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Composition operators on the minimal space invariant under
Mobius transformations

Oscar Blasco

ABSTRACT. It is shown that if ® : D — D is an analytic function such that
My (®",r) € LP (dr) for some 1 < p < oo and 1/p 4+ 1/p’ = 1 then Co(f) =
f o ® defines a bounded composition operator on the space Bj, the minimal
space invariant under Mobius transformations. This was conjectured by J.
Arazy, S. Fisher and J. Peetre in [AFP].

1. Introduction

Let us denote by G the group of holomorphic automorphisms on the unit disk
D, i.e. the set of functions ¢ € H(D) such that ¢ = Ay, for [A| =1, |a| < 1 and
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The fact |¢'(z)| = % for ¢ € G guarantees that the measure dA(z) =

% is invariant under Mdbius transformations, where dA(z) stands for the

normalized area measure dA(z) = Lfrdy-

The paper where a systematic study of spaces of invariant under Mdbius trans-
formations was started is [AFP], and we also refer the reader to [AF, F, RT, T1,
T2] for further considerations.

Although the precise definition may vary from author to author we shall say
that a complete space X C H(D) with a semi-norm p is G-invariant (or invariant
under Mobius transformations) if for all f € X and ¢ € G one has that fo¢p € X
and there exists C' > 0 such that

(1.1) sup p(f o ¢) < Cp(f).
PG

The basic examples of G-invariant spaces are the following:

e The space H*: The space of bounded analytic functions.
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Note that for 1 < p < oo the spaces

H? ={f € H(D): sup (/0277 |f(re™)|P dt)l/p < oo}

0<r<1 2m

are not G-invariant in our sense.

The reader should be aware that they however become G-invariant
under the action f — (f o ¢)(¢)'/P.
The space BMOA:

BMOA ={f e H(D) : [|fll« = sup |[f o pa — f(a)||z= < oo}

la]<1
e The Dirichlet space:
Dy = {feHD): (Y nlan*)"/? < oo}
n=1

= {feHD): f € L*(D,dA)}.
The Besov spaces for 1 < p < oo:

B, = {fenm): ([ 17era- ?p2da() " < ool

In particular By = Ds.

The Bloch space: B = {f € H(D) : sup,; (1 — |2[*)|f'(2)| < oo}
We write || f]ls = max{|£(0)],supj.j<, (1 — [2[)| /() }.

Let us also consider the invariant pairing on D given by

(f.g) = lim f(2)g'(2)dA(2).

r—1 |z|<r

Under such a pairing one has, for each ¢ € G,

(fod,god)=(f.q)
Using the Bergman projection one sees that
(1.2) (f,0a) = (1 ~lal*)f'(a).
It is not difficult to see that the previously mentioned examples are G-invariant.
Note, for instance, that (1.2) implies that f € B, if and only if

/D (2 02 PAA(2) < o0

and f € B if and only if sup|, 1 [(f, ¢2)| < oc.

By the work by Rubel and Timoney (see [RT]) one has that B becomes a
maximal space among the decent G-invariant ones. We say that a G-invariant
space X is "decent” if

(1.3) There exists 0 # z* € X* which is also continuous in H (D).

For decent G-invariant spaces (see [RT, F]) one has that X C B continuously.
To find out which is the corresponding limiting case of the Besov spaces B,
for p = 1 just recall the following well-known facts (see [Z]): Let 1 < p < oo and

- ) 1/p
denote M, (f,r) = ( 02 |f(re”)|p2d—fr> . The following are equivalent:

(i) f € By.
(i) fy ME(f' 7)1 —r)P~2dr < oc.



COMPOSITION OPERATORS ON THE MINIMAL SPACE INVARIANT UNDER MOBIUS TRANSFORMATIONS

(iii)fo1 ME(f",r) (1 —r)P~tdr < co.
In the case p =1 (iii) becomes fol My (f”,r)dr < co. Thus one defines

By={f € HO): pi(f) = [ /" ()IdAG) < oo).
D
We can define a norm by considering

1£1l, = max{[f(0)], ' (0)], 1 (£)}-

This space is known to be minimal among G-invariant spaces with some extra
properties (see [AFP, T2]). We shall see here that this is also the case when
assuming certain measurability condition on the map ¢ — f o ¢ from G to X.

The reader should be aware that the space B; was denoted by M in [AFP]
and coincides with the space consisting in those functions f € H(D) such that
[ =300 Mepa, where |ag| <1 and >, || < o0.

It was shown in [AFP, Theorems 18 and 19] respectively that

(1.4) " € H' = Cs : B, — B is bounded

and

(1.5) sup |®" (re?)| € L' (dr) = Cg : By — By is bounded .
0

Observe that (1.4) and (1.5) means M;(®”,r) € L*(dr) and M (9",r) €
L'(dr) respectively. It was conjectured in the Arazy-Fisher-Peetre paper that
M, (®",r) € LV (dr) for some 1 < p < oo and 1/p 4+ 1/p’ should be sufficient
for Cp to be bounded on Bj.

In this direction it was even shown in [AFP, Theorem 20] that Cp was bounded
on By whenever M, (®",r) € L*(dr) for s = p2_p1 (note that in this case L*(dr) C
LP (dr)).

Our main result is Theorem 3.7 where we show that the conjecture is true.

The paper is organized as follows: Section 1 contains some basic facts on Bj,
in particular that By C X for a relatively wide class of G-invariant spaces. In
Section 2 we apply a general theorem on the characterization of the boundedness
of operators from B; into a Banach space to the particular case of composition
operators from Bj into B; and give a proof of the conjecture mentioned above.

As usual p’ stands for the conjugate exponent of p, 1/p +1/p" = 1 and C
denotes a constant that may vary from line to line.

2. The minimal space invariant under Mobius transformations

We may consider G C T x D by the mapping (A, a) — ¢ = Ay, or as a subspace
of H>*(D) or simply G C H (D) with the locally convex topology of the convergence
over compact sets. Let us mention that all these topologies on G are actually
equivalent.

PROPOSITION 2.1. Let ¢,, = A\, and ¢ = Ay, for some |[A,| = |\| =1 and
a,a, € D. The following are equivalent:
(1) én(z) converges to ¢(z) for all z € D.
(2) A, converges to A and a,, converges to a.
(3) ¢» converges to ¢ in H*.
(4) ¢y, converges to ¢ in H(ID), i.e. uniformly on compact subsets of D.
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PROOF. (1) = (2) Assume that ¢,,(z) converges to ¢(z) for all z € D.

Note that A\npa, (2) — Apa(2) is equivalent to A, ¢a, ((9a) " (w)) — w for
all w € D. For w = 0 one gets ¢,,(a) — 0 and then a, — a. In particular
now @, (2) — @a(2) for all z € D which together with ¢,,(z) — ¢(z) implies that
An — A

(2) = (3)

90 (2) — ¢(2)]

|()‘n - )‘)Span + )‘(‘pan - Spa)|

< A=A+ |@a, — ®a)l
2lan — al + |ana — anal
< A=A
= P A T e
Hence ||¢n — ¢lloo — 0.
(3) = (4) Immediate.
(4) = (1) Immediate. O

Let us now give one characterization of the space By (see [AFP]). Let us point
out the following easy fact that we shall need for such a purpose.

ProposITION 2.2. If f € By and f/(0) = 0 then F(z) = zf(2) € By and
p1(F) < 3p1(f).

PROOF. F'(z) = f(z) + 2/'(2) and F"(2) = 2f'(z2) + 2" (2).
Therefore it suffices to see that [j |f'(2)|dA(z) < [ [f"(2)|dA(z).

Smcef (reit) = fo f"(rse')ds, we can conclude that M (f',r) < fo My (f",rs)ds

/|f )|dA(z) /M1 rdr</ / M (1" rsrdrds</|f” )|dA(z).

O

THEOREM 2.3. Let f € H(D) with f(0) = f'(0) = 0. f € By if and only if
there exists a complex Borel measure v of bounded variation on D such that

1) = [ eulyivte).
Moreover,
() =it £ = [ gudvia))
PROOF. Assume v is a measure of bounded variation with
1) = [ eul2divta).
Then
) = [ dieavta)
D
It suffices to use the standard estimate (see [Z, Page 53])
2|al(1 — [a]?)
. = _— <
(2.1) A / AR <O
and Fubini’s theorem to conclude that fD | (2)|dA(z) < C||v||1- This shows that
p1(f) < Cinf{||v][1}.
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Conversely, observe that if F(z) = > " a,2" belong to L*(D) then

F(a) dA(a):i n_n,

— z
pl—az —nt 1
This shows that
An—1
Fla)pa(2)dA(a) = Y —2=L _n,
[ F@eata@ = 3 et

Now if f(z) = > 07, b,2" € By we define G(z) = z2f(z) = > o7 | bpy12" 2. Hence,
applying the formula above to

F(z) = G"(2) = S (n+2)(n + )bysr2"

we obtain
f(z) = / ()G (@)dA(a).

Using Proposition 2.2 one has that G € By and p1(G) < 3p1(f). Taking
dv(a) = G"(a)dA(a) one gets ||v]|1 = p1(G) < 3p1(f). O

PROPOSITION 2.4. Bj is G-invariant and a — ¢, is continuous from D to Bj.

PRrROOF. Let f € By with f(0) = f/(0) =0 and ¢ = App € G. Using Theorem
2.3 one can write f = [, pq(2)dv(a) for some v with |||y < Cpi(f). Hence

Fod() = [ eaélNivia) = [ Aesaler@ivta) = [ g iva)

Now take the second derivative and use (2.1) to get that sup|. <1 [|(#e)” |1y < o0
and p1(f 0 6) < Cpr(f).

Note also that if a, — a then ¢ (2) — ¢,/ (2) for all z € D. Now applying the
dominated convergence theorem one concludes pi(@q, — @a) — 0. O

It was shown in [AFP] that (B1)* = B. Let us now show the minimal character
of By . The reader should note that we did not assume the map ¢ — f o ¢ to be
continuous from G to X in the definition of G-invariant. This allowed to have more
examples, as B or H*, in this category.

PROPOSITION 2.5. Let (X, ||.||) be a non-trivial (i.e there exists f € X non
constant) G-invariant Banach space.

(1) If the map I'y : G — X defined by ¢ — f o ¢ is Borel measurable and
bounded for all f € X then X contains the space of polynomials, By C X and
there exists C' > 0 such that || f||x < C||f||B, for all f € B;.

(2) If the map I'y : G — X defined by ¢ — f o ¢ is continuous for all f € X
then the space of polynomials is dense in X.

PrOOF. (1) Let f(z) = >..°;a,z™ € X be non constant, that is aj # 0 for
some k > 1. Consider the bounded measurable map T — X defined by e —
f:(2) = f(e®z). Now one can use the Bochner integral to obtain that, for n > 0,

2T
oy dt

frem ™ = =q,u, € X
0 2T

where u,,(z) = 2™. Therefore uy € X.
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Now we can conclude that (¢4(2))¥ € X for all |a] < 1. We can repeat the
previous argument for f(z) = (21))* whose Taylor coefficients are all different
from zero to get u, € X for all n > 0.

Note that if f is a polynomial with f(0) = f(0) = 0 and v a measure of
bounded variation such that f = fD vqdv(a). Using that a — ¢, is bounded and

measurable with values in X one obtains

1l < / leallxdivl(a) < sup [allx I¥]h-
D la]<1

This shows that || f||x < Cp1(f) for all polynomial f with f(0) = f/(0) = 0. Hence,
for a general polynomial f, writting f = (f — f(0) — f(0)z) + f(0) + f'(0)z one
gets

Ifllx < IIf = £(0) = f/(0)zlx + [F O)lluollx + 1 (O)uallx < ClIf 5, -

Now extend the result for functions in B; using the density of polynomials in Bj.
(2) Assume ¢ — f o ¢ is continuous from G — X. Denote f.(z) = f(rz) for
0 < r <1 and observe that

o) - 1) = [ (1) - 1) P

where, as usual, P,(e®) stands for the Poisson kernel. This shows that

dt

2 )
1= 1l < [ 1= AP g

ﬂ
2

Using that e®* — f, is continuous standard arguments imply that f, converges to
f in X. Using that polynomials are dense in By and f, € By foreach 0 < r < 1

one shows the density of polynomials in X.
O

3. Operators on B;

DEFINITION 3.1. Let Y be a complex Banach space and F' : D — Y be analytic
function. F' is said to be a vector-valued Bloch function, say F € B(Y), if

sup (1 = [al)[[F'(a)]ly < oc.
a|<1

Write the norm || Fllsyy = [[F(0)]| + supj4 <1 (1 — |a*) [F'(a)ly-

THEOREM 3.2. Let Y be a complex Banach space and let T : By — Y be a
linear operator. Denote x, = T(u,) for uy,(z) = 2™, n > 0, and assume that
limsup {/||z,| < 1. The following are equivalent:

(1) T is bounded.
(2) gr(a) =T(pa) is bounded and continuous from D to Y.
(3) Fr(a) =507, Lo ntl e B(Y).

n=0 n+1

Moreover
IT[| ~ sup |lgr(a)lly = [[Frlsy)-
la]<1
PROOF. (1) = (2) Since gr(a) = T(p,) the result follows by composing T o J
where J : D — Bj is the the continuous map given by a — ¢, according to
Proposition 2.4.



COMPOSITION OPERATORS ON THE MINIMAL SPACE INVARIANT UNDER MOBIUS TRANSFORMATIONS

(2) = (1) Let f be a polynomial. Hence one has f—f(0)—f'(0)z = [, padv(a)
for some measure v. Now, using linearity,

T(7) = FO)z0-+ £ 1 + [ gr(a)iv(a).
Now from the assumption one obtains
ITCHI < 1£O)llzoll + 1/ O)lllz1]l + sup [lgr(a)|[[|v[]:-

la|<1

This gives || T(f)]| < C||flls, for any polynomial. Now use the density of polyno-
mials in B; to extend to a bounded operator from B; into Y.

(1) = (3) From the assumption on (z,) the map Fr is holomorphic (at least)
on the unit disc and takes values in Y. Note that

Fp(a) =Y T(ug)a® = T(ug) + T(D>_ ura®).
k=0 k=1
Since ¢, = —a+ (1 — |a|?) Yo, @"uk. This shows that
(1 — la[*)Fr(a) = T(pa) + (@ + (1 = [af*))T (uo).

Now use that T' is bounded and (2.1).
(3) = (2) Use the formula

gr(a) = (1 —al*)Pr(a) — (a+ (1 —|a*))F(0).
O

COROLLARY 3.3. Let X be a G-invariant space and let ¢ : D — I be a non
constant analytic function. Then Cg : By — X defined by Co(f) = fo® is a
bounded operator if and only if

sup [|@q 0 @ x < oo.
la|<1

Let us now apply this result to several cases.

COROLLARY 3.4. Let ® : D — D a non constant analytic function. Then
Cs : By — Ds is bounded if and only if

1202
[ O IPPreE) 1y < o,
la|<1JD 11— az|

where
ne(z) = #{w e D: d(w) = z}.
In particular Cg is bounded from Bj to D, for univalent functions ®.

ProoF. From Corollary 3.3 the boundedness is characterized by

/D 6L (B(2)) 218/ (2)|2dA(2) < oc.

Now using that ® is locally univalent and the usual change of variables formula one
has

/D(l_awmp(z)d/l(z) < 0.

1 —az|*

Next result was shown in [AFP, Proposition 17]:
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THEOREM 3.5. Let @ : D — D be a non constant analytic function.
Then Cg : By — Bj is bounded operator if and only if

[0
(31) s [ el <o

(- JaPI" )]
2 [ i 4 <

Let us now prove the Arazy-Fisher-Peetre conjecture.
PROPOSITION 3.6. Let 1 < p < oo and F € H(D) with M,(F',r) € L¥ (dr).
’ 1/20,
Then F € BMOA and ||F|. < C(fo1 My (F’,r)dr)

ProOF. First notice that, since the map s — Mg/ (F',s) is continuous and
non-decreasing, one has

1
ME (F',r)(l—r)g/r MY (F',s)ds

Hence M,(F',r) € LP (dr) implies M,,(F',r) = ((1 T 7)
fact that M,(F’,r) = O(W) can be described in terms of Lipschitz functions
(see [D]) and then use the result in [BSS] to obtain that FF € BMOA.

as r — 1. Now use the

O

THEOREM 3.7. Let1l < p < 00 and ® : D — D a non constant analytic function.
If M,(®",7) € LV (dr) then Cp : By — By is bounded.

PROOF. Let us show that condition (3.1) holds. Recall that

na(2) PR,
/ 1 azp ) -/ T—a(z)p )

Given a polynomial h we write

P’ 27 I
/—(Z) / / ) h(rett)r drﬂ
D (1 —a®(z))3/2 (1— aq) Tezt))3/2
From Proposition 3.6 and the duality (H')* = BMOA (see [Z]), we have
P'(z) /
&[], M ( ,7)dr
|/]D> (1- a‘b(z))g/2 A= f 12l 7‘1’)3/2 ")

We now recall that Littlewood subordination principle (see [Z, Theorem 10.1.3])
implies that for 1 < ¢ < oo and a > 0 we have

1 1
3.3 M(——F—,1) < M, (———,7).
( ) q((l—C_L(I)(Z))O‘ r)— q((l—&z)o‘ ’I’)
Also it is well known that if 0 < a,¢ < oo and ag > 1 then there exists a
constant C' > 0 such that
1 1
o)< C(l — |af2r2)e=1/4

(3.4) Mq(
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Therefore Cauchy-Schwartz, (3.3) and (3.4) give

h 1
—_— < My(h,r)My(———57
(1- a<I>)3/2’T) < Mafhr) 2((1 _aq>(z))3/2”’)

1

M (

Ms(h, )
< —_—
- 1— |a]?r?

Integrating over [0, 1] the previous estimates and, using the Cauchy-Schwartz in-
equality, one has

P’ (2) = / 1
/wah(z)dfl(zn <C|® II*IIhIIme)W'

(3.1) now follows taking supremum over polynomials with ||| g2y < 1.
Let us now show (3.2). Hence, using again (3.3) and (3.4), we obtain

/D“'l'_“f(%'i;'(j)'dA(z) < (1—]aP) /M 1(1)( 5T Mp (2" r)dr
a 1/p 1 o 1/p’
< / M ( 1a<I>(| ))) T)dr) (/0 MP (P ,r)dr)
. /Mp 1|“§2,r)dr)l/p
1 — la 1/p
< o, i)
< C(—-1d) ! <c

(T JaPy= 7=V =

References

[AF] Arazy, J. and Fisher,S. The uniqueness of the Dirichlet space among the Mdébius invariant
Hilbert spaces, 11l. J. Math., 29 (1985), 449-462.

[AFP] Arazy, J., Fisher, S. and Peetre, J., Mdébius invariant function spaces, J. reigne angew.
Math., 363 (1985), 110-145.

[BSS] Bourdon, B., Shapiro, J. and Sledd, W., Fourier series, mean Lipschitz spaces and bounded
mean oscillation, Analysis at Urbana I, London Math. Soc. Lecture note series., 137 Cam-
bridge Univ. Press (1989), 81-110.

[CM] Cowen, C.C. and MacCluer, B.D. Composition Operators on Spaces of Analytic Functions,
CRC Press, New York 1995.

[D] Duren, P., Theory of HP-spaces, Academic Press, New York 1970.

[F] Fisher, S., The Mébius group and invariant spaces of analytic functions, Amer. Math.
Monthly, 95 (1988), 514-527.

[RT] Rubel, L.A. and Timoney, R.M., An extremal property of the Bloch space, Proc. Amer.
Math. Soc., 75 (1979), 45-50.

[T1] Timoney, R.M., Natural function spaces, J. London Math. Soc., (2) 41 (1990), 78-88.

[T2] Timoney, R.M., Mazimal invariant spaces of analytic functions, Indiana Univ. Math. J., 31
(1982), 651-663.

[Z] K. Zhu, Operator Theory in Function spaces, Marcel Dekker, Inc., New York and Basel, 1990.

DEPARTMENTO DE ANALISIS MATEMATICO, UNIVERSIDAD DE VALENCIA, BURJASSOT (VALEN-
CIA), SPAIN 46100
E-mail address: oblasco@uv.es



