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Abstract

We give upper and lower estimates of the norm of a bounded linear operator from
the Hardy space Hp to `q in terms of the norm of the rows and the columns of its
associated matrix in certain vector-valued sequence spaces.
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1 Introduction

Let 1 ≤ p, q ≤ ∞ and let T : Hp → `q be a linear and bounded operator where
Hp denote the Hardy space in the unit disc. To such an operator we associate
the matrix (tkn)k,n, defined by

T (un) =
∑
k∈N

tknek

where un(z) = zn, n ≥ 0, and (ek)k∈N stands for the canonical basis of `q.
We denote by Tk = (tkn)n≥0 and xn = (tkn)k∈N its rows and its columns
respectively. Although explicitly computing the norm is not possible (even for
p = q = 2) several theorems concerning upper and lower estimates of the norm
‖T‖ in terms of

‖(Tk)‖`r(`s) = (
∞∑

k=1

(
∞∑

n=0

|tkn|s)r/s)1/r
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for different values of r and s were proved by B. Osikiewicz in [23]. The
following results are the content of Theorems 2.1, 2.2, 2.3 and 2.4 in [23]: If
1 ≤ p ≤ 2, 1 ≤ q ≤ ∞ and 1/r = (1/q − 1/2)+ then

‖(Tk)‖`r(`2) ≤ ‖T‖ ≤ ‖(Tk)‖`q(`p). (1)

If 2 ≤ p < ∞, 1 ≤ q ≤ ∞ and 1/s = (1/q − 1/p′)+ then

‖(Tk)‖`s(`p) ≤ ‖T‖ ≤ ‖(Tk)‖`q(`2). (2)

Whilst the upper estimates were shown to be sharp in the scale of `r(`s) spaces,
it was left open whether the values of r and s in the lower estimates could be
improved.

The reader is referred to [8] for some results in the same spirit in the cases
0 < p < 1. In this paper we shall see (1) and (2) can actually be improved
in different directions. On the one hand we shall use not only the norm of
the rows (Tk) but also the norm of the columns (xn), which, sometimes gives
better estimates. On the other hand we shall consider `(p, q)-spaces instead
of `q-spaces to produce more precise estimates. Our main tool will be the
description of the boundedness of operators between Hp and `q by means of
vector-valued functions which will allow us to use results from vector-valued
Hardy spaces and absolutely summing operators to get our theorems.

Let X be a complex Banach space with dual space X∗. We denote by `s(X)
and `s

weak(X) the spaces of bounded sequences in X for s = ∞, and, for
1 ≤ s < ∞, the spaces of sequences (Aj) ⊂ X such that

‖(Aj)‖`s(X) = (
∑
j

‖Aj‖s)1/s < ∞

and

‖(Aj)‖`s
weak

(X) = sup
‖x∗‖=1

(
∑
j

|〈Aj, x
∗〉|s)1/s < ∞.

It is easy to see that, for 1 ≤ p ≤ ∞, 1/p + 1/p′ = 1,

‖(Aj)‖`p
weak

(X) = sup{‖
∑
j

βjAj‖ : ‖(βj)‖`p′ = 1}.

Hence `p
weak(X) can be identified with L(`p′ , X) for 1 < p < ∞ and L(c0, X)

for p = 1. Also, for reflexive Banach spaces X and 1 ≤ p < ∞, `p
weak(X)

can be identified with L(X∗, `p) by defining T (x∗) = (〈Aj, x
∗〉)j and ‖T‖ =

‖(Aj)‖`p
weak

(X).
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We denote by `(s, r, X), 0 < r, s ≤ ∞, the space of sequences (xn)n≥0 ⊂ X
such that

‖(xn)‖`(s,∞,X) = max{‖x0‖, sup
k∈N

((
2k−1∑

n=2k−1

‖xn‖s)1/s} < ∞,

or

‖(xn)‖`(s,r,X) = (‖x0‖r +
∑
k∈N

(
2k−1∑

n=2k−1

‖xn‖s)r/s)1/r < ∞.

In particular, `(s, s, X) = `s(X).

We denote by Hp(X) (resp. Hp
weak(X)) the vector-valued Hardy spaces con-

sisting of analytic functions F : D → X such that

‖F‖Hp(X) = sup
0<r<1

(

2π∫
0

‖F (reit)‖p dt

2π
)1/p < ∞,

(resp.
‖F‖Hp

weak
(X) = sup

‖x∗‖=1

‖〈F, x∗〉‖Hp < ∞.)

As usual we write Mp(F, r) = (
∫ 2π
0 ‖F (reit)‖p dt

2π
)1/p.

We shall use the notation `p = `p(C), `(p, q) = `(p, q, C), Lp = Lp(T) and
Hp = Hp(C) where Hp will be sometimes understood as functions in Lp using
the fact that Hp isometrically embeds into Lp for 1 ≤ p ≤ ∞. We also make
use of the duality results (H1)∗ = BMOA (see [17]) and (Hp)∗ = Hp′ (see
[16]) for 1 < p < ∞.

We shall prove, among other things, the following estimates.

Theorem 1 Let 1 < p < ∞, 1 ≤ q < ∞ and let T : Hp → `q be a bounded
operator. Then, for p1 = min{p, 2}, p2 = max{p, 2}, 1/r = (1/q− 1/p1)

+ and
1/su = (1/q − 1/p′2 − (1/u− 1/2)+)+, we have

‖T‖ ≤ min{‖(Tk)‖`q(`p1 ), ‖(xn)‖`p1 (`q)}. (3)

For each u ≥ q there exists C > 0 such that

max{‖(Tk)‖`r(`p2 ), ‖(xn)‖`su (`u)} ≤ C‖T‖. (4)

Remark 2 Note that the use of columns in Theorem 1 provides sometimes
better results than the use of rows. Indeed, taking into account that, for q ≤ p,

(
∞∑

n=0

(
∞∑

k=1

|akn|q)p/q)1/p ≤ (
∞∑

k=1

(
∞∑

n=0

|akn|p)q/p)1/q,
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we obtain, for instance, in the case p > 2, q = 1 and u = 2, that su = p and
(4) improves (2) because

‖(Tk)‖`p(`p) ≤ ‖(xn)‖`p(`2).

Also in the case 1 < p < ∞, 1 ≤ q ≤ min{p, 2} = p1 we obtain that (3)
improves (1) because

‖(xn)‖`p1 (`q) ≤ ‖(Tk)‖`q(`p1 ).

Selecting special values of u in Theorem 1 we obtain some new lower estimates
of ‖T‖.

Corollary 3 Let 1 ≤ q ≤ 2 and let T : Hp → `q be a bounded operator.

(i) If 1 ≤ q ≤ p ≤ 2, 1/r = 1/q − 1/p and 1/s = 1/q − 1/2 then

C−1 max{‖(Tk)‖`r(`2), ‖(xn)‖`s(`2), ‖(xn)‖`r(`p)} ≤ ‖T‖.

(ii) Let 1 ≤ q ≤ p′ ≤ 2 ≤ p < ∞ such that 1/q − 1/p′ ≥ 1/p′ − 1/2. If
1/r = 1/q − 1/2, 1/s = 1/q − 1/p′ and 1/t = 1/q − 2/p′ + 1/2 then

C−1 max{‖(Tk)‖`r(`p), ‖(xn)‖`s(`2), ‖(xn)‖`t(`p′ )} ≤ ‖T‖.

In particular, for 1 ≤ q ≤ 2, p = 2 and 1/r = 1/q − 1/2, we have

max{‖(Tk)‖`r(`2), ‖(xn)‖`r(`2)} ≤ C‖T‖. (5)

Proof. (i) Let 1 ≤ q ≤ p ≤ 2. For each p ≤ u ≤ 2, we write 1/u = (1 −
θ)/p+ θ/2 for some 0 ≤ θ ≤ 1. Hence the values in Theorem 1 become p1 = p,
p2 = 2, 1/r = 1/q − 1/p and 1/su = 1/q − 1/u = 1/r + θ(1/p − 1/2). Now
select θ = 0 and θ = 1 and apply (4) to get the desired estimates.

(ii) Let 1 ≤ q ≤ p′ ≤ 2 ≤ p < ∞ such that 1/q − 1/p′ ≥ 1/p′ − 1/2.
For each p′ ≤ u ≤ 2 now we obtain p1 = 2, p2 = p, 1/r = 1/q − 1/2 and
1/su = (1/q − 1/p′ − (1/u − 1/2))+. Our assumption implies that su = t for
u = p′ and su = s for u = 2. Apply again (4) to finish the proof. 2

Remark 4 Assume 1 ≤ q ≤ p′ < 2 < p < ∞. Then (ii) in Corollary 3
gives ‖(Tk)‖`r(`p) ≤ C‖T‖ for 1/r = 1/q − 1/2 (which produces a better lower
estimate than (2) since r ≤ s for 1/s = 1/q − 1/p′).

Actually, for p ≥ 2, the value v = r given by 1/r = 1/q − 1/2 is the small-
est value in the scale `v(`p) to get the estimate ‖(Tk)‖`v(`p) ≤ C‖T‖ as the
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following example shows: Consider a lacunary multiplier T : Hp → `q given
by

T (f)(z) =
∞∑

k=0

λka2ke2k

where f(z) =
∑∞

n=0 anz
n.

In such a case ‖(Tk)‖`v(`p) = ‖(λk)‖`v and ‖∑
k a2kz2k‖Hp ≈ (

∑
k |a2k |2)1/2.

This shows that ‖T‖ ≈ ‖(λk)‖`r for 1/r = 1/q − 1/2.

To present further improvements we shall replace the scale of `p-spaces by the
`(p, q)-spaces (see [19]) when computing the norm of the rows and the columns
of the matrix associated to the operator.

Our first result will be the following extension of Theorem 1.

Theorem 5 Let 1 < p < ∞, 1 ≤ q < ∞, p1 = min{p, 2} and p2 = max{p, 2}
and let T : Hp → `q be a bounded operator. Then

‖T‖ ≤ min{‖(Tk)‖`q(`(p1,2)), ‖(xn)‖`(p1,2,`q)} (6)

For each u ≥ q there exists C > 0 such that

max{‖(Tk)‖`r(`(p2,2)), ‖(xn)‖`(su,2,`u)} ≤ C‖T‖, (7)

where 1/r = (1/q − 1/p1)
+ and 1/su = (1/q − 1/p′2 − (1/u− 1/2)+)+.

Of course, Theorem 1 follows from Theorem 5 using the inclusions `q(`p1) ⊂
`q(`(p1, 2)), `p1(`q) ⊂ `(p1, 2, `

q), `r(`(p2, 2)) ⊂ `r(`p2) and, since su ≥ 2, also
`(su, 2, `

u) ⊂ `su(`u).

Using the inequalities(see Lemma 13 below)

‖(xn)‖`(p,q,`r) ≤ ‖(Tk)‖`r(`(p,q)), min{p, q} ≥ r,

‖(xn)‖`r(`(p,q)) ≤ ‖(Tk)‖`(p,q,`r), max{p, q} ≤ r,

we can formulate the following corollaries of Theorem 5.

Corollary 6 Let 1 ≤ q < p ≤ 2 and T : Hp → `q be a bounded operator. If
1/s = 1/q − 1/p then there exists C > 0 such that

C−1‖(xn)‖`(s,2,`p) ≤ ‖T‖ ≤ ‖(xn)‖`(p,2,`q). (8)

Corollary 7 Let 1 ≤ q ≤ p′ ≤ 2 ≤ p < ∞ and T : Hp → `q be a bounded
operator. If 1/r = 1/q − 1/2 and 1/s = 1/q − 1/p′ then there exists C > 0
such that

C−1 max{‖(Tk)‖`r(`(p,2)), ‖(xn)‖`(s,2,`2)} ≤ ‖T‖ ≤ ‖(xn)‖`2(`q). (9)
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Theorem 5 will follow from very general arguments valid for many other spaces
relying upon some geometrical properties which are shared by other spaces.
However in the case 1 ≤ p < 2 other tools are at our disposal and allow us
to get better estimates. For instance, in the case p = 1 we can produce new
upper estimates using results on Taylor coefficients of functions in BMOA.

Theorem 8 Let T : H1 → `q be a bounded operator.

(i) For q = 1 we have

‖T‖ ≤ C min{‖(xn)‖`(1,2,`1), ‖((n + 1)1/2xn)‖`(2,∞,`1)}.

(ii) For 1 ≤ q ≤ 2 we have

‖T‖ ≤ C min{‖(Tk)‖`q(`(1,2)), ‖(xn)‖`(1,2,`q), ‖((n + 1)1/2xn)‖`(2,∞,`q)}.

(iii) For q ≥ 2 we have

‖T‖ ≤ C min{‖(Tk)‖`q(`(1,2)), ‖(Ak)‖`q(`(2,∞)), ‖((n + 1)1/2xn)‖`(2,∞,`q)},

where Ak = ((n + 1)1/2tkn)n.

Also new lower estimates can be achieved for 1 < p < 2 using the factorization
Hp = H2H t where 1/2 + 1/t = 1/p.

Theorem 9 Let 1 ≤ p < 2, 1 ≤ q ≤ 2, 1/r = 1/q − 1/2 and 1/t = 1/p− 1/2
and let T : Hp → `q be a bounded operator. Then there exists C > 0 such that

sup
‖(αl)‖`(t′,2)=1

max{‖(
∞∑
l=0

αltk,l+n)n‖`r(`2), ‖(
∞∑
l=0

αltk,l+n)k‖`r(`2)} ≤ C‖T‖.

Finally the special behavior of the inclusion map `1 → `2 allows to get further
extensions in the case q = 1.

Theorem 10 Let 1 ≤ p < 2, 1/t = 1/p− 1/2 and T : Hp → `1 be a bounded
operator. There exists C > 0 such that

max{ sup
‖
∑

l
αlzl‖Ht=1

‖(
∞∑
l=0

αltk,n+l)n‖`2(`2), sup
‖(αl)‖`(t′,2)=1

‖(
∞∑
l=0

αltk,n+l)k‖`2(`2)} ≤ C‖T‖.

As a simple application of Theorem 8 and Theorem 10 (selecting sequences
αj = 1√

N
for 0 ≤ j ≤ N and αj = 0 for j ≥ N + 1 ) we get the following new

estimates, that can be compared with the known ones for particular types of
operators such as multipliers, composition operators and so on.
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Corollary 11 Let T : H1 → `1 be a bounded operator. There exists C > 0
such that

sup
N∈N

‖( 1√
N

n+N∑
l=n

xl)n‖`2(`2) ≤ C‖T‖

‖T‖ ≤ C min{‖((n + 1)1/2xn)‖`(2,∞,`1), ‖(xn)‖`(1,2,`1)}.

The paper is organized as follows. Section 2 contains some preliminary results
concerning the reformulation of the boundedness of operators from Hp to `q

and some facts on the spaces `(p, q, X) to be used in the sequel. Some tools
from the theory of vector-valued Hardy and BMOA spaces are presented in
Section 3. The proof of Theorem 5 is postponed to Section 4. Last section is
devoted to the case 1 ≤ p < 2 and to present the proofs of Theorems 8, 9 and
10.

Throughout the paper, as usual, L(X, Y ) stands for the space of bounded
linear operators, a+ = max{a, 0}, p′ for the conjugate exponent of p and C
denotes a constant that may vary from line to line.

2 Preliminary results

As it was mentioned in the introduction for each 1 ≤ p, q ≤ ∞ and each
bounded operator T : Hp → `q we define the matrix (akn(T )) = (tkn) given by

T (un) = (tkn)k∈N for un(z) = zn, n ≥ 0. (10)

Observe that for each k ∈ N the functional ξkT (f) = 〈T (f), ek〉, which belongs
to (Hp)∗, is represented by an analytic function, say gk = gk(T ). We denote
by FT (z) = (gk(z))k∈N the `q-valued analytic function associated to T .

Clearly each row Tk = (tkn)n≥0 coincides with the sequence of Taylor coeffi-
cients of the function gk, that is

gk(z) =
∞∑

n=0

tknz
n (11)

and each column xn = (tkn)k∈N coincides with the n-Taylor coefficient of the
vector-valued analytic function FT : D → `q given by

FT (z) =
∞∑

n=0

xnz
n, xn =

∞∑
k=1

tknek. (12)
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With this notation, for a polynomial f(z) with Taylor coefficients (an), we
have the expressions

T (f) =
∞∑

n=0

anxn = lim
r→1

π∫
−π

FT (reiθ)f(reiθ)
dθ

2π
, (13)

T (f) = (
∞∑

n=0

antkn)k∈N =
(

lim
r→1

π∫
−π

gk(re
iθ)f(reiθ)

dθ

2π

)
k∈N

. (14)

Let us make explicit the conditions describing that a function belongs to the
vector-valued Hardy spaces for X = `s. If 1 ≤ r, s < ∞, (fk) is a sequence
in Hr and

∑
k |fk(z)|s < ∞, |z| < 1, then F (z) = (fk(z))k∈N is a well defined

`s-valued analytic function in the unit disc. Moreover

‖F‖Hr
weak

(`s) = sup{‖
∞∑

k=0

λkfk‖Hr : ‖(λk)‖`s′ = 1} (15)

and

‖F‖Hr(`s) = ‖(
∞∑

k=0

|fk|s)1/s‖Lr , (16)

where in (16) fk stands also for the boundary values of the same analytic
function. Note that (16) follows from the fact that `s has the Radon-Nikodym
property (see [15] and [9]) and therefore functions in Hr(`s) have radial bound-
ary values in Lr(`s).

The following useful reformulation of the boundedness of operators from Hp

to `q is straightforward.

Proposition 12 Let 1 < p < ∞, 1 ≤ q < ∞ and let T : Hp → `q be a linear
operator. The following are equivalent:

(i) T is bounded.

(ii) FT ∈ Hp′

weak(`
q).

(iii) (gk(T ))k ∈ `q
weak(H

p′).

Moreover

‖T‖ = ‖FT‖Hp′
weak

(`q)
= ‖(gk(T ))‖`q

weak
(Hp′ ). (17)
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Let us now mention some facts about the spaces `(p, q, X) which will be needed
later on: If 1 ≤ p1, p2, q1, q2 ≤ ∞, 1/p = (1/p2 − 1/p1)

+ and 1/q = (1/q2 −
1/q1)

+ then

`(p, q) = {(λn) : (λnβn) ∈ `(p2, q2) for any (βn) ∈ `(p1, q1)}. (18)

Let q, β > 0. Then (see [16] and [4,21] respectively)

‖((n + 1)−βαn)n‖`(1,∞) ≈ sup
0<r<1

(1− r)β(
∑
n

|αn|rn), (19)

‖((n + 1)−βαn)n‖`(1,q) ≈
( 1∫

0

(1− r)βq−1(
∑
n

|αn|rn)qdr
)1/q

. (20)

For any Banach space X and 1 ≤ p, q < ∞ we have

`(p, q, X)∗ = `(p′, q′, X∗). (21)

We finish the section with the following application of Minkowski’s inequality.

Lemma 13 Let (akn)k,n ⊂ C and write Ak = (akn)n≥0 and Bn = (akn)k∈N.
Then

‖(Ak)‖`(q,s,`p) ≤ ‖(Bn)‖`p(`(q,s)), 1 ≤ p ≤ min{q, s} ≤ ∞. (22)

‖(Ak)‖`p(`(q,s)) ≤ ‖(Bn)‖`(q,s,`p), 1 ≤ max{q, s} ≤ p < ∞. (23)

Proof. Assume 1 ≤ p ≤ min{q, s} ≤ ∞. Since `(q/p, s/p) is a normed space
(because q/p ≥ 1 and s/p ≥ 1) using Minkowski’s inequality we have

‖(Ak)‖`(q,s,`p) = ‖(
∞∑

n=0

|akn|p)k‖1/p
`(q/p,s/p)

≤
( ∞∑

n=0

‖(|akn|p)k‖`(q/p,s/p)

)1/p

=
( ∞∑

n=0

‖Bn‖p
`(q,s)

)1/p
= ‖(Bn)‖`p(`(q,s)).

Assume now that 1 ≤ max{q, s} ≤ p < ∞. Observe that applying (22) to the
adjoint matrix, we conclude that for any matrix (a′kn) we also have

‖(B′
n)‖`(q′,s′,`p′ ) ≤ ‖(A′

k)‖`p′ (`(q′,s′)).

Now use (21) to conclude (23). 2
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3 Some results for vector-valued Hardy and BMOA

One of the first uses of Hausdorff-Young’s inequality for vector-valued Lebesgue
spaces goes back to [25]. The next lemma is well known and its proof is
sketched here for completeness.

Lemma 14 Let 1 < p ≤ 2, p ≤ q ≤ p′ and F (z) =
∑∞

n=0 xnz
n ∈ Hp(`q).

Then

(
∞∑

n=0

‖xn‖p′

`q)1/p′ ≤ ‖F‖Hp(`q).

Proof. For p = 2 and q = 2 Plancherel’s theorem holds and gives

(
∞∑

n=0

‖xn‖2
`2)

1/2 = ‖F‖L2(`2).

On the other hand for q = 1 or q = ∞ we trivially have

sup
n≥0

‖xn‖`q ≤ ‖F‖L1(`q).

Hence it follows, by interpolation, that

(
∞∑

n=0

‖xn‖p′

`s)1/p′ ≤ ‖F‖Hp(`s)

for s = p or s = p′. Now interpolating again between `p and `p′ we get the
general case. 2

Actually there exists a generalization of Hausdorff-Young’s inequalities to the
setting on `(p, q, X) spaces valid for some Banach spaces X. We present here a
self contained proof of the following result, although the reader should be aware
that the proof relies upon certain vector-valued Littlewood-Paley inequalities
(see [6,5]) and it can be extended to other spaces.

Lemma 15 Let 1 ≤ p, q < ∞ and F (z) =
∑∞

n=0 xnz
n ∈ Hp(`q) .

(i) If 1 < p ≤ 2 and p ≤ q ≤ 2 then ‖(xn)‖`(p′,2,`q) ≤ ‖F‖Hp(`q).

(ii) If 2 ≤ p < ∞ and 2 ≤ q ≤ p then ‖F‖Hp(`q) ≤ ‖(xn)‖`(p′,2,`q).

Proof. (i) It was shown in [1, Proposition 1.4] that, for 1 ≤ p ≤ q ≤ 2, we
have

(

1∫
0

(1− r)M2
p (F ′, r)dr)1/2 ≤ C‖F‖Hp(`q).
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Using Lemma 14 we obtain

1∫
0

(1− r)(
∞∑

n=1

np′‖xn‖p′

`qr(n−1)p′)2/p′dr ≤ C‖F‖2
Hp(`q).

Applying now (20) to αn = np′‖xn‖p′

`q , β = p′ and q = 2/p′ we get

1∫
0

(1− r)(
∞∑

n=1

np′‖xn‖p′

`qr(n−1)p′)2/p′dr ≈ ‖(‖xn‖p′

`q)‖`(1,2/p′) ≈ ‖(‖xn‖`q)‖2
`(p′,2),

which finishes this part.

(ii) follows from the dualities (Hp(`q))∗ = Hp′(`q′) for 1 < p, q < ∞ and
`(r, s, X)∗ = `(r′, s′, X∗) for 1 < r, s < ∞. 2

Let us now use the embedding `1 → `2 and its properties.

Lemma 16 Let 1 ≤ p < ∞. If F ∈ Hp
weak(`

1) then F ∈ Hp(`2) and

‖F‖Hp(`2) ≤ C‖F‖Hp
weak

(`1).

Proof. Write F (z) = (fk(z))k∈N where fk ∈ Hp and

sup
|εk|=1

‖
∞∑

k=1

εkfk‖Hp = ‖F‖Hp
weak

(`1).

Now considering εk = rk(t) for t ∈ [0, 1] where rk are the Rademacher func-
tions, we obtain

1∫
0

‖
∞∑

k=1

rk(t)fk‖Lpdt ≤ sup
t∈[0,1]

‖
∞∑

k=1

rk(t)fk‖Lp .

Hence Kintchine’s inequality implies

‖(
∞∑

k=1

|fk|2)1/2‖Lp ≤ C‖F‖Hp
weak

(`1).

The result now follows from (16). 2

Let us now introduce the vector-valued versions of BMOA that we shall use
in the paper. The reader is referred to [5,?] for other possible definitions and
their connections. We write BMOAC(X) (resp. BMOAweak(X)) for the space
of analytic functions F : D → X such that

‖F‖BMOAC(X) = ‖F (0)‖+ sup
|z|<1

(
∫
D

(1− |w|2)‖F ′(w)‖2Pz(w)dA(w))1/2 < ∞,

11



(resp.

‖F‖BMOAweak(X) = sup
‖x∗‖=1

‖〈F, x∗〉‖BMOA < ∞)

where, as usual, Pz(w) = 1−|z|2
|1−zw̄|2 is the Poisson kernel and dA stands for the

normalized Lebesgue measure on the unit disc D.

Note that BMOAweak(X) = L(H1, X). Therefore if T : H1 → `q is a bounded
linear operator for 1 < q < ∞ we have

‖(gk(T ))‖`q
weak

(BMOA) = ‖T ∗‖ = ‖T‖ = ‖FT‖BMOAweak(`q). (24)

In the case q = 1 we have that if T : H1 → `1 is bounded then

‖(gk(T ))‖`1
weak

(BMOA) ≤ ‖T ∗‖ = ‖T‖ = ‖FT‖BMOAweak(`1). (25)

Let us see that the following limiting case for p = ∞ of Lemma 16 also holds.

Lemma 17 If F ∈ BMOAweak(`
1) then F ∈ BMOAC(`

2). Moreover

‖F‖BMOAC(`2) ≤ C‖F‖BMOAweak(`1).

Proof. Recall first that the inclusion map i : `1 → `2 is 2-summing (it is
even 1-summing from Grothendieck’s theorem [14,?]), i.e. if (An) ∈ `2

weak(`
1)

then (An) ∈ `2(`2) with ‖(An)‖`2(`2) ≤ C‖(An)‖`2
weak

(`1). This implies (see [27])
that there exists C > 0 such that, for any finite measure space (Ω, Σ, µ), if
f : Ω → `1 is measurable and sup‖x∗‖`∞=1 ‖〈f, x∗〉‖L2(µ) ≤ 1 then f ∈ L2(µ, `2)
and ‖f‖L2(µ,`2) ≤ C.

Let us fix z ∈ D and consider the probability measure on D given by dµz(w) =
Pz(w)dA(w). Consider now f(w) = (1 − |w|2)1/2F ′(w) and note that, since
F ∈ BMOAweak(`

1), we have

sup
|z|<1

sup
‖x∗‖=1

‖〈f(w), x∗〉‖L2(dµz) ≤ ‖F‖BMOweak(`1).

Hence f ∈ L2(dµz, `
1) for all z ∈ D with ‖f‖L2(dµz ,`2) ≤ C‖F‖BMOweak(`1). This

implies F ∈ BMOAC(`
2) and ‖F‖BMOAC(`2) ≤ C‖F‖BMOAweak(`1). 2

4 Proof of Theorem 5

We start by showing the following general fact.

12



Proposition 18 Let 1 < p < ∞, 1 ≤ q < ∞, p1 = min{2, p} and 1/r =
(1/q − 1/p1)

+. Let T : Hp → `q be a bounded linear operator and gk = gk(T )
be given by (11). Then there exists C > 0 such that

‖T‖ ≤ min{(
∞∑

k=0

‖gk‖q

Hp′ )
1/q, ‖(

∞∑
k=0

|gk|q)1/q‖Lp′}. (26)

C−1 max{ sup
‖(λk)‖q′=1

‖(
∞∑

k=0

|λk|2|gk|2)1/2‖Lp′ , (
∞∑

k=0

‖gk‖r
Hp′ )

1/r ≤ ‖T‖ (27)

Proof. (26) follows by Proposition 12 using (16) and the facts ‖(gk)‖`p
weak

(X) ≤
‖(gk)‖`p(X) and ‖F‖Hp

weak
(X) ≤ ‖F‖Hp(X).

Let us show (27). For each λ = (λk) ∈ `q′ , denote Tλ : Hp → `1 given by

Tλ(f) =
∞∑

k=0

λk〈T (f), ek〉.

Since ‖T‖ = sup{‖Tλ‖ : ‖(λk)‖q′ = 1}, and gk(Tλ) = λkgk(T ), from (17), we
have to get lower estimates of ‖(λkgk)‖`1

weak
(Hp′ ).

Using that Hp′ has cotype u = max{p′, 2} (see for instance [14]),we have

(
∞∑

k=0

|λk|u‖gk‖u
Hp′ )

1/u ≤ C‖(λkgk)‖`1
weak

(Hp′ )

and, taking the supremum over (λk) in the unit ball of `q′ , we obtain that
‖(gk)‖`r(Hp′ ) ≤ C‖T‖ for 1/r = (1/u− 1/q′)+ = (1/q − 1/p1)

+.

On the other hand, Khinchine’s inequality implies that

‖(
∞∑

k=0

|λk|2|gk|2)1/2‖Lp′ ≤ C‖(λkgk)‖`1
weak

(Hp′ ),

and the proof of the proposition is finished. 2

We now proceed to the proof of Theorem 5. Let 1 < p < ∞, 1 ≤ q < ∞,
p1 = min{p, 2} and p2 = max{p, 2}. Let T : Hp → `q be a bounded linear
operator and FT (z) = (gk(z))k =

∑∞
n=0 xnz

n be defined by the formulas (11)
and (12).

Let us first show that ‖T‖ ≤ min{‖(Tk)‖`q(`(p1,2)), ‖(xn)‖`(p1,2,`q)}.

Our proof will be based upon the following extension of Hausdorff-Young’s
inequalities (see [19]): If p1 = min{p, 2} and p2 = max{p, 2} then

‖g‖Hp′ ≤ ‖(αn)‖`(p1,2), ‖(αn)‖`(p2,2) ≤ ‖g‖Hp′

13



for any g(z) =
∑∞

n=0 αnz
n.

Therefore (26) in Proposition 18 implies

‖T‖ ≤ C‖(gk)‖`q(Hp′ ) ≤ C‖(Tk)‖`q(`(p1,2)).

On the other hand, ‖T‖ = ‖FT‖Hp′
weak

(`q)
and we have

‖FT‖Hp′
weak

(`q)
= sup

‖(λk)‖
`q′=1

‖〈λ, FT 〉‖Hp′

≤ sup
‖(λk)‖

`q′=1

‖(〈λ, xn〉)n‖`(p1,2)

≤ sup
‖(λk)‖

`q′=1

‖(
∞∑

k=1

λktkn)n‖`(p1,2)

≤‖(
∞∑

k=1

|tkn|q)1/q
n ‖`(p1,2)

≤‖(xn)‖`(p1,2,`q).

Let us now show that for each u ≥ q there exists C > 0 such that

max{‖(Tk)‖`r(`(p2,2)), ‖(xn)‖`(su,2,`u)} ≤ C‖T‖,

where 1/r = (1/q − 1/p1)
+ and 1/su = (1/q − 1/p′2 − (1/u− 1/2)+)+.

Note that (27) in Proposition 18 together with the Hausdorff-Young’s inequal-
ities give

‖(Tk)‖`r(`(p2,2)) ≤ ‖(gk)‖`r(Hp′ ) ≤ C‖T‖.

On the other hand, as above ‖T‖ = ‖FT‖Hp′
weak

(`q)
and combining Hausdorff-

Young and (18), we obtain

‖FT‖Hp′
weak

(`q)
= sup

‖(λk)‖
`q′=1

‖〈λ, FT 〉‖Hp′

≥ sup
‖(λk)‖

`q′=1

‖(〈λ, xn〉)n‖`(p2,2)

= sup
‖(λk)‖

`q′=1,‖(βn)‖`(p′
2

,2)=1

∞∑
n=0

|βn

∞∑
k=1

λktkn|

≥ sup
‖(λk)‖

`q′=1,‖(βn)‖`(p′
2

,2)=1
|
∞∑

n=0

〈βnxn, λ〉|

14



Therefore (βnxn) ∈ `1
weak(`

q) for any (βn) ∈ `(p′2, 2) and

sup
‖(βn)‖`(p′

2
,2)=1

‖(βnxn)‖`1
weak

(`q) ≤ ‖FT‖Hp′
weak

(`q)
= ‖T‖.

We now use the fact (due to B. Carl in [12] and G. Bennett in [3] inde-
pendently) that the inclusion map `q → `u is (a, 1)-summing for 1/a =
1/q− (1/u− 1/2)+ (see [14, pg. 209]) to conclude that (βnxn) ∈ `a(`u) for any
(βn) ∈ `(p′2, 2). Now (18) implies (xn) ∈ `(s, 2, `u) for 1/s = (1/a − 1/p′2)

+.
The proof is then complete. 2

5 Improvements for 1 ≤ p < 2

We first recall some known facts about BMOA-functions. It was shown in [10]
that M2(f

′, r) = O( 1
(1−r)1/2 ) implies f ∈ BMOA. Moreover

‖f‖BMOA ≤ C(|f(0)|+ sup
0<r<1

(1− r)1/2M2(f
′, r)).

Using this estimate and (19) we conclude that

‖g‖BMOA ≤ C‖((n + 1)1/2αn)‖`(2,∞) (28)

Also, using duality together with Paley’s inequality for functions in H1 (see
[16]) we obtain

‖g‖BMOA ≤ C‖(αn)‖`(1,2). (29)

The reader should notice that these two sufficient conditions on the Taylor
coefficients to define BMOA-function are of independent nature. It suffices
to take αn = 1

n+1
to have an example satisfying ((n + 1)1/2αn) ∈ `(2,∞) but

(αn) /∈ `(1, 2) and to take α2k = 1
k

and zero otherwise to have (αn) ∈ `(1, 2)
but (n + 1)1/2αn /∈ `(2,∞).

Proof of Theorem 8

Using (28) and (29) together with (24) we have the estimate

‖T‖ ≤ ‖(gk)‖`q(BMOA) ≤ C min{‖(Tk)‖`q(`(1,2)), ‖(Ak)‖`q(`(2,∞))}.

On the other hand

‖T‖= ‖FT‖BMOAweak(`q)
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= sup
‖(λk)‖

`q′=1
‖〈λ, FT 〉‖BMO

≤ sup
‖(λk)‖

`q′=1
min{‖(〈λ, xn〉)‖`(1,2), ‖(〈λ, (n + 1)1/2xn〉)‖`(2,∞)}

≤min{‖(xn)‖`(1,2,`q), ‖((n + 1)1/2xn)‖`(2,∞,`q))}.

Invoking Lemma 13 we obtain the following estimates

‖(xn)‖`(1,2,`1) ≤ ‖(Tk)‖`1(`(1,2)),

‖((n + 1)1/2xn)‖`(2,∞,`1) ≤ ‖(Ak)‖`1(`(2,∞)),

‖((n + 1)1/2xn)‖`(2,∞,`q) ≤ ‖(Ak)‖`q(`(2,∞)), q ≤ 2,

‖(Tk)‖`q(`(1,2)) ≤ ‖(xn)‖`(1,2,`q), q ≥ 2.

Hence (i), (ii) and (iii) follow from these estimates. 2

Proof of Theorem 9

Take t ≥ 2 such that 1/t + 1/2 = 1/p and φ(z) =
∑∞

n=0 αnz
n ∈ H t with

‖φ‖Ht = 1. Define Tφ : H2 → `q given by

Tφ(f) = T (φf).

Due to the factorization result (see [16]) Hp = H2H t we can write

‖T‖ = sup{‖Tφ‖ : ‖φ‖Ht = 1}.

Observe that

xn(Tφ) = T (unφ) =
∞∑
l=0

αlT (un+l) =
∞∑
l=0

αlxn+l.

Therefore the matrix associated to Tφ is given by akn(Tφ) = (t′kn) where

t′kn =
∑
l≥n

αl−ntkl =
∞∑
l=0

αltk,l+n.

Now using (5) one can write, for 1/r = 1/q − 1/2,

max{‖((Tφ)k)‖`r(`2), ‖(xn(Tφ))‖`r(`2)}≤C‖Tφ‖
≤C‖T‖‖φ‖Ht

≤C‖T‖‖(αl)‖`(t′,2).

This shows the result. 2

Proof of Theorem 10
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Assume 1 ≤ p < 2 and let T : Hp → `1 be bounded. The estimate

sup
‖(αl)‖`(t′,2)=1

‖(
∞∑
l=0

αltk,n+l)k‖`2(`2) ≤ C‖T‖

was obtained in Theorem 9 in the case q = 1.

Let us show

sup
‖
∑

l
αlzl‖Ht=1

‖(
∞∑
l=0

αltk,n+l)n‖`2(`2) ≤ C‖T‖. (30)

In the case 1 < p < 2, we can use (17) to conclude that FT ∈ Hp′

weak(`
1) and,

due to Lemma 16, FT ∈ Hp′(`2).

In the case p = 1, we can use (25) to obtain FT ∈ BMOAweak(`
1) and Lemma

17 to conclude that FT ∈ BMOAC(`
2)).

Using the dualities (Hp(`2))∗ = Hp′(`2) for 1 < p < 2 and (H1(`2))∗ =
BMOAC(`

2)) for p = 1, we can write, for 1 ≤ p < 2, that

sup{|
∞∑

n=0

〈xn, x
′
n〉| : G(z) =

∞∑
j=0

x′nz
n, ‖G‖Hp(`2) = 1} ≤ C‖T‖.

In particular, for each g(z) =
∑∞

n=0 ynz
n ∈ H2(`2) and φ(z) =

∑∞
n=0 αnz

n ∈ H t

where 1/t + 1/2 = 1/p, the function G(z) = g(z)φ(z) =
∑

n x′nz
n ∈ Hp(`2)

satisfies x′n =
∑n

l=0 ylαn−l and ‖G‖Hp(`2) ≤ ‖g‖H2(`2)|‖φ‖Ht . Therefore, in such
a case, we obtain

∞∑
n=0

〈xn, x
′
n〉 =

∞∑
l=0

∞∑
n=l

〈xn, ylαn−l〉 =
∞∑
l=0

〈
∞∑

n=0

αlxn+l, yl〉.

Finally, taking the supremum over ‖(yj)‖`2(`2) = 1 and ‖φ‖Ht = 1 we get (30).
2
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