∈ Ωs :

∣∣∣
〈 ϕ(z)

|ϕ(z)| ,
Rϕ(z)

|Rϕ(z)|
〉∣∣∣ < h

2
.(9)

By redefining the corresponding r to be smaller, if necessary, we may assume, by conti-
nuity, that

∣∣∣ (Rϕ1(ζ1), Rϕ2(ζ2), ..., Rϕm(ζm))

|(Rϕ1(ζ1), Rϕ2(ζ2), ..., Rϕm(ζm))| −
Rϕ(z)

|Rϕ(z)|
∣∣∣ ≤ h

100
(10)

for all ζ1, ζ2, ..., ζm ∈ Ir(z); here ϕ := (ϕ1, ϕ2, ..., ϕm).
The radial derivative Rϕ(ξ) equals

lim
ε→0

ϕ(ξ) − ϕ((1 − ε)ξ)

ε
,

hence, by the mean value theorem applied to the function ψ : s �→ ψ(s) := ϕ(sz), s ∈ [r, 1],
for ξ ∈ Ir(z),

ϕ(ξ) = ϕ(z) + (Rϕ1(ζ1), Rϕ2(ζ2), ..., Rϕm(ζm))
|ξ − z|
|z|(11)

for some points ζ1, ζ2, ..., ζm ∈ Ir(z).
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We note that the right hand side of (11) cannot be a point of Jh(ϕ(z)): by (9), and
(10),

∣∣∣
〈 ϕ(z)

|ϕ(z)| ,
ϕ(z) − (ϕ(z) + (Rϕ1(ζ1), Rϕ2(ζ2), ..., Rϕm(ζm))|ξ − z|/|z| )

|ϕ(z) − (ϕ(z) + (Rϕ1(ζ1), Rϕ2(ζ2), ..., Rϕm(ζm)|ξ − z|/|z| )|
〉∣∣∣

=
∣∣∣
〈 ϕ(z)

|ϕ(z)| ,
(Rϕ1(ζ1), Rϕ2(ζ2), ..., Rϕm(ζm))|ξ − z|/|z|
|(Rϕ1(ζ1), Rϕ2(ζ2), ..., Rϕm(ζm))|ξ − z|/|z||

〉∣∣∣
≤

∣∣∣
〈 ϕ(z)

|ϕ(z)| ,
Rϕ(z)

|Rϕ(z)|
〉∣∣∣ +

h

100
≤ 3h

4
.(12)

Contradiction: ϕ does not map Ir(z) into Jh(ϕ(z)). Hence, (8) is true. �

4. Properties of lacunary series.

In Sections 4 and 5 the number h, 0 < h < 1, is fixed to be as in Lemma 2.
We define a pseudometric on the boundary of the unit ball:

d(ζ, ξ) :=
(
1 − |〈ζ, ξ〉|2

)1/2

, ζ, ξ ∈ ∂Bn.(13)

Note that d satisfies the triangular inequality. Given δ > 0 and ζ ∈ ∂Bn we denote the
d–ball with center ζ and radius δ by

Eδ(ζ) := {ξ ∈ ∂Bn | d(ζ, ξ) < δ}.(14)

We say that a set Γ ⊂ ∂Bn is d-separated by δ, if d–balls with radius δ and centers in the
points of Γ, are pairwise disjoint.

The following result is proved by Ullrich in [U]. See also Lemma 2.2 of [CR].

Lemma 3. For every (small) A > 0 there exists an M ∈ N with the following property:
if δ > 0 and Γ ⊂ ∂Bn is d–separated by Aδ/2, then Γ can be decomposed as Γ = ∪Mk=1Γk
such that every Γk is d–separated by δ.

Let us fix 0 < A ≤ 10−3 such that
∞∑
m=1

(m + 2)2n−2e−m
2/(4A)2 ≤ h

100 · 33
,(15)

and let then M ∈ N be fixed as in Lemma 3. Further, let us fix p > 1 large enough, such
that (

1 − 1

p

)p
≥ 1

3
, and(16)

pA2 ≥ 106

h2
.(17)

For every j = 1, 2, . . . ,M , choose δj,0 > 0 such that

A2pjδ2
j,0 = 1,(18)

and then inductively choose the numbers δj,ν for ν = 1, 2, . . . such that

pMδ2
j,ν = δ2

j,ν−1.(19)
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Clearly, since p > 1, every (δj,ν)
∞
ν=1 is an exponentially decreasing sequence, and by (17)

δ2
j,ν <

h2

106
for all j, ν.(20)

Moreover,

A2pνM+jδ2
j,ν = 1(21)

for every j and ν. For every j = 1, . . . ,M and ν = 1, 2, . . . , let Γj,ν ⊂ ∂Bn be a maximal
subset which is d–separated by Aδj,ν/2. (In particular, for every z ∈ ∂Bn there exists
ξ ∈ Γj,ν such that d(z, ξ) ≤ Aδj,ν ; otherwise Γj,ν is not maximal.) Using Lemma 3 we
define the sets Γj,νM+k, which are d–separated by δj,ν , such that

Γj,ν =
M⋃
k=1

Γj,νM+k.(22)

Finally we define a set of functions; these depend on some unspecified factors, though
we do not display this dependence in the following.

Definition 1. Let j, k ∈ {1, 2, . . . ,M} and ν ∈ N be given. Let γj,k,ν : ∂Bn× ∂Bn → C be
an arbitrary function such that

(i) |γj,k,ν(z, ζ)| ≥ h/100 , if z, ζ satisfy d(z, ζ) ≤ δj,ν,

(ii) |γj,k,ν(z, ζ)| ≤ 1 for all z and ζ.

Let us define

Pk,νM+j(z) :=
∑

ζ∈Γj,νM+[k+j]

γj,k,ν(z, ζ)〈z, ζ〉p
νM+j−1,(23)

where [k + j] := k + j, if k + j ≤ M , and [k + j] := k + j −M , if M < k + j ≤ 2M .

Lemma 4. For all ν, the functions of Definition 1 satisfy the bounds

2M2 ≥
M∑
j,k=1

|Pk,νM+j(z)| ≥ C := C(h) for z ∈ ∂Bn(24)

Remark. We emphasize that the last C > 0 is independent of ν and the choice of the
functions γj,k,ν .

Proof. The proof is an improvement of [CR], Theorem 2.1.
Let ν and z ∈ ∂Bn be given. By the constructions above we can pick j and k such that

for some ξ ∈ Γj,νM+[k+j] we have d(z, ξ) ≤ Aδj,ν ≤ δj,ν . We have, by (21), Definition 1 (i)
and (16),

|γj,k,ν(z, ξ)〈z, ξ〉p
νM+j−1| ≥ h

100

(
1 − A2δ2

j,ν

)pνM+j/2

=
h

100

(
1 − 1

pνM+j

)pνM+j/2

≥ h

300
.(25)

We aim to show that the contribution of the other terms in (23) is negligible in comparison
with this term. Since we are proving a lower bound, it suffices to consider just the indices
j and k fixed above.
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For 0 < r < 1 and ζ ∈ ∂Bn, the normalized surface area measure σ of Er(ζ) can be
calculated:

σ(Er(ζ)) = r2n−2.(26)

Let us define for every m = 0, 1, 2, . . . , the set

Hm(z) := {ζ ∈ Γj,νM+[k+j] | mδj,ν ≤ d(z, ζ) < (m + 1)δj,ν}.(27)

The number #(H0(z)), i.e. the cardinality of H0(z), equals 1, by the construction of the
sets Γ. To count #(Hm(z)) for m > 0, we have⋃

ζ∈Hm(z)

Eδj,ν
(ζ) ⊂ E(m+2)δj,ν

(z),

hence, by (26),

δ2n−2
j,ν #(Hm(z)) = σ(Eδj,ν

(ζ))#(Hm(z)) ≤ σ(E(m+2)δj,ν
(z)).

We thus get

#(Hm(z)) ≤ (m + 2)2n−2.(28)

By (27) and (13),

1 − (m + 1)2δ2
j,ν ≤ |〈z, ζ〉|2 ≤ 1 −m2δ2

j,ν ,

if ζ ∈ Hm(z).
Using this and (28), ∑

ζ∈Γj,νM+[k+j]

ζ �=ξ

|γj,k,ν(z, ζ)| |〈z, ζ〉|p
νM+j−1

≤
∑

ζ∈Γj,νM+[k+j]

ζ �=ξ

|〈z, ζ〉|pνM+j−1 =
∞∑
m=1

∑
ζ∈Hm(z)

|〈z, ζ〉|pνM+j−1

≤
∞∑
m=1

(1 −m2δ2
j,ν)

1
2
pνM+j− 1

2 #(Hm(z))

≤
∞∑
m=1

(1 −m2δ2
j,ν)

1
2
pνM+j− 1

2 (m + 2)2n−2

≤
∞∑
m=1

e−
1
2
m2δ2j,ν(pνM+j−1)(m + 2)2n−2

≤
∞∑
m=1

e−m
2( 1

2A2 − 1
2
)(m + 2)2n−2

≤
∞∑
m=1

e−m
2/(4A)2(m + 2)2n−2 ≤ h

100 · 33
,

by (21) and (15). Combining with (25), the lower bound in (24) follows. Finally, we see
that |Pk,νM+j(z)| ≤ 2 for all z ∈ Bn. �
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Lemma 5. For every ν ∈ N and j, k = 1, . . . ,M , let the set Γj,νM+[k+j] ⊂ Bn be as above,
and let (αν)ν∈N be a complex valued sequence with |αν | ≤ 1 for every ν. Then every
analytic function

f(z) :=
∑
ν∈N

ανQk,νM+j(z) :=
∑
ν∈N

αν
∑

ζ∈Γj,νM+[k+j]

〈z, ζ〉pνM+j

, z ∈ Bn,(29)

belongs to B(Bn), and ‖f‖B ≤ C (C is independent of ν, j and k). If the sequence (αν)ν∈N

tends to zero, then f ∈ B0(Bn).

Proof. It is elementary to show that R(Qk,νM+j) = pνM+jQk,νM+j. Then we obtain

|R(Qk,νM+j)(z)| ≤ pνM+j|z|pνM+j

Qk,νM+j(
z

|z|),

and moreover

|R(Qk,νM+j)(z)| ≤ CpνM+j|z|pνM+j ≤ C
pM

pM − 1
(pνM+j − p(ν−1)M+j)|z|pνM+j

.

This gives

|Rf(z)| ≤
∑
ν∈N

|αν ||R(Qk,νM+j)(z)|

≤ C
pM

pM − 1

∑
ν∈N

(pνM+j − p(ν−1)M+j)|z|pνM+j

≤ C
pM

pM − 1
(
∑
ν∈N

∑
p(ν−1)M+j≤n<pνM+j

|z|n) ≤ Cp
1 − |z| .

If αν → 0, then we can choose N so big that |αν | < ε for ν ≥ N . With

f(z) =
N−1∑
ν=0

ανQk,νM+j(z) +
∞∑
ν=N

ανQk,νM+j(z)

we see that

lim
|z|→1

(1 − |z|2)|Rf(z)| ≤ 2Cp ε

for all ε > 0. �

5. Main results.

Recall that for ϕ : Bn → Bm holomorphic with ϕ(0) = 0, we defined Fϕ(z) =
|Rϕ(z)|2(1−|z|2)

(1−|ϕ(z)|2)2
and Ωr = {z ∈ Bn | |ϕ(z)| > r, |Fϕ(z)| > 4

(1−r2)2
}, which is an open

subset of Bn for 0 < r < 1.
Let us use the notation dµϕ,s(z) = χΩs(z)Fϕ(z)dA(z). Clearly |||dµϕ,s||| ≤ |||dµϕ|||.

Proposition 1. Let n ∈ N. Then dµϕ(z) = Fϕ(z)dA(z) is a Carleson measure if and only
if dµϕ,s(z) = χΩs(z)Fϕ(z)dA(z) is a Carleson measure for some 0 < s < 1.
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Proof. It suffices to show that

sup
a∈Bn

∫

Bn\Ωs

Fϕ(z)
(1 − |a|2)n
|1 − 〈z, a〉|2ndA(z) ≤ C.(30)

If z ∈ Bn \ Ωs then either Fϕ(z) ≤ 4
(1−s2)2

or |ϕ(z)| ≤ s.

If |ϕ(z)| ≤ s and a ∈ Bn then∫

Bn\Ωs

Fϕ(z)
(1 − |a|2)n
|1 − 〈z, a〉|2ndA(z) ≤ 1

(1 − s2)2

∫

Bn

(1 − |z|2)|Rϕ(z)|2 (1 − |a|2)n
|1 − 〈z, a〉|2ndA(z) ≤ C

(1 − s2)2

where the last estimate follows from the embedding H∞(Bn) ⊂ BMOA(Bn) and ϕi ∈
H∞(Bn) for i = 1, ...,m.

If Fϕ(z) ≤ 4
(1−s2)2

and a ∈ Bn then

∫

Bn\Ωs

Fϕ(z)
(1 − |a|2)n
|1 − 〈z, a〉|2ndA(z) ≤ 4

(1 − s2)2

∫

Bn

(1 − |a|2)n
|1 − 〈z, a〉|2ndA(z)

where the last integral is bounded by 1 − |a|2 if n > 1 and by (1 − |a|2) log 1
1−|a|2 if n = 1

(see Rudin [R], p.17 for this estimate). Hence (30) is shown. �

Theorem 4. Assume that ϕ satisfies the non–tangentiality condition of Lemma 2. Then
the composition operator Cϕ : f �→ f ◦ ϕ is bounded from B(Bm) into BMOA(Bn) if and
only if dµϕ(z) = Fϕ(z)dA(z) is a Carleson measure.

Proof. The “if”-statement is Theorem 2.
We turn to the ”only if”–statement. Let h, s ∈ (0, 1) be fixed as in Lemma 2.
From Proposition 1 it suffices to show that

sup
a∈Bn

∫

Ωs

Fϕ(z)
(1 − |a|2)n
|1 − 〈z, a〉|2ndA(z) ≤ C.(31)

For every j, k = 1, 2, . . . ,M and t ∈ [0, 1] we define the analytic function

fj,k,t(z) :=
∑
ν∈N

rν(t)Qk,νM+j(z), z ∈ Bm,

where rν is the νth Rademacher function and Qk,νM+j(z) =
∑
ζ∈Γj,νM+[k+j]

〈z, ζ〉pνM+j
.

Lemma 5 states that every fj,k,t belongs to B(Bm) and that ‖fj,k,t‖B ≤ C1.
We are assuming that the composition operator Cϕ : B(Bm) → BMOA(Bn) is bounded.

Defining the measure dµa(z) := (1− |z|2)2(1− |ϕa(z)|2)ndλ(z) on Bn, this means that the
operator family

Ta : B(Bm) → L2(dµa) , f �→ R(f ◦ ϕ) ,

is bounded uniformly with respect to a. (Denote the norm of L2(dµa) by ‖ · ‖2,a. )
We thus find a constant C2 > 0 such that

sup
a∈Bn

‖R(fj,k,t ◦ ϕ)‖2
2,a ≤ C2
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for all j, k and t. Integrating with respect to t, using Fubini’s theorem and the orthogo-
nality property of the Rademacher functions we get

∫
Bn

∑
ν∈N

|R(Qk,νM+j ◦ ϕ)(z)|2dµa(z) =

1∫
0

‖R(fj,k,t ◦ ϕ)‖2
2,adt ≤ C2.(32)

This inequality still holds with a different C2, if a summation over all indices j and k is
added to the left hand side; for each ν there exist M indices j and k.

Let us fix ν for a moment and bound R(Qk,νM+j ◦ ϕ) from below. For all z ∈ Ωs we
have

R(Qk,νM+j ◦ ϕ)(z)

= pνM+j
∑

ζ∈Γj,νM+[k+j]

〈ϕ(z), ζ〉pνM+j−1〈Rϕ(z), ζ〉

= pνM+j|ϕ(z)|pνM+j−1 |Rϕ(z)|
∑

ζ∈Γj,νM+[k+j]

〈η(z), ζ〉pνM+j−1〈η′(z), ζ〉,(33)

where we denoted η := ϕ/|ϕ| and η′ := Rϕ/|Rϕ|.
We claim that

M∑
j,k=1

∣∣∣ ∑
ζ∈Γj,νM+[k+j]

〈η(z), ζ〉pνM+j−1〈η′(z), ζ〉
∣∣∣ ≥ C(h)(34)

for every z ∈ Ωs. To prove this we use Lemma 4. Given z we find j and k such that
d(η(z), ξ) ≤ Aδj,ν ≤ h10−6 for some ξ ∈ Γj,νM+[k+j]. Let ξ1 := ξ − 〈ξ, η(z)〉η(z). Use the

definition of d to obtain that |ξ1| ≤
√

2 h10−6 and |〈ξ, η(z)〉| ≥ 1
2
.

By Lemma 2,

|〈η′(z), ξ〉| ≥ |〈ξ, η(z)〉| |〈η′(z), η(z)〉| − |〈η′(z), ξ1〉| ≥
h

10
.(35)

In Lemma 4 we choose w ∈ ∂Bn such that w = η(z), and then γj,k,ν(w, ζ) := 〈η′(z), ζ〉
for all j, k. For other values w, the numbers γj,k,ν(w, ζ) are set equal 1. In Lemma 4,
Pk,νM+j(w) coincides with ∑

ζ∈Γj,νM+[k+j]

〈η(z), ζ〉pνM+j−1〈η′(z), ζ〉

for all j, k, and because of (35), Lemma 4 applies. Hence, (34) follows. The result is just
for this z, but the estimate is z–independent.

Returning to (33) and observing that

(
M∑
j,k=1

|R(Qk,νM+j ◦ ϕ)(z)|)2 ≤ M2

M∑
j,k=1

|R(Qk,νM+j ◦ ϕ)(z)|2

it follows

M2

M∑
j,k=1

|R(Qk,νM+j ◦ ϕ)(z)|2 ≥ C2(h)p2νM |ϕ(z)|2(p(ν+1)M−1)|Rϕ(z)|2
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for every z ∈ Ωs. Hence by (32),

M2C2 ≥ C2(h) sup
a∈Bn

∫
Ωs

∑
ν∈N

p2νM |ϕ(z)|2(p(ν+1)M−1)|Rϕ(z)|2dµa(z)

≥ C4 sup
a∈Bn

∫

Ωs

|Rϕ(z)|2
(1 − |ϕ(z)|2)2

(1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z),(36)

for some constant C4. In the last inequality we used ( 0 < b < 1 )

1

(1 − b)2
=

∞∑
n=0

(n + 1)bn

≤ C1

∞∑
ν=0

p(ν+1)M+M∑
n=p(ν+1)M

nbn−1

≤ C1

∞∑
ν=0

p(ν+1)M+M∑
n=p(ν+1)M

p(ν+1)M+Mbp
(ν+1)M−1

≤ C2

∞∑
ν=0

p2(ν+1)Mbp
(ν+1)M−1

≤ C3

∞∑
ν=0

p2νMbp
(ν+1)M−1.

Thus (31) is shown and the proof is finished. �

Proposition 2. If limr→1 |||dµϕ,r||| = 0, i.e.

lim
r→1

sup
a∈Bn

∫
Ωr

Fϕ(z)
(1 − |a|2)n
|1 − 〈z, a〉|2ndA(z) = 0,(37)

then Cϕ : B(Bm) → BMOA(Bn) is compact.

Proof. For every ε > 0 there exists δ ∈ (0, 1) such that as r ∈ [δ, 1) we have

sup
a∈Bn

∫
Ωr

Fϕ(z)
(1 − |a|2)n
|1 − 〈z, a〉|2ndA(z) < ε.

This estimate and (30) show that µϕ is a Carleson measure, and hence Cϕ is bounded.
Let us now show that it is compact.

Let (fi) be a sequence in B(Bm), ||fi|| ≤ 1, which converges to zero uniformly on
compact subsets of Bm. We show that fi ◦ ϕ → 0 in the norm of BMOA(Bn). Since

||fi|| ≤ 1 and |R(fi ◦ ϕ)(z)| ≤ |∇fi(ϕ(z))| |Rϕ(z)| ≤ |Rϕ(z)|
1−|ϕ(z)|2 , we have for all i,

sup
a∈Bn

∫
Ωδ

|R(fi ◦ ϕ)(z)|2 (1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z) < ε.
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Now fi → 0 on compact subsets of Bm, so we get that there exists i0 ∈ N such that
sup

z∈Bn\Ωδ

|∇fi(ϕ(z))|2 < ε for all i ≥ i0. Thus, if i ≥ i0,

sup
a∈Bn

∫
Bn\Ωδ

|R(fi ◦ ϕ)(z)|2 (1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z)

≤ sup
z∈Bn\Ωδ

|∇fi(ϕ(z))|2 sup
a∈Bn

∫
Bn

|Rϕ(z)|2 (1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z)

≤ sup
z∈Bn\Ωδ

|∇fi(ϕ(z))|2
m∑
j=1

‖ϕj‖2
BMOA(Bn) < C ε,

where in the last estimate we use that ϕj = Cϕ(zj) ∈ BMOA(Bn) because Cϕ is bounded.
Hence it follows that |fi(ϕ(0))| + ||fi ◦ ϕ||BMOA(Bn) → 0.

�

Lemma 6. Suppose that µϕ is a Carleson measure. If Cϕ : B(Bm) → BMOA(Bn) is
compact, then

lim
r→1

sup
f∈B0(Bm),

||f ||≤1

sup
a∈Bn

∫
Ωr

|R(f ◦ ϕ)(z)|2 (1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z) = 0.(38)

Proof. Since Cϕ({f ∈ B0(Bm) : ||f || ≤ 1}) is relatively compact in BMOA(Bn), there
are, for each ε > 0, functions fi ∈ B0(Bm), ||fi|| ≤ 1, i = 1, ...N, such that for each
f ∈ B0(Bm), ||f || ≤ 1, there exists j ∈ {1, ..., N} with

sup
a∈Bn

∫
Bn

|R(f ◦ ϕ)(z) −R(fj ◦ ϕ)(z)|2 (1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z) < ε.

For every fi ∈ B0(Bm), i = 1, ..., N , there is δi ∈ (0, 1) and δ := max1≤i≤N δi such that as
r ∈ [δ, 1) we have

|∇fi(w)|(1 − |w|2) <
√
ε

for all r < |w| < 1. Observe that r < |ϕ(z)| < 1 for z ∈ Ωr. Therefore, for given a ∈ Bn

and f ∈ B0(Bm), ||f || ≤ 1, one obtains∫
Ωr

|R(f ◦ ϕ)(z)|2 (1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z)

≤ 2

∫
Ωr

|R(f ◦ ϕ)(z) −R(fj ◦ ϕ)(z)|2 (1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z)

+ 2

∫
Ωr

|R(fj ◦ ϕ)(z)|2 (1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z)

≤ ε
(
2 + 2 sup

a∈Bn

∫
Bn

Fϕ(z)
(1 − |a|2)n
|1 − 〈z, a〉|2ndA(z)

)
.

This proves the lemma. �
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Theorem 5. Suppose that ϕ satisfies the non–tangentiality condition of Lemma 2. Then
Cϕ : B(Bm) → BMOA(Bn) is compact if and only if

lim
r→1

|||dµϕ,r||| = 0.

Proof. The ”if”–statement is Proposition 2.
Suppose conversely that Cϕ : B → BMOA is compact. Let (αm)m∈N ∈ (1

2
, 1) be such

that |αm| → 1. For every j, k = 1, 2, . . . ,M , m ∈ N and t ∈ [0, 1] we define

gj,k,m,t(z) :=
∑
ν∈N

rν(t)(αm)p
νM+j−1Qk,νM+j(z), z ∈ Bm,

where rν is the νth Rademacher function and Qk,νM+j(z) =
∑
ζ∈Γj,νM+[k+j]

〈z, ζ〉pνM+j
. It

follows from Lemma 5 that every gj,k,m,t ∈ B0(Bm) and that ‖gj,k,m,t‖B ≤ C1. Let h ∈ (0, 1)
and s ∈ (1

2
, 1) be fixed as in Lemma 2.

Let ε > 0 be given. By Lemma 6 there exists δ ∈ (s, 1) such that as r ∈ [δ, 1) we have

sup
a∈Bn

∫
Ωr

|R(gj,k,m,t ◦ ϕ)(z)|2 (1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z) < C2
1ε,

for all j, k,m, t.
Let a ∈ Bn be fixed. Integrating with respect to t, using Fubini’s theorem and the

orthogonality property of the Rademacher functions we obtain that

C2
1ε ≥

∫ 1

0

∫
Ωr

|R(gj,k,m,t ◦ ϕ)(z)|2 (1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z)dt

=

∫
Ωr

∑
ν∈N

|αm|2p
νM+j−2|R(Qk,νM+j ◦ ϕ)(z)|2 (1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z).(39)

Let us bound R(Qk,νM+j ◦ ϕ) from below as z ∈ Ωr. For all z ∈ Ωr we have

R(Qk,νM+j ◦ ϕ)(z) = pνM+j
∑

ζ∈Γj,νM+[k+j]

〈ϕ(z), ζ〉pνM+j−1〈Rϕ(z), ζ〉

= pνM+j|ϕ(z)|pνM+j−1 |Rϕ(z)|
∑

ζ∈Γj,νM+[k+j]

〈η(z), ζ〉pνM+j−1〈η′(z), ζ〉,

where we denoted η := ϕ/|ϕ| and η′ := Rϕ/|Rϕ|. As in the proof of Theorem 4 we have
that

M∑
j,k=1

∣∣∣ ∑
ζ∈Γj,νM+[k+j]

〈η(z), ζ〉pνM+j−1〈η′(z), ζ〉
∣∣∣ ≥ C(h)

for every z ∈ Ωr. For each r ∈ [δ, 1) and z ∈ Ωr, we thus obtain

M∑
j,k=1

|R(Qk,νM+j ◦ ϕ)(z)| ≥ C(h)pνM |ϕ(z)|pνM−12−p
M |Rϕ(z)|.

Since

(
M∑
j,k=1

|R(Qk,νM+j ◦ ϕ)(z)|)2 ≤ M2

M∑
j,k=1

|R(Qk,νM+j ◦ ϕ)(z)|2
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it follows from (39) that

M4C2
1ε ≥ 2 C2(h)2−2pM

∫
Ωr

∑
ν∈N

p2νM |αmϕ(z)|2pνM−2|Rϕ(z)|2 (1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z).

Using that

∑
ν∈N

p2νM |αmϕ(z)|2pνM−2 ≥ C2

(1 − |αmϕ(z)|2)2

for some constant C2, we get that there is a constant C3 such that

C3ε ≥
∫

Ωr

|Rϕ(z)|2
(1 − |αmϕ(z)|2)2

(1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z).

By Fatou’s lemma, we have for each r ∈ [δ, 1) that∫
Ωr

|Rϕ(z)|2
(1 − |ϕ(z)|2)2

(1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z)

≤ lim inf
m→∞

∫
Ωr

|Rϕ(z)|2
(1 − |αmϕ(z)|2)2

(1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z) ≤ C3ε.

Hence, as a ∈ Bn was picked arbitrary, we get

sup
a∈Bn

∫
Ωr

|Rϕ(z)|2
(1 − |ϕ(z)|2)2

(1 − |z|2)2(1 − |ϕa(z)|2)ndλ(z) ≤ C3ε.

This proves the statement. �
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