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Abstract

Let ρ : (0, 1] → R
+ be a weight function and let X be a complex

Banach space. We denote by A1,ρ(D) the space of analytic functions in
the disc D such that

∫
D
|f(z)|ρ(1 − |z|)dA(z) < ∞ and by Blochρ(X)

the space of analytic functions in the disc D with values in X such that
sup|z|<1

1−|z|
ρ(1−|z|)‖F ′(z)‖ < ∞. We prove that, under certain assump-

tions on the weight, the space of bounded operators L(A1,ρ(D), X) is
isomorphic to Blochρ(X) and some applications of this result are pre-
sented. Several properties of generalized vector-valued Bloch functions
are also considered.

1 Introduction and Preliminaries.

Weighted Bergman spaces appeared, denoted by Bp, in [?] when looking at
the Banach enveloppe of the Hardy spaces Hp for 0 < p < 1, although they
had been implicitely used in the work of Hardy and Littlewood (see [?], or
[?] page 87) who established that for 0 < p < 1

∫ 1

0

(1 − r)1/p−2M1(F, r)dr ≤ C||F ||Hp (1)

for any F ∈ Hp, where Mq(F, r) = (
∫ 2π

0
|F (reit)|q dt

2π
)1/q , 0 < q < ∞ and

||F ||Hp = sup0<r<1Mp(F, r).
This inequality was a crutial point in proving the duality (Hp)∗ = Λα for

0 < p < 1 and α = 1/p− 1 between the Hardy classes Hp and the Lipschitz
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classes Λα (see [?]). In that paper they denoted by Bp the space of analytic
functions in the disc such that

||F ||Bp =

∫ 1

0

(1 − r)1/p−2M1(F, r) <∞.

It is known that for 0 < p < 1, F ∈ Bp if and only if

∫ 1

0

(1 − r)1/p−1M1(F
′, r)dr <∞.

Making p = 1 in the last formula one can denote by B1 the space of analytic
functions such that

||F ||B1 = |F (0)| +
∫ 1

0

M1(F
′, r)dr <∞.

This space was later shown to be the predual of the Bloch space (see [?]).
Of course, using polar coordinates, one can realize the spaces as partic-

ular weighted Bergman spaces, or weighted Besov spaces, given by analytic
functions in the unit disk such that∫

D

|F (z)|(1 − |z|)1/p−2dA(z) <∞, (2)

or ∫
D

|F ′(z)|(1 − |z|)1/p−1dA(z) <∞, (3)

where dA(z) stands for the normalized Lebesgue measure. The reader is
referred to [?] for a proof of the duality between A1(D) and Bloch.

There are some natural conditions on a weight function ρ : (0, 1] → R
+

which allow to extend several results that hold for ρ(t) = tα to a more general
context.

Definition 1.1 Let 0 ≤ p, q < ∞ and let ρ : (0, 1] → R
+ be a continuous

function. It is said to be a (bq)-weight if there exists a constant C > 0 such
that

∫ 1

s

ρ(t)

t1+q
dt ≤ Cρ(s)

sq
, 0 < s < 1. (4)
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It is said to be a (dp)-weight (or to satisfy Dini condition of order p) if there
exists a constant C > 0 such that

∫ s

0

tpρ(t)
dt

t
≤ Cspρ(s), 0 < s < 1. (5)

These notions turned out to be relevant for different purposes (see [?, ?,
?, ?, ?]). We refer the reader to those papers for examples and properties of
these classes of weights.

In this paper we consider the weighted Bergman spaces A1,ρ(D). The just
mentioned Bp-spaces correspond to the case ρ(t) = t1/p−2 for 0 < p < 1.

Definition 1.2 Let ρ : (0, 1] → R
+ be an integrable function. An analytic

function f in the unit disc D is said to belong to A1,ρ(D) if

‖f‖A1,ρ =

∫
D

|f(z)|ρ(1 − |z|)dA(z) <∞.

Remark 1.1 (1) If ρ ∈ L1((0, 1]) then H∞(D) ⊂ A1,ρ(D).
(2) A1,ρ(D) is a closed subspace of the space L1(D, ρ(1 − |z|)dA(z)).
(3) The polynomials are dense in A1,ρ(D).

Let us denote by Pα and P ∗
α, α > −1, the operators

Pα(f)(z) = (α+ 1)

∫
D

(1 − |w|2)α
(1 − w̄z)2+α

f(w)dA(w)

P ∗
α(f)(z) = (α+ 1)

∫
D

(1 − |w|2)α
|1 − w̄z|2+α

f(w)dA(w)

for f ∈ L1(D, (1 − |w|2)αdA(w)
It is well known (see [?]) that P ∗

α in bounded on Lp(D) and that Pα is a
projection on the Bergman spaces Ap(D) if and only if p > 1 + α.

The Bergman projection corresponds to α = 0 and it will be denoted
by P . Since P is not bounded on L1(D) we now study its boundedness in
L1(D, ρ(1 − |z|)dA).

Proposition 1.3 Let α ≥ 0 and ρ : (0, 1] → R
+ be a continuous function.

If ρ is a (d1) and (bα)-weight then P ∗
α is a bounded on L1(D, ρ(1 − |z|)dA).

In particular, Pα defines a projection from L1(D, ρ(1−|z|)dA) onto A1,ρ(D).
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Proof. Let f belong to L1(D, ρ(1 − |z|)dA). We have

‖P ∗
αf‖A1,ρ(D) =

∫
D

ρ(1 − |z|)|P ∗
αf(z)|dA(z)

= C

∫
D

ρ(1 − |z|)(
∫

D

(1 − |w|2)α
|1 − zw̄|2+α

|f(w)|dA(w))dA(z)

≤ C

∫
D

|f(w)|(1 − |w|2)α(

∫
D

ρ(1 − |z|)
|1 − zw̄|2+α

dA(z))dA(w)

≈ C

∫
D

(1 − |w|2)α|f(w)|(
∫ 1

0

ρ(1 − r)
(1 − r|w|)1+α

dr)dA(w)

≈ C

∫
D

|f(w)|(1 − |w|2)α(

∫ 1

0

ρ(t)

t+ (1 − |w|)1+α
dt)dA(w)

≈ C

∫
D

|f(w)|
1 − |w|(

∫ 1−|w|

0

ρ(t)dt)dA(w)

+ C

∫
D

|f(w)|(1 − |w|)α(

∫ 1

1−|w|

ρ(t)

t1+α
dt)dA(w)

≤ C

∫
D

|f(w)|ρ(1 − |w|)dA(w).

�

Proposition 1.4 Let ρ : (0, 1] → R
+ be non-increasing, ρ(1) > 0 and (d1)-

weight. Set ρ1(t) = tρ(t). Then f ∈ A1,ρ(D) if and only if f ′ ∈ A1,ρ1(D).
Moreover ‖f ′‖A1,ρ1 (D) + |f(0)| ≈ ‖f‖A1,ρ(D).

PROOF.- Use that M1(f
′, r2) ≤ CM1(f,r)

1−r
to get

‖f ′‖A1,ρ1 (D) =

∫ 1

0

(1 − r2)ρ(1 − r2)M1(f
′, r2)rdr

≤ C

∫ 1

0

ρ(1 − r2)M1(f, r)dr ≤ C‖f‖A1,ρ(D).

On the other hand

|f(0)| ≤
∫

D

|f(w)|dA(w) ≤ ρ(1)−1

∫
D

|f(w)|ρ(1 − |w|)dA(w).

To prove the other inequality, we use M1(f, r) ≤
∫ r

0
M1(f

′, s)ds+ |f(0)|.
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Hence∫ 1

0

ρ(1 − r)M1(f, r)dr ≤
∫ 1

0

ρ(1 − r)(
∫ r

0

M1(f
′, s)ds)dr + |f(0)|

∫ 1

0

ρ(t)dt

≤
∫ 1

0

(

∫ 1

s

ρ(1 − r)dr)M1(f
′, s)ds) + |f(0)|

∫ 1

0

ρ(t)dt

≤
∫ 1

0

(

∫ 1−s

0

ρ(u)du)M1(f
′, s)ds) + |f(0)|

∫ 1

0

ρ(t)dt

≤ C

∫ 1

0

(1 − s)ρ(1 − s)M1(f
′, s)ds+ |f(0)|

∫ 1

0

ρ(t)dt

≤ C(‖f ′‖A1,ρ(D) + |f(0)|).
�

Let us now introduce the generalized Bloch classes, extending the notion
of Bloch functions:

Bloch(X) = {F : D → X analytic : sup
|z|<1

(1 − |z|2)||F ′(z)|| <∞}.

The reader is referred to [?, ?, ?, ?, ?, ?, ?] for different results concerning
vector-valued Bloch functions.

Definition 1.5 Let ρ : (0, 1] → R
+ be a continuous function such that ρ(t)

t

is non-increasing and ρ(1) > 0 and let X be a complex Banach space. An
analytic function from the disc D into X, F (z) =

∑∞
n=0 xnz

n where xn ∈ X,
is said to belong to Blochρ(X) if there exists a constant C > 0 such that

||F ′(z)|| ≤ Cρ(1 − |z|)
1 − |z| , z ∈ D.

It is easy to see that Blochρ(X) becomes a Banach space under the norm

‖F‖Blochρ(X) = ||F (0)|| + sup
|z|<1

{ 1 − |z|
ρ(1 − |z|) ||F

′(z)||}

Definition 1.6 Let ρ : (0, 1] → R
+ be a continuous function such that ρ(t)

t

is non-increasing, ρ(1) > 0 and limt→0+
ρ(t)
t

= ∞ and let X be a complex
Banach space. The little Bloch space blochρ(X) is the closed subspace of
Blochρ(X) given by those functions for which

lim
|z|→1

1 − |z|
ρ(1 − |z|) ||F

′(z)|| = 0.
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Remark 1.2 (1) There is no loss of generality in assuming ρ(t)
t

non-increasing,
because the function ρ̃ defined by

ρ̃(1 − t)
1 − t = sup{M∞(F ′, t) : ‖F‖Blochρ(X) ≤ 1}

is non-increasing and Blochρ(X) = Blochρ̃(X).

(2) The assumptions ρ(t)
t

≥ ρ(1) > 0 and limt→0
ρ(t)
t

= ∞ are needed to
have the vector-valued polynomials in the spaces Blochρ(X) and blochρ(X)
respectively.

(3) If ρ(t)
t

non-increasing then ρ is (bq)-weight for q > 1.
Indeed, ∫ 1

s

ρ(t)

t1+q
dt ≤ Cρ(s)

s

∫ 1

s

dt

tq
≤ Cρ(s)

sq

(4) If ρ is (b1)-weight and ρ(t)
t

≥ C > 0 then limt→0
ρ(t)
t

= ∞.
Indeed,

Clog(
1

s
) = C

∫ 1

s

dt

t
dt ≤

∫ 1

s

ρ(t)

t2
dt ≤ C ′ρ(s)

s
.

In [?] it was shown that the boundedness of operators between weighted
Bergman spaces and a general Banach space X can be characterized by the
fact that a fixed associated vector-valued function belongs to certain Lipschizt
space. In the papers [?] and [?] similar results were extended to weighted
spaces Bp(ρ) for 0 < p ≤ 1 and certain generalized Lipschizt classes for
weights introduced by Janson (see [?]) . Some applications of these results
to multipliers, Carleson measures and composition operators were achieved.

In this paper we present an independent proof of some of those results,
where we shall addecuate the duality between the Bergman space A1(D) and
Bloch (see [?]) to our vector-valued and weighted situation.

Let us now give a natural correspondence between operators and vector-
valued analytic functions, that will allow us to identify the bounded operators
from A1,ρ(D) into X with Blochρ(X) with equivalent norms. This idea has
been used by the author several times with slight modifications (see [?], [?],
[?] or [?]).

Given an analytic function F (z) =
∑∞

n=0 xnz
n where xn ∈ X we can

define a linear operator TF which acts on polynomials as follows:

TF (
n∑

k=0

αkz
k) =

n∑
k=0

αkxk
k + 1

. (6)
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Conversely, given a linear operator T defined on some space of analytic
functions on the unit disc containing the polynomials and with range in a
Banach space X one can define the vector-valued analytic function FT given
by

FT (z) =
∞∑
n=0

(n+ 1)T (un)z
n. (7)

where un(z) = zn.
Now we are ready to state the main theorem of the paper:

Theorem 1.7 Let ρ : (0, 1] → R
+ be a continuous function such that ρ(t)

t
is

non-increasing and ρ(1) > 0 and let X be a complex Banach space. Assume
ρ is a (d1) and (b1) weight.

(i) If F (z) =
∑∞

n=0 Tnz
n ∈ Bloch(X) then TF extends to a bounded

operator in L(A1,ρ(D), X).
(ii) If T extends to a bounded operator in L(A1,ρ(D), X) then FT belongs

to Blochρ(X).
In particular, Blochρ(X) = L(A1,ρ(D), X) with equivalent norms.

It is known that Blochρ(C) for ρ(t) = tα, 0 < α < 1 and X = C coincides
with the Lipschizt class defined in terms of the modulus of continuity Λα (see
Theorem 5.1 in [?]). The proof works also in the vector-valued case, and then
we can say that the space Blochρ(X) for ρ(t) = tα and 0 < α < 1 coincides
with

Λα(X) = {f ∈ CX(T) : w(f, t) = sup
s∈T

||f(ei(t+s) − f(eis)|| = O(tα)}. (8)

Corollary 1.8 Let 1/2 < p < 1, α = 1/p− 2 and let X be a Banach space.
Then the following are equivalent.

(i) T : Hp → X is bounded.
(ii) FT ∈ Λα(X).

PROOF.- (i) =⇒ (ii). Using that F ′
T (z) =

∑∞
n=1(n + 1)nT (un)z

n−1. Hence
if Gz(w) =

∑∞
n=1(n+ 1)nwnzn−1 = 2w

(1−wz)3
, one has F ′

T (z) = T (Gz).

Hence one has to estimate ||Gz||Hp . Observe now that

||Gz||Hp ≤ (

∫ 2π

0

dt

|1 − zeit|3p )1/p ≤ C 1

(1 − |z|)3−1/p
= C

1

(1 − |z|)1−α
.
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(ii) =⇒ (i) Since ρ(t) = t1/p−2 satisfies the assumptions in Theorem ??,
one gets T is bounded from A1,ρ(D) into X. Now, by (??), Hp ⊂ A1,ρ(D)
and then T = TFT

is also bounded from Hp. �
The reader is referred to [?, ?, ?] for applications to multipliers, Carleson

measures and composition operators of similar nature.

2 Proof of the main theorem.

We need some lemmas before starting the proof.

Lemma 2.1 Let X be complex Banach spaces, F (z) =
∑∞

n=0 xnz
n for xn ∈

X and g(z) =
∑m

n=0 αnz
n for αn ∈ C. Then

(i) TF (g) =
∫

D
F (w)g(w̄)dA(w).

(ii)
∫

D
(1 − |w|2)F ′(w)g1(w̄)dA(w) =

∑m
n=1

αnxn

n+1
= TF (g) − F (0)g(0)

where g1(z) =
∑m

n=1 xnz
n−1 = g(z)−g(0)

z
.

PROOF.-

(i)

∫
D

F (w)g(w̄)dA(w) =
∑
n,k≥0

∫
D

xnαkw
nw̄kdA(w)

=
m∑

n=0

∫
D

xnαn|w|2ndA(w) =
m∑

n=0

αnxn
n+ 1

.

(ii)

∫
D

(1 − |w|2)F ′(w)g1(w̄)dA(w) =
∑

n≥1,k≥1

∫
D

(1 − |w|2)nxnαkwn−1w̄k−1dA(w)

=
m∑

n=1

nαnxn

∫
D

(1 − |w|2)|w|2n−2dA(w)

=
m∑

n=1

αnxn
n+ 1

.

�

Lemma 2.2 Let ρ : (0, 1] → R
+ belong to L1((0, 1]) and ρ(t) ≥ Ct for

0 < t < 1. Let f(z) =
∑∞

n=0 αnz
n and f1(z) =

∑∞
n=1 αnz

n−1 = f(z)−f(0)
z

.
Then f ∈ A1,ρ(D) if and only if f1 ∈ A1,ρ(D).

Morerover ‖f1‖A1,ρ(D)) + |f(0)| ≈ ‖f‖A1,ρ(D)

8



PROOF.- Using |αn|rn ≤M1(f, r) we obtain for n ≥ 0

||f ||A1,ρ ≥
∫ 1

0

|αn|rnρ(1 − r)dr

≥ C

∫ 1

0

|αn|rn(1 − r)dr

= C
|αn|

(n+ 1)2

Hence

|αn| ≤ C(n+ 1)2||f ||A1,ρ . (9)

Assume first that f1 ∈ A1,ρ(D). Since f(z) = f(0) + zf1(z) we have

‖f‖A1,ρ(D) ≤ |f(0)|
∫ 1

0

ρ(t)dt+ ‖f1‖A1,ρ(D).

Conversely, assume that f ∈ A1,ρ(D). By (??)

∫
D

|f1(z)|ρ(1 − |z|)dA(z) ≤ C(
∞∑
n=0

(n+ 1)2

2n
)‖f‖A1,ρ(D)

+ 2

∫ 1

1/2

(|f(0)| +M1(f, r))ρ(1 − r)dr.

This gives ‖f1‖A1,ρ(D) ≤ C‖f‖A1,ρ(D). �

Proof of Theorem ??

(i)=⇒ (ii). From (ii) in Proposition ?? we have

TF (g) − F (0)g(0) =

∫
D

(1 − |z|2)F ′(z)g1(z̄)dA(z)

for each polynomial g. Hence

||TF (g)|| ≤ ||F (0)|||g(0)| +
∫

D

(1 − |z|2)||F ′(z)|||g1(z̄)|dA(z)

≤ ||F (0)|||g(0)| + sup
|z|<1

1 − |z|
ρ(1 − |z|) ||F

′(z)||
∫

D

ρ(1 − |z|)|g1(z̄)|dA(z)

≤ ||F ||Blochρ(X)(|g(0)| + ||g1||A1,ρ).
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Now we apply Lemma ?? to get ||TF (g)|| ≤ C||F ||Blochρ(X)|g||A1,ρ . Hence
we can extend now to A1,ρ using the density of polynomials.

(ii)=⇒ (i). Assume T extends to a bounded operator from A1,ρ(D) into
X. We write un(z) = zn and Kz(w) = 1

(1−wz)2
for the Bergman kernel.

Clearly, for n ∈ N,

||un||A1,ρ =

∫ 1

0

rnρ(1 − r)dr ≤ C.

This shows that Kz =
∑∞

n=0(n+ 1)unz
n is an absolutely convergent series in

A1,ρ(D). Therefore

FT (z) =
∞∑
n=0

(n+ 1)T (un)z
n = T (Kz).

Same argument gives

F ′
T (z) =

∞∑
n=1

(n+ 1)nT (un)z
n−1 = T (

∞∑
n=1

(n+ 1)nunz
n−1).

Write Gz(w) =
∑∞

n=1(n+ 1)nwnzn−1 = 2w
(1−wz)3

.
Hence

||F ′
T (z)|| ≤ ||T ||.||Gz||A1,ρ .

Let us now estimate ||Gz||A1,ρ

||Gz||A1,ρ ≤ C

∫ 1

0

ρ(1 − r)(
∫ 2π

0

dθ

|1 − rzeiθ|3 )dr

≤ C

∫ 1

0

ρ(1 − r)
(1 − r|z|)2

dr

=

∫ |z|

0

ρ(1 − r)
(1 − r|z|)2

dr +

∫ 1

|z|

ρ(1 − r)
(1 − r|z|)2

dr

≤
∫ |z|

0

ρ(1 − r)
(1 − r)2

dr +
1

(1 − |z|)2

∫ 1

|z|
ρ(1 − r)dr

≤
∫ 1

1−|z|

ρ(t)

t2
dt+

1

(1 − |z|)2

∫ 1−|z|

0

ρ(r)dr
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Using now the (d1) and (b1) assumptions on ρ one gets

||F ′
T (z)|| ≤ ||T ||.||Gz||A1,ρ ≤ Cρ(1 − |z|)

1 − |z| .

�

3 Vector-valued generalized Bloch spaces.

Let us now indicate how to construct examples of functions in the generalized
Bloch classes in the vector-valued case using Theorem ??. See [?, ?, ?, ?] for
more examples.

Proposition 3.1 Let ρ be a (d1) and (b1)-weight on (0, 1] and set ρn =∫ 1

0
rnρ(1 − r)dr. Then

F (z) = (ρnz
n)n =

∞∑
n=0

ρnenz
n ∈ Blochρ(+1) (10)

where {en} stands for the canonical basis of +1.

PROOF.- It suffices to see that F (z) = T (Kz) for a bounded operator T ∈
L(A1,ρ(D), +1).

Consider T (g) = (αnρn

n+1
)n≥0 for g(z) =

∑∞
n=0 αnz

n ∈ A1,ρ(D).
Note that Hardy inequality (see [?]) gives

∞∑
n=0

|αn|rn
n+ 1

≤ CM1(g, r),

and then

∞∑
n=0

|αn|ρn
n+ 1

=

∫ 1

0

ρ(1 − r)
∞∑
n=0

|αn|rn
n+ 1

dr ≤ C‖g‖A1,ρ .

This shows that T is bounded from A1,ρ(D) into +1. Note now that

T (Kz) = (
(n+ 1)znρn
n+ 1

)n≥0 =
∞∑
n=0

ρnenz
n.

�
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Proposition 3.2 Let γn ≥ 0 such that γ0 > 0 and

γn ≤ C 1

n+ 1

n∑
k=0

γk n ≥ 0.

Then

∞∑
n=0

γn|αn|
n+ 1

≤ C‖g‖A1,ρ(D) (11)

where g(z) =
∑∞

n=0 αnz
n and ρ(1 − t) =

∑∞
n=0 γnt

n.

PROOF.- Observe first that

ρ(1 − t)
1 − t =

∞∑
n=0

(
n∑

k=0

γk)t
n ≥ C−1

∞∑
n=0

(n+ 1)γnt
n ≥ C−1γ0.

Define T (g) = (γnαn

n+1
)n≥0 for g(z) =

∑∞
n=0 αnz

n . We have to show that T
is bounded from A1,ρ(D) into +1. It suffices to show that F (z) = (γnz

n)n =∑∞
n=1 γnenz

n ∈ Blochρ(+1) where {en} stands for the canonical basis of +1.
(The reader should observe that the assumptions (b1) and (d1) on the weight
are only used in the other implication.)

Note that F ′(z) =
∑∞

n=1 nγnenz
n−1 and ‖F ′(z)‖ = (

∑∞
n=1 nγn|z|n−1).

Hence

‖F ′(z)‖ ≤ C(
∞∑
n=1

(
n∑

k=1

γk)|z|n) ≤ C
ρ(1 − |z|)
1 − |z| .

�
We now introduce certain related spaces which can be used to produce

more examples.

Definition 3.3 Let X ba a Banach space and let σ : (0, 1] → R
+ be a contin-

uous function, we define by Lσ(X) (respect. Aσ(X)) the space of measurable
(respect. analytic) functions in the unit disc D such that there exists C > 0
for which

||F (z)|| ≤ Cσ(1 − |z|)
for almost all z ∈ D with respect to the normalized Lebesgue measure dA(z)
( respect. for all z ∈ D).

It becomes a Banach space under the norm ‖F‖Lσ(X) (respect. ‖F‖Aσ(X))
given by supz∈D

1
σ(1−|z|) ||F (z)||.

12



Remark 3.1 Aσ(X) = H∞(X) for σ(t) = 1, Aσ(X) = Aα(X) (see [?]) for
σ(t) = t−α for α > 0 and Aσ(X) = A0(X) for σ(t) = log(1

t
) (see [?]). We

use the notation L0(X) for the space Lσ(X) for σ(t) = log(1
t
) (see [?]).

Proposition 3.4 Let X be Banach space and let σ : (0, 1] → R
+ be non-

increasing and denote σ1(t) =
∫ 1

t
σ(s)
s
ds for 0 < t < 1. Then

(i) Aσ(X) ⊂ Blochσ(X).
(ii) Blochσ(X) ⊂ Aσ1(X).
If ρ(t) = tσ(t) is (b1)-weight then Aσ(X) = Blochσ(X). In particular

Aα(X) = Blochρ(X) for ρ(t) = t−α.

Proof. (i) Since

F ′(z) =
1

2πi

∫
Γ

F (ξ)

(z − ξ)2
dξ

for Γ = {reit : t ∈ [0, 2π)} where r = λ|z| for some 1 < λ < 1
|z| , we get

||F ′(z)|| ≤ 1

2π

∫
Γ

||F (ξ)||
|z − ξ|2 |dξ|

≤ C

∫
Γ

σ(1 − |ξ|)
|z − ξ|2 |dξ|

≤ Cσ(1 − r)
∫ 2π

0

1

|z − reit|2 rdt

≤ Cσ(1 − λ|z|)
∫ 2π

0

1

r|1 − |z|
r
e−it|2

dt

≤ C
σ(1 − λ|z|)
(r − |z|)

≤ C
σ(1 − |z|)
(λ− 1)|z| .

Hence, taking limits as λ goes to 1/|z| one gets

||F ′(z)|| ≤ Cσ(1 − |z|)
1 − |z| .

(ii) Let F ∈ Blochσ(X). Simply observe that F (z)−F (0) =
∫ 1

0
zF ′(rz)zdr

and then

||F (z)−F (0)|| ≤
∫ 1

0

|z|||F ′(rz)||dr ≤ C|z|
∫ 1

0

σ(1 − r|z|)
1 − r|z| dr ≤ C

∫ 1

1−|z|

σ(s)

s
ds.

13



This shows that ||F (z)|| ≤ ||F (0)|| + Cσ1(1 − |z|).
Note that ρ in (b1) then σ1 ≤ Cσ what easily gives the final observation.

�

Let us now give general properties of the spaces.

Proposition 3.5 Let ρ : (0, 1] → R
+ be a continuous function such that

ρ(t)
t

is non-increasing and ρ(1) > 0. Let X be a complex Banach space and
F : D → X be analytic. Then

‖F‖Blochρ(X) = lim
r→1

‖Fr‖Blochρ(X),

where Fr(z) = F (rz) for 0 < r < 1.

Proof. Note that Fr(0) = F (0) for all r. Observe that

1 − |z|
ρ(1 − |z|) ||F

′
r(z)|| = r

1 − |z|
ρ(1 − |z|) ||F

′(rz)|| = r
(1 − |z|)1+α

ρ(1 − |z|)(1 − |z|)α ||F
′(rz)||

Due to the fact that t
ρ(t)

is non-decreasing, we have

1 − |z|
ρ(1 − |z|) ||F

′
r(z)|| ≤

1 − |rz|
ρ(1 − |rz|) ||F

′(rz)||

what implies that ‖Fr‖Blochρ(X) ≤ ‖F‖Blochρ(X) for all 0 < r < 1.

Now, given ε > 0 take z0 ∈ D such that 1−|z0|
ρ(1−|z0|) ||F

′(z0)|| > ‖F‖Blochρ(X)−
ε/2 and take r0 verifying that

r
1 − |z0|
ρ(1 − |z0|)

||F ′(rz0)|| >
1 − |z0|
ρ(1 − |z0|)

||F ′(z0)|| − ε/2

for any r > r0. Hence

‖Fr‖Blochρ(X) > ‖f‖Blochρ(X) − ε.

�
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Theorem 3.6 Let ρ : (0, 1] → R
+ be a continuous function such that ρ(t)

t
is

non-increasing, ρ(1) > 0 and limt→0+
ρ(t)
t

= ∞. Let X be a complex Banach
space and F ∈ Blochρ(X). The following are equivalent:

(i) F ∈ blochρ(X).
(ii) limr→1 ‖F − Fr‖Blochρ(X) = 0.
(iii) F belongs to the closure of the X-valued polynomials.

Proof. (i)⇒ (ii) Assume that lims→1
1−s

ρ(1−s)
M∞(F ′, s) = 0. Note that for all

0 < s < 1 we have

sup
|z|<1

1 − |z|
ρ(1 − |z|)‖F

′(z) − rF ′(rz)‖ ≤ 2 sup
|z|>s

1 − |z|
ρ(1 − |z|)M∞(F ′, |z|)

+ C sup
|z|≤s

‖F ′(z) − F ′
r(z)‖.

Hence, given ε > 0 choose s0 < 1 such that sup|z|>s0
1−|z|

ρ(1−|z|)M∞(F ′, |z|) < ε
4

and then use that F ′
r converges uniformly on compact sets to get r0 < 1 such

that sup|z|≤s0 |F ′(z) − F ′
r(z)| < ε

2
for r > r0. Then ‖F − Fr‖Blochρ < ε for

r > r0.
(ii)⇒ (iii) Assume now that for each ε > 0 there exists r0 < 1 such

that ‖F − Fr0‖Blochρ < ε/2. Now we can take a Taylor polynomial of Fr0

PN = PN(Fr0) such that ‖F ′
r0
− P ′

N‖H∞ < ε/2A where A = sup0<r<1
1−r

ρ(1−r)
.

Therefore

‖F − PN(Fr0)‖Blochρ ≤ ‖F − Fr0‖Blochρ + ( sup
0<r<1

1 − r
ρ(1 − r))‖F

′
r0
− P ′

N‖H∞ < ε.

(iii)⇒ (i) Let P be an X-valued polynomial. Using that

1 − r
ρ(1 − r)M∞(P ′, r) ≤ 1 − r

ρ(1 − r) max
|z|≤1

‖P ′(z)‖

one has that P ∈ blochρ(X). The result follows because blochρ(X) is closed
in Blochρ(X). �

Proposition 3.7 Let X be a complex Banach space and let ρ : (0, 1] →
R

+ be a continuous function such that ρ(t)
t

is non-increasing and ρ(1) > 0.
Assume that ρ is a weight in (d1) and (b1).

If F ∈ blochρ(X) then TF is a compact operator from A1,ρ(D) into X.

15



PROOF.- Using (4) in Remark ?? and Theorem ?? we have a sequence
of polynomials Pn with values in X which approaches F in blochρ(X). Note
that the associated operators TPn are finite rank operators. Due to Theorem
?? one gets that TPn converges to T in norm. Therefore T is compact. �

Remark 3.2 The converse of Proposition ?? is not true.
Take F ∈ Blochρ(C) \ blochρ(C) and T = TF the corresponding operator

for X = C. Now T is compact but FT = F /∈ blochρ(C).

We observe now that the Bergman projection is also well defined for X-
valued integrable functions f in L1(D, dA,X):

P (f)(z) =

∫
D

f(w)

(1 − w̄z)2
dA(w).

Theorem 3.8 Let X be a Banach space and let σ be a (d1) and (b1)-weight
in (0, 1]. Then the Bergman projection P defines a bounded operator from
Lσ(X) onto Blochσ(X).

Proof. Let f belong to Lσ(X). Since σ is (d1)-weight, in particular σ ∈
L1((0, 1]), and therefore f ∈ L1(D, dA,X).

Since (Pf)′(z) =

∫
D

2w̄

(1 − w̄z)3
f(w)dA(w) we have

‖(Pf)′(z)‖ ≤ ‖f‖Lσ

∫
D

2σ(1 − |w|)
|1 − zw̄|3 dA(w)

≤ 2‖f‖Lσ

∫ 1

0

σ(1 − r)(
∫ 2π

0

1

|1 − z̄reit|3dt)dr

≤ C‖f‖Lσ

∫ 1

0

σ(1 − r)
(1 − |z|r)2

dr

≈ C‖f‖Lσ

∫ 1

0

σ(1 − r)
((1 − |z|) + (1 − r))2

dr

≈ C‖f‖Lσ

( ∫ 1−|z|

0

σ(r)

(1 − |z|)2
dr +

∫ 1

1−|z|

σ(r)

r2
dr

)

≤ C‖f‖Lσ

( 1

(1 − |z|)2

∫ 1−|z|

0

σ(t)dt+
σ(1 − |z|)

1 − |z|
)

≤ C‖f‖Lσ

σ(1 − |z|)
1 − |z|

16



Let us prove the surjectivity. Let f ∈ Blochσ(X) with f(0) = f ′(0) = 0.
If f(z) =

∑∞
n=2 xnz

n, let g be given by

g(z) =
(1 − |z|2)f ′(z)

z̄
.

We have that g ∈ Lσ(X) since f ∈ Blochσ(X) and f ′(0) = 0. Now write
Pg(z) =

∑∞
n=0 ynz

n and take n ≥ 1

yn = (n+ 1)

∫
D

g(z)z̄ndA(z) = (n+ 1)

∫
D

(1 − |z|2)f ′(z)z̄n−1dA(z)

= (n+ 1)

∫
D

f ′(z)z̄n−1dA(z) − (n+ 1)

∫
D

zf ′(z)z̄ndm(z) = xn.

Also y0 = 0. That is Pg = f .
The general case follows by writting f(z) = f(0) + f ′(0)z + f1(z) where

f1 is as above. So if Pg1 = f1 then P (f(0) + f ′(0)z + g1) = f . �

Corollary 3.9 The Bergman projection maps L0(X) to A0(X).

Proof. Note that ρ(t) = log( e
t
) is (d1) and (b1)-weight. Indeed,

∫ s

0

log(
e

t
)dt = s(log(

e

s
) + 1) ≤ Cslog(e

s
).

∫ 1

s

log( e
t
)

t2
dt ≤ log(

e

s
)

∫ 1

s

dt

t2
≤ C log(

e
s
)

s
.

�

Remark 3.3 Denote by R the adjoint operator of P ∗
2 , that is

Rf(z) = (1 − |z|2)2

∫
D

f(w)

|1 − z̄w|4dA(w),

which corresponds to the Berezin transform. The reader is referred to the
recent paper [?] for the results on the Berezin transform of functions on Lσ.
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