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CONVOLUTION MULTIPLIERS ON WEIGHTED BESOV SPACES

JOSE Luis ANSORENA AND OSCAR BrLasco

Abstract

We give a complete characterization of convolution multipliers between par-
ticular cases of weighted Besov classes and a description of multipliers between
two weighted Besov spaces Bf? for all values of 0 < p, ¢ < oo in terms of mul-
tipliers between L” spaces.

0. Introduction

The theory of Fourier multipliers on a Banach space or between two different
Banach spaces defined on the torus or on Euclidean space has a long history.
The first space to be studied was LP(R"), but the difficulties appearing for
values of p different from p = 1 or p = 2 pushed analysts to the study of other
spaces such as Hardy spaces, Bergman spaces, Besov spaces, L? spaces with
a general measure, and so on, where more information can be obtained.,

Recently new results on multipliers on Banach spaces of analytic functions
on the torus, such as Bergman and Besov spaces, have been achieved by several
authors; see, for example, [A, B1, JJ, W]. The aim of this paper is to investigate
the situation for Besov spaces defined on R and not only for potential weights
but for more general ones.

The study of multipliers on Besov spaces defined on R” goes back to Hardy-
Littlewood, who gave a description of multipliers from a Besov space to itself
in terms of multipliers on LP(R") spaces. In [F'S, P1, P2, SZ, T] the reader can
find results that contain those of Hardy-Littlewood. The embeddings existing
between Besov spaces and Hardy spaces make very useful the knowledge of
the situation for Besov spaces to get new results in the setting of Hardy spaces
(see [BaS, Jo, Hel).

In this paper we get a complete description of certain cases using Herz
spaces, extending previous results by R. Johnson ([Jo]) and also, by regarding
Besov spaces as retracts of certain mixed norm spaces, we are able to give
a complete characterisation of multipliers between Besov spaces in terms of
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those between LP(IR") spaces, extending previous cases achieved by J. Peetre
({P1D.

Let us now introduce the Besov spaces we shall be dealing with.

We will denote by S the space of test functions in R* with the topology given
by the family of seminorms

Pyn(¢) = sup sup(l+ |22V (D))
|a]<N zeR"

We shall write S, for the closed subspace of functions of S with null moments
of all orders and S’ and S’ stand for their topological duals. !

Throughout the paper we shall work with functions defined on the Euclidean
space R, So, the symbol n will denote always the dimension of the space.
Given f:R* — C and ¢ > 0, we will denote f;(x) = f (t>’ N =fx—y

and f(y) = f(=y).

Given a sequence of positive real numbers {w(k)}zcz, p € (0,+00], ¢ €
(0, +-00] and a test function ¢ € S. We define

1/q
" q
IF g = (Z [l 1| ) |

ke

for f € S' and q < +oco (with the obvious modification for ¢ = o).

The function ¢ in the definition will be chosen among the functions ¢ € S
whose Fourier transform have compact support contained in R™\ {0} and such
that for every x € R” \ {0} there exists k € Z such that $(2*x) # 0. We shall
denote the set of such functions by B.

There are two conditions on the weight w in Z which appear to be natural
for different purposes:

Condition (1): There exist C, a > 0 such that

clo-9lkl < (k) < C29* VR e Z.
Condition (2): There exist C, @ > 0 such that
Clwk+1) <wk) <Cwk+1) VEeZ.
It is shown in the first section that (1) gives the embedding S., C B (¢) N
BP4 (¢) and (2) is used to get that the Besov classes are independent of the v
ch01ce of the function ¢ € B.

Since, clearly (2) implies (1), we believe that assumption (2) is the right
condition to work in the weighted situation.
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The paper is divided into three sections. The first one has a preliminary
character and it is mainly devoted to the proof that S, is continuously con-
tained in any Besov space (under assumption (1)) and to show the density of
Seo in BE? unless p = oo or ¢ = co. We will use the notation (B)%? for the
closure of S., in BZY.

In this section is also shown that, under condition (2), these spaces are
independent of the particular function ¢ taken in the definition and hence
they will be denoted by B?. With certain conditions on the weight stronger
than the ones used in thlS paper several characterisations of these spaces,
similar to those known in the potential case, can be obtained. The interested
reader is referred to [AB, B2, Bu] to get other formulations of weighted Besov
classes.

Let po, p1, qo, ¢1 € (0, +o0] and let wy, wi be weights in Z. A Fourier
multiplier (or simply a multiplier) from Bf*% on BL'# will be a distribution
a € 8, such that a « f € BRP® if f € S, and there exists a constant C > 0
such that lla* £l By < CIfI By, OF in other words, a bounded operator

Mg: (B — B"’l’q1 such that Ma(f) =ax*fforall f € Sy . We will write
(ng’q", BPv ‘11) and ”aH(Bﬁg w gova for the norm | My || as an operator between
the corresponding spaces.

Actually a multiplier is a convolution operator with a distribution ¢ whose
Fourier transform is a function, say m, defined on R”. To analyze the multiplier
it is known to be useful to look at the behaviour of the function'm according to
the localization of m in annuli centered at the origin (see for example [BaS,Ho,
P1]). This idea appears in this paper and also leads to the use of Herz spaces
in the weighted situation.

In Section 2 Herz spaces are defined and elementary results on multipliers
are given.

Last section is devoted to prove our main theorem, which extends the case
qgo = qi for potential weights due to J. Peetre (see [P1]), and to give some
applications of it.

Denoting by Kp = {x : || < B} and LP[B] = {f € L?(R*) : suppf c K3}
we can state the following theorem.

MAIN THEOREM. Let py, pi, qo, q1 € (0, +00] and let wy and w; be weights
in Z which satisfy (2). Let n € B and B € (0, +00) such that supp? C Kp and
acS.

Then a € (BR»%, BEv1) if and only if ngx * a € (LP([27*B], LP{(R™) for all
keZ, and

wo(k)
wo( ) 12t * @llzooo-+B1 L2 Ry € €(Z),

for1 =max{—1- —l,O}.
s q1 Qo
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If po > 1 we can replace LP[27%B] by LP(R") in the theorem. Then, B does
not play any role.

The pairing between distributions and test functions and also the inner
product in R™ will be denoted by (» -). If we denote by P the space of polynomi-
als, it is clear that P C &', regarding a polynomial as the distribution given by
means of integration against it. Furthermore, a distribution is null on Soo if
and only if is a polynomial. Hence, taking into account Hahn-Banach theorem,
we can identify S/ with the quotient space S’ /P.

" Given a quasi-Banach space X, with quasi-norm |.llx, and A € (0, +00), we
will denote AX for the same space, with quasi-norm AMlx.

We shall use, for the sake of homogeneity, the notation b= Eg for p < +o0,
and £ = ¢;. Also we write coo for the space of sequences with only a finite
number of non zero terms. In similar way, we denote LIR™) = LPIR™), if
p < +oo, and Lg°(R™) = Co(R™). Finally, given a sequence of quasi-Banach
spaces {X3}iez we denote by £,(X;, k € Z) the space of sequences {xy}cz
such that x; € Xj and (), 5 ||xk||§(k)1/1!7 < co.

Throughout the paper, p € (0, +00] and p’ and np are defined by means of
I% = max {1 - ;1), 0¢ and n, = nmax 1—1) -1, 0} and as usual C will denote
a

positive constant that may change from line to line.

1. Some preliminaries on weighted Besov spaces

We shall follow J. Peetre’s approach to Besov classes (see [P1]).

Definition (1.1). Let w(k),cz be a sequence of positive numbers; let
p € (0, +00], g € (0, +o0] and ¢ € S... Given f € S’ we define, for ¢ < +c0,

1/q
q
I lagecer = (Z [l 1l ) :

keZ

. and, for ¢ = 40,

lbor * £l
oo =sup —————.
”f”Bﬂ (C)] keIZ) w(k)

Note that ||f||gpe(4) = 0 if and only if f € P. Therefore, we can consider the
quasi-normed space (normed if p, ¢ > 1)

BRU) = {f € Seo; IIf lppoeg) < +o0}.

In this section we shall assume conditions on the defining function ¢ and
the weight w to ensure that some facts which are valid in the potential case
w(k) = 22* still hold in our setting.

Usually ¢ is assumed to be a test function such that ¢ is radial, 0 < ¢(x) < 1
and with support in {x : 2 < || < 4}. We shall be a bit more generous and
assume a bit less on the function ¢.
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We will denote by B the set of functions ¢ € S whose Fourier transform have
compact support contained in R \ {0} and such that 2%(supp ¢) = R* \ {0},
i.e. for every x € R* \ {0} there exists k € Z such that ¢(2*x) £ 0.

For such functions we have the following fact:

LEMMA (1.2). Let ¢ € B. There exists ¢ € B such that
PP >0  VxeR

S bl =1  Vx#0.

keZ

)

rez |[$2(@"0)|

These properties will be used (taking a = ¢ * ¢) in combination with the
following discrete version of Calderén reproducing formula.,

LEMMA A. (see [FIW)). Let a € So such that &(x) > 0 for all x € R* and
Z &(2%x) = 1 for every x ¢ R*\ {0}. If f € S then Z agr * [ converges to f

kEZ kel
in S...

Proof. Take §(x) = and observe that supp § = supp ¢.

Let us mention another useful lemma about test functions.

LEMMA B. (see [FEJWD. For each a, b, M € (0, +00), we have that for every
¢ € Soo and i € Sy, there exists N € N and C > 0 (depending only on a, band
M) such that

-M
(e * (2)| < CPy($)Pu() (1 + ‘—f') min {2, £},

forall t € (0, +00) and x € R™,

Let us start by looking for some conditions on w = {w(k)},ez to get So, C
BL(¢).

PROPOSITION (1.3). Let p, q € (0, +col and let ¢ € B. Then So, C BEI(¢p)

(with continuity) if and only if there exist constants C,y > 0 such that w(k) >
Cc2- Ik,

Proof Assume S, C BE2%¢) . Then also S,, C BE(¢). Therefore there
exist N € N and C > 0 such that

llbor * ¥rllp < Cw(R)Pn(P)

for any ¢ € Sy, and any k € Z.
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Take now ¢ = ¢g. Note that ||pge * o |, = 2#°/P~D|¢  ¢||,, and

Py(p) = sup sup(1+ [f)V2 Mk (D, g) )
la|<N xcRe
'
= sup sup 2~ k(|al+n)2 N! 22km|x|2m|(Da¢)(x)|
la|<N xeRn mi(N —

NI
SE — ' _9%km gqup sup sup 2-MIelM|g2miD b)Y (k)
m=0 miN —m)! lalSII)VxenglOSmgN [ (D))

< CPy(p)(1 + 228N sup g~Hlaktn),
By

This shows that

w (k) < Cy(L + 22N gup 9~HMlaltn/p),
lal<N

This gives
wik) > C¢2“|k|maX{2MN+n/p}.

Conversely take A > max{y, 2} and apply Lemma Bfor M > 2,0 > A2,
b>A+ 7% toget
llbor * ||, < CPn()Py(y)2=1#I4,
Therefore

I|¢2” (kl)/'”p < CPN((I))PN(I,[I)fZ—Ikl(A—y),

which belongs to £, for in any g € (0, co].

Since the duality for 1 < p,g < oo would say (BEU(¢))* = BE-Y(¢) and
, : the Proposition (1.3) should work for both cases we shall agsume the following
' condition on the weight:

There exist constants C;, Cs, v1, v1 such that

Ci27 MM < w(k) < G2 (k€ Z;
or equivalently there exist C, y such that

(1) c2-Ify < yky < c2* (R e Z).

Let us now introduce some notation related to band-limited functions. If X
‘ is a space of tempered distributions (i.e., a space that can be embedded in S’)
% : ' we define
X[A]= {f €S8 feX, suppf C KA},

where K, = {x € R";|x| < A}.
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LEMMA (1.4). Let A € (0, +00) and p € (0,+c0]. Then S[A] is dense in
LAl

Proof. Let us assume that f € LI[B] for some B < A and take ¢ ¢ S[A]
such that ¢(x) = 1if |x| < B. Let {fn}nen C S be such that linl\ll Ifn—Fllp = 0.
ne
Then (¢ * f")neN C S[A] and ligl\{ lp*fa—Fllp=0.
Now combine this with the following facts: 12)1} ft = f in LP(R") for any

>1

f e LER™ and f; € L [t7'A] (¢7*A < A) for f € LJ[A] to get the desired
density.

LEmMMA C. (see [P1], p. 234-237). Let p € (0,1], ¢ € [p, +co] and
A € (0, 4+00). There exists C € (0, +00) such that if f € LP[Al and g € LA]
then ’

(1.5) lg  Fllg < CA™VE=Dlig|g|If -

(1.6) Ifllg < CA™YP=YD) £,

Remark (1.7). Let 0 < p < oo. Using (1.6) we have the following fact: if
f € LP[Al and g € L” [A] then

1.9 [ fedm| < cavifilel,

It is also clear that

(1.9)

Z a;b;

i€Z

< Hediezll, 1Biezll -

Definition (1.10). Given p, g € (0, +-col, w aweight and ¢ € B with supp(¢) C
K 4, we define the bounded operator Sy: BE4(¢) — Ly(w LP[27* A]) given by

[Sp(F)le = o x 1.

Our next objective will be to construct operators which go the other way,
and to show that the definition of the spaces does not depend on the choice of
the function ¢ € B, i.e. if ¢, iy € B there exist constants Cy, Cy > 0 such that

(@ Cillfllegeey < Nf limzaey < Collfllzge

for f € Seo.
Recall that ¢ + f; = (¢5 * ). Hence ||bs * fil|p = t™/P=V||¢ps * | ,. Then (a)
implies that for any ¢ > 0 the dilation operator f — f; is bounded on BZ%(¢).
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In particular for ¢ = 2 this implies the existence of constants C1, Cz > O for
which

lldge * fllp ay1/q e * Flip 1/ lipar * Fllp 1/
Cl(g——w(k =5 )) s(ke};(iw(k) ) qSCZ(k%;(Tk TR

This leads to the following natural assumption on the weight w.
There exists a constant C > 0 such that

2) Clwk+1) <wk) < Cw(k+1), (k€ 7).
Remark (1.11). Note that (2) implies
C~*yw(0) < wk) < C*lw(0)

vs;hiCh corresponds to assumption (1) with y = logo(C).

PROPOSITION (1.12). Let p, g € (0, +ool, w be a sequence satisfying (2), ¢,
¥ € Band B € (0, +00). Denote X,(k) = w™XR)LP [27*B] for 0 < p < 1 and
Xp(k) =w(R)LP (R*) for 1 < p < 0.

The operator Ty, given by Ty(f) = Z dor * fr, is well defined and bounded

kEZ
from £, (X RON XS Z) to BEI(p).

Proof. First, we shall prove that the map o — Z (pgr * [, @) defines an
keZ
element of S, . Take A € (0, +o0) such that supp¢ C K4 and consider the

Besov space Bf\’l’q’ , with A(k) = ﬁﬂmf‘. From Proposition (1.3) we have that,

if @ € So then ((7)2]; * ot) ez € lo (2_knpw(k)LP' [2_kA] ke Z) with norm
bounded by a continuous seminorm on S evaluated at «. Hence, from (1.8)

and (1.9), we get that the series Z (Por * fr, &) = Z {fr Pop * o) converges
keZ kel

and its sum is bounded by C,||f||, where C, is a continuous seminorm on S,

depending on n, p, g, w and ¢. Therefore, Z ¢ar * [, defines an element in

keZ
8!, that we will denote To,(f).

Now, we must prove that the above distribution defines an element in the
Besov space BL (). Take f € £, (Xp(k), k € Z) and notice that iy * Ty(f) =

z¢2k * oy * [

kEZL

First take M € N such that gy * ¢por = 0if | — k] > M. It follows from
assumption (2) that there is C; € (0, +00) such that % <Ciforalll,kecZ

such that |k — I} < M.
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Observe now that

®) llher * bar * fillp < Clifulle,  1e—1] <M.

Indeed this is obvious from Young inequality if p > 1 and for p < 1 we apply
the following argument: there is a constant a such that

ol box, fr € LP[27%a], forall |k—I| <M ke Z.
This allows us to apply Lemma C and to get (b) by using that ||y * o], <

Czkn(l/p—l).
Hence,

o TPl _ [Sinenn v+

w(l) w(l)
<C llhar * dow * frll,

b —I<M w(d)

Il
<C ¢
|k—lZ|§M w(l)

el
<C P
lk_IZI;M w(k)

| Fresl]
“C 2 uiro

ic
lil<M

Therefore,

qa\ /g
TN Bpagyy < C (Z ( l,lll))(“;+-:—||f)) )

i|<M \icZ
o\
<e > | (1ol
lil<M (ZEZ wll + )
<INy -

Note that, if p > 1, the inequality || * ¢os * f|lp < C||fzll, holds, even if
#» has no support condition.

Remark (1.13). If we take (¢, @) as in Lemma (1.2) and supp$ C Kz, we
have, with the above notation, that T, o Sy(f) = f for all f € BL?; that is to

say, the Besov space Bf;? is a retract of the space ¢, (w“l(k)Lp [2""’3] ,ke Z)
or £ (W LP(R™)) for p < 1 or p > 1 respectively.

COROLLARY (1.14). Let p, g € (0, +00), w a weight in Z satisfying (2) and ¢,
e B.
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Then BPA(y) = BE4($) with equivalent quasi-norms.

Proof. Clearly, it suffices to prove an inclusion between the spaces. Take o €
B such that (o, ¢) are as in Lemma (1.2) and B € (0, 4-00) such that ¢ € SIBl.
If f € BRU(¢) then Sy(f) € £ (w(WLP [2—’*3] ke Z). Now Tu (Sy(f)) €
B29(p) from Proposition (1.12). But, using Lemma A, To, (Se() =T

Remark (1.15). In what follows we choose the particular case ® € S such
that @ is radial, supp® C {% < |x| < 4}, d¢) < 1and 0 < &) = 1 for
% < |x| < 2. We will use the notation B¢ for the space B24(®) and (B');? for
the closure of S, in B5?

COROLLARY (1.16). Let p, q € (0, +o0), w a weight in Z which satisfies (2)
and ¢ € B. Then a function f € (B if and only if Sy(f) € & (w=tLgR™).

Proof. If o € Soo then ¢gu x & € S C LY(R™). Hence, by Proposition (1.3),
Spla) € £ (w™ LE(R™). Since S is continuous and 0 (w™'L{IR™) is closed
we obtain half of the corollary.

Take i € B such that (¢, ¢) are as in Lemma (1.2) and B € (0, +o0) such that
supp & C Kp. With the help of Lemma (1.4) we get that £~ (R)L§ [27*B],
k € 7 is the closure of coow*(k)S [27*B], k € Z) in LowH(k)LP [2~*B],k €
7).

Note that Ty(f) € Seo for all f € coo(w'l(k)S[Z—kB], k € 7Z) and then the
continuity of T;, on Eq(w_l(k)LP [2-%B), k € 7Z) gives that T(f) € (B")5? for all
f € Sw (RLYI27*B], k € Z).

Now, it only remains to recall that Sy(f) € £,w™ Y RLP[27*B], k € Z) for
all f € BP? and that T} o S, is the identity operator on Bif.

COROLLARY (1.17). S is dense in B2? if and only if p, ¢ < +-00.

Proof. Corollary (1.16) gives directly that S is dense in B24 for p, g < +o0.

If p = 400, then take a € R"\ {0}, ¢ € B and define f(x) = e We
get that ¢qe * f(x) = H(2ka)e’>® . Hence, |dpot * flloo = |d(2%a)| € coolZ).
Therefore, f € BS?; but o x [ ¢ Co(R™) if we take a such that ¢ (Zka) #0.

If ¢ = oo then take ¢ € B such that ¢(x) = 1if 1 < |x] < 2, and dx) =0
if |x] < % or 4 < |x.

For each | € Z, choose f; € S’ such that supp fic{xeRr 278 < |x| <
9-81+1Y and ||fll, = w(3D). Define f € S}, such that f = _ fi.

leZ

Due to the fact that for each & € Z, there exists a unieque j € 7 such that
|k —38j] <1, wehave ¢oexf; =0 if 1 # j and also that ¢gs; * f; = f;. Therefore,
taking into account (2) and Lemma C,

llbas * Fllp = llber * Fillp < Clifjllp = Cw(3)) < Culk),

and we get f € B2™.
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On the other hand since ||¢gs; * f|i, = w(3/) then <“¢2" f”p) ¢ co(Z).
(%) keZ

2. Some preliminary results on multipliers

Recall that Bf? stands for BEY(®) for the particular case ® € S such that
® is radial, supp® C {3 < |x| < 4},0 < &) < 1 and &(¢) = 1 for L<x<2
and all weights that appear from now on will satisfy condition (2).

Let us start with some elementary embeddings among the spaces.

PROPOSITION (2.1). Let 0 < p1 < pe <00, 0 < 1 € q2 € 0 and w(k) <
Cu(k) for all k € Z.. Then

(l) Bﬁl;‘]l C Bg}th'

(ii) B¥ C BRr,

(ii1) BRY™ < BRET for wi(R)2M/P2 = wo(R)27H/ P,

Proof. (1) and (ii) are obvious.
(iii) Assume p; < 1. From (1.6) in Lemma C follows that

[@os * flly, < C2THUP=YPD| Doy 5 f |, .

Assume now that 1 < p;. Using Young’s inequality one can write, for é =
~+r-1
[[(D + P)gi # f iy = [|Pos * Pgs * f
< [P | [| P * £l py
< C2MMYP= P @y 5 |,

wz(k)
S w (k) ||(I)2k * f“Pl

The proof is finished by computing the corresponding 4, norm and invoking
Corollary (1.14) for functions ® and ® * ®.

Let us know get some results on the Fourier transform of functions in these
classes.

Using the notation A;, = {27%-1 < |y| < 27} it'follows from Plancherel’s
theorem that

. 1/2
© ([ tors) Sll%k*flleC( L.

JkZJ

1/2
If(y)lzdy>

From this one gets the following fact

PROPOSITION (2.2). A functzon f € B2% if and only if 7 € LAW), where
W) =Y w(k)xa,

keZ
Let us give now a Bernstein type theorem in this situation (see [He, Jo, P1]).
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PROPOSITION (2.8). Let W be a weight function (i.e. a measurable function
such that 0 < W(x) < oo a.e.). Let 1 < p < 2and w k) = (fAk WP(x)dx)'/P.

Iff € BB then f € LXW). Moreover

[ 1P w oy < g

Proof. Applying Hélder’s and Hausdorff-Young’s inequalities one has

N . , 1/p’
/A If(y)lW(y)dys( /A PP dy) wL(R) < ||@gs % Fllw(R)

Adding them up over k € Z we-get the result.

Both results lead to the consideration of weighted Herz spaces, where they
can easily be understood.

Definition (2.4). Let u(k)cz be a sequence of positive numbers; let p €
(0, +00), g € (0, +00]. Given f € L} (R \ {0}) we define, for g < +00,

loc

1/q
| Fllxrea = (Z (”/\’Akf“pu(k))q) ;

keZ

and, for ¢ = 4o, ,
Ifllkpoow = Sup [lxa,f llpulk).
keZ

Therefore, we can consider the quasi-normed space (normed if p, ¢ > 1)
KPUu) = {f € LE (R™\ {01); ||fl|graq < +00} -

The case u(k) = 2% was first considered in [He]. The reader is referred
to [F, Jo] for some results on multipliers involving those spaces, and to [BaS]
where the weighted version was already used.

Elementary properties, whose proofs are left to the reader, are the following:

PROPOSITION (2.5). Let 0 < py < pa < 00, 0 < g1 < g2 < 00 and ui(k) <
Cuq(k) for all k € Z. Then

(i) KPP(u) = LP(U) where U(x) = 7B x4,

(ii) KPr9(u) C KPr2(u).

(iii) KP9(uz) C KP9(uy).

(iv) KP»%(u) C KPra(v) for u(k)2M/Pe = v(R)2"HI P,

With all this one has the following elementary extension of the previous
results.
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THEOREM (2.6). Let {w(k)}cz and u(k) = %k) be weights and let 0 < q <
o

(i) f € B%% ifand only if f € K29(w).

(i) If0 < p < land f € B2 then f € K®Uu') where u'(k)=u(k)2nH1/p—D,
Moreover

I ll ooty < CIIf | gpe -

(i) If 1 < p < 2and f € BB then f € K 9(u). Moreover
”f”KP’,q(u) < |Ifllgee .
(i) If1 < p < 2and f € KP9(u) then f € B %(w). Moreover

”f”B,‘},"‘l < C”}"\‘”KP'Q(u) .

Proof. (i) follows from (c).
(i) The result is obvious for p = 1 since the Fourier transform maps L into

L% and the case 0 < p < 1 follows from the embedding (iii) in Proposition
2.1.

(iif) Use the estimate ([, |Fx)["'da)/? < ||@g  f]].
(iv) Use the estimate ||Dg * |, < C( fU’fﬂi 4| FPdxyt/e,
i
The following description of pointwise multipliers between Hertz spaces

follows easily from Holder’s inequality (see [K] for a proof in the non-weighted
and the sequence spaces I(p, ¢) that can be reproduced in our situation).

PROPOSITION (2.7). Let 0 < p1,q1 < 00, 0 < pg, g2 < oo, with p1 > ps, and
u1(k), u(k) sequences of positive real numbers. Let 0 < p,q < oo such that

1_1’_—_ é — pll and % =max{q—12 - q—ll,O}. Then
KP4 (_Z_i) ={f € LL,,(R*\ {0}) : fg € KP»%(uy) for all g € KP»%(uy)} .

COROLLARY (2.8). Let q1, g2 € (0, +00l, w1, wg be sequences of positive num-
bersand a € §'.

Then a € (B3, Bi) if and only if &(x) € K**%(u) where u(k) = & qnd
1 = Mmax {_1‘ — '_1‘, 0}.
q @2 q

Proof. Combine (i) in Theorem (2.6) and Proposition (2.7).
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COROLLARY (2.9). Let 1 < p1 < 2 < pg. Let qi, qz € (0, +0c0] and w1, wey
weights in Z.. If s and t are given by % pl 1 1 {l - i’ 0},

2 qi
andifé € Ks’t(ﬁ—;), then a € (BEv®, BPr®2),

Il
|
|
I
Q
=
&
|
I
g
£

Proof. Given f € BE® from (iii) in Theorem (2.6) we have f ¢ Kpi’ql(wil).

Now Proposition (2.7) gives that af € KPZ:‘IZ(.wLZ) and again (iv) in Theorem
(2.6) gives the desired result.

3. The general case of multipliers

In this section we shall solve the problem posed by Peetre (see [P1]) of
finding a formulation of a multiplier between different Besov classes in terms
of a sequence of multipliers between Lebesgue spaces having a certain size
condition. We shall do several steps to get the main result.

PROPOSITION (3.1). Let po, p1, qo, g1 € (0, +c0] and wo and w; weights in
Z. Let ¢, ¢ € B and B € (0, +00) such that supp¢p C Kg and a € S'. Then,
a € (BR®™, Biv®) if and only if there exists a bounded operator

N:£2 (wy ' (BLE[27 B, k € Z) — £4, (w7 LP{(R™)

given by

N()= (Za % gt * ho fk)
leZ

keZ

for all f € coo(SI27*Bl, k € Z).

If po > 1, nocondition on the support of the Fourier transform of the functions
has to be assumed and we can replace LE*[27*B] by LE(R™) and S[2~*B] by
S(R™).

Proof. Assume a is a multiplier, then we have a bounded operator
M:(B")pp® — BEL©

such that M(f) =a* f for f € Seo.
Take
T: 00 (wy "(R)LY[27*BL, k € Z) — (B )i

given by T'(f) = Ty(f).
Observe that to see that the range of T' is in (B')j2% we can use the same
argument as in corollary (1.16).
Let
S: BEYT — £, wi LA (R™))

given by S(f) = S,(f).
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We define a bounded operator
N: £ (wy (L2 "B, k € Z) — £, (wy LP(R™))

by N=SoMoT.
If f € coo(SI27*Bl, k € Z), Ty(f) € Soo. Hence

keZ

N(f) = (Za*gl@ *(l)zk *fk)
- leZ

For the converse, it is easy to see, using a density argument, that, given N
as in the statement, it also holds that

N(f) = (Za*w * o *ﬁ)
leZ

keZ

for all f € £2 (S[27*B, k € Z).

Let @, B be such that suppé C Kp and (o, ¢) and (B, ¢) are taken as in
Lemma (1.2).

Take S = S, defined on (B);>%, which gives

S:(BHR% — £ (wy ' (RLYFI27*Bl, k € Z)

and
T: 8, (wi'LP[27%A) k € Z) — BEv®

defined by T(f) = Ts(f)

Note that supp ¢ C K4 for some A > 0, and then the range of N is contained
in £g, (Wit LP 2% AL k € 7).

Construct, then, the operator M = T o N o S, which turns out to be bounded
from (B");>% on BL%,

Note now that from Calderén’s formula (Lemma A), if f € S then

[INoS(L =) axthyxdouxagxf =axiyxf

keZ

and
M(f)=> axBy*yyxf=a*f.
leZ
The proof for pg > 1 is an step by step repetition, taking into account that
in this case we need no support condition.

Now, we realize an improvement of Proposition (3.1), just to get a line to line
operator, acting on mixed norm spaces. This operator will be simpler for our
study.
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LEMMA (3.2). Given n € B. There exists ¢,y € B such that ¢ =y * .

Proof. Given an open set W such that W C R” \ {0} is compact and a
compact set K C W such that 22K = R™ \ {0}, we can construct ¢ € S with
dx)£0ifx € K and p(x) = 0ifx ¢ W.

On the other hand if W = {x : #)(x) # 0} we can easily construct K C W
such that 22K = R*\ {0} then considering the above function ¢ we have that

y= % € S what gives ¢ = y x 7 and also that ¢ and y belong to B.

PROPOSITION (3.3). Let po, p1, g0, q1 € (0, +00] and wo and wy weights in Z
satisfying condition (2). Let € Band B € (0, +00) such that suppf) C Kp. Let
a € 8. Then a € (BE>®, B5»%) if and only if there exists a bounded operator

L: ) wy "(RLPI2 Bl k € Z) — £g,(w; L (R™)

such that
L(f) = (a * Mgk * fk)keZ

for all f € coo(SI27*B), k € Z).
If po > 1, we can replace LE[27%B] by LI(R™) and S[2~*B] by S(R™).

Proof. We only deal with the case pp < 1, the other case being similar but
simpler.

Suppose that we have a bounded operator L: 3 (wy (k) LE(27*B1, k € Z) —
qu(wl_lel (IR™)) as in the assumption. Actually, the range of this operator is
contained in £, (wy ' LP[27*B]).

First apply Lemma (3.2) to get ¢, y € B such that ¢ = n .

Given ¢ ¢ B, take M € N such that § * ¢y = 0 if |k| > M. Consider
vi = yqi *  what allows to say  * ¢o: = 7; * 1y and supp ¥; C supp §§ C K4 for
some A € (0, +00).

. wi(l +17)

By means of (2), there exist Cq, Ca € (0, +00) such that C; < ) < Cy
ifl,i € Z and |i| < M. Observe then that for each i € Z such that |i| < M, the
operator

Asi Ly TN RLP[27*BL k € Z) — £g,(wi*LP{(R™))
given by
A(F) = (¥t * fai) 1y

is bounded.
Indeed from Lemma C (if p; < 1) or Young’s inequality we have

1Cvidat # fraillpy < CRMIUP=DRAP=D oy i 1y I F il

Therefore,

N=> AoL
TET
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is bounded from £, '(wgl(k)LPo([z-kB], ke Z) t0 by, (w'LPRY).
But, given f € coo(S[27*B], k € Z), ‘
N({f) = Z @ * (yidyr * Mawi * fry
i<

= > ax gk o * frui

<M

'Zza*lll2l*¢2h_*fk-

keZ

Hence ¢ is Fourier multiplier between the spaces according to Proposition (3.1).
Let us prove the converse. It is rather simple to get # € B such that f(x) #£ 0

for all x € supp. ‘Take ¢ € B such that ¢ :%. Then supp$ C Kp and

¢xthp=m. -
Related with ¢ and ¢ we have a bounded operator

N: £2 (w5 {BLRI2# B, k € Z) — £, LA (R™),
given by

N(f) =,(Za * Yy + hop fk) :

kel

Let again M € N such that ¢q ¢ = 0 if |kl > M. For i € Z with |i| < M we
denote ' '

H; = {f € 8,y WLPI2™*B), k € Z; fi = 0if b # imod(2M + 1)}

Gi = {[ € L@ LA R, k € Zy;f, = 0if k # imod@M + 1)}
From N we construct bounded operators N;: H; — G; given by

0 if k # imod(2M + 1),

N = { N({f), ifk=imod(2M + 1).

If f € coofS[27%B], k € Z)NH; and k = i mod(2M + 1) we have that
Ni(fr = Z a * hor * pou * f1 = @ % Yop * Pop * i, = @ % Nop * fp.
lsiméS(ZzMH)
Notice that

O wy (WLP2*BL ke L) = P H;
liI<M
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and
b WLPR ke Z) = ) g;.

<M
This fact allows us to define a bounded operator

L £g,(wg {RLE2™*BY, & € Z) — £, (wi \B)LP(R™, £ € 7)

by means of
L(f)= Y N«f)
lil<mM
forall f; € H; and f = Z fi.
li<M
If f € coo(SI27*B], & € Z), we have f= Z fi, with f; € coo(SI2*B] k

li<m
Z)N'H;. Given k € Z, there exists a unique j € Z with 2 = jmod(2M + 1) and
|7l < M. Hence Ni(f;);, = 0 for i # J and N;(f});, = a * ngs * f,. We obtain that

L =a*ngu+f,.

Now, we are ready to prove the main result of this paper, stated in Intro-
duction as Main Theorem.

Proof of Main Theorem. Let us start with the sufficiency of the conditions.
Let ¢ = {c}} 1z defined by

% all iz
k w1(k) 2 (LPo([2— B, LP1(Rn))

and assume that ¢ € 4;. Let ¢ = n*7y asin Lemma (3.2). Then, from inequality
(1.9) we get

* *a % o\ Vo
lIa*f”Bﬂ}"'l(@:(Z(Hm s f”pl) )

keZ wl(k)
IWw*ﬂM)“)”ﬁ
}2 wo(k)

< llellsliFll zzgrocy)-

For the converse we use Proposition (3.3). It is immediate to show that the
operator defined by / — (a * ng * 1), ¢z, 18 bounded from the space £ (wy L&)

L[27*B], k € Z) to the space £q, (i LP(R™)) if and only if for each £ € 7, the
operator L, defined by

froaxnuxf
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for f € S[27*Bl, is bounded from L{°[27*B] to L?*(R") together with the fact
the operator defined by

 (wo(k)
{sr}rez (w (k)“ klls k>keZ

wo(k)
w1 (k)

is bounded from £3, on £,,, which obviously means ——

L} € ¢5(Z).
Obvious modifications give the case pg > 1.

To get some consequences of the Main Theorem we shall need to know some
duality and interpolation properties of L?[ A] spaces. The following result says
that the dual space of LP[A] (p < 1) is very close to L>°[A].

LEMMA (3.4). (See [P1], p. 236). Let p <land A € (0, +00). The op-

erator T:L®°[A] — (LP[A])’ given by (T(f), g) = [re f8dm is well defined
and bounded. Moreover, for each B < A, there exists a bounded operator

S: (LPLA))' — L[ Al such that (T(S(f)), 8) = (f, &) for g € L7B].

We deal with real interpolation method (see [BL,BS]). Let L»" denote the
Lorentz space.

LEMMA (3.5). Let A € (0,+00). Let po, p1 € (0, +ool with py # p1. Let
6 €01, r el +ool and B < A, If% - a-o- +9pil then LP[B] C
(LP[A], LPI[A]) (with continuity).

Proof. It suffices to prove that

K (f,t, LPR™, L(R™) < CK (£, LP[A], LP[A])

for all f € LP°[B] + L"l[B] and for all ¢ > 0. Assume [ € LP[B] + Lpl[B]
and write f = g + h, with g € L?(R*) and g € LP'(R"). Take ¢ € S[A]
such that ¢(x) = 1if |x| < B. Therefore we can also write f = ¢ x g + ¢ * h,

with [[¢ * gllp, < Cllgllp, and ||¢ * A||p, < C|jk]|p,, which gives the desired
decomposition.

PROPOSITION (3.6). Let py, p1, qo, g1 € (0, +ool and wy and wy weights in Z
satisfying the condition (2). If py > p1, we have that

(ngqo’ B£11q1) — {0}

Proof. Let ustaken € Band a € (BE»%, Biv%). We define a;, = ng * a. It’s
enough to prove that ¢, = O forallk ¢ Z. .

If po > 1, by means of Main Theorem, a, is a multlpher from LP(R™) on
LPy(R™). It’s well known that, in this case a;, = 0.

For pp < .1 we take B such that n € S[B]. Let B< C < D <E< +o00. By

means of Main Theorem we obtain that a; is a multiplier from L?[2 *E] on
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LP[27*E]. Duality (Lemma (3.4)) gives that a;, is multiplier from L*°[2~*D]
on L°(R"). By interpolation (Lemma (3.5)) a;, is a multiplier from L2127 kC]
on LP?(R™) for some p with 1 < p < 2. We take ¢ € S[C] such that ¢(x) =
1if |x| < B. ¢y is a multiplier from L2(R") to L2[27*C] and g * az =
ay. Hence, aj is a multiplier from L2(R™) to LP3(R™), which gives that dj,

is a pointwise multiplier from L2R") to L (R") from the Hausdorff-Young
inequality. Consequently, d, =0.

PROPOSITION (3.7). Let po, p1, 9o, 1 € (0, +00] and wo and wq wezghts inZ
satisfying the condition (2). We have that

Po,q0 D191 1,8
(Bwo ’Bw1 )QBA 4

for Mk) = wl(k)2k”(1/p° D nd = max {l - l, O}.
wolk) - a1 9
Proof. Let ¢,nmeBwithd+n=1. Let Be (0, +00) such that ¢ € S[B].
Then 7 € S[B]. We have that ¢g € L?[27#B] and || g || o, = C27HL/Po=D),
Leta € (BE>%, Bbvat), From the Main Theorem, since axng = a*dos 1 €
LP(R™) then ,
llo 7|, < A(R)2MH/Po— D

where A(k) denotes the norm of the operator from LP[2—*B] to LP(R™).
Hence
nh(1/p— WolR) _ A(k\w"(k)

”a * gk ”Pl 2 W1(k) > ’wl(k)

and therefore a € BP*. -

PROPOSITION (3.8). Let po, p1, Go, q1 € (0, +00l. Let wy, wy weights in Z

. satisfying the condition (2). If py < p1 and py < 1 we have that

( BP»%  BPL q;) = B>,

wy

- for Mk) = L‘Ul—(k)2k"1’0_ and % = max {l - l, 0}.

wo(k) @ Qo
Proof. Proposition (3.7) give us a half of the result. For the other half, take

" m € Band B € (0, +00) such that n € S[B]. Leta € B¥**. We have thataxng €

LP[27*B] for every k € Z. Then, usmg Lemma C, f *Q* g € LP[27*B] for

_ anyfeLPv[z %B] and

If *a*ngllp < Cz_kn"" lla ”ﬂzkllpl"f“po

Consequently, a * ng € (LP[27*B], LP(R™) with norm bounded by A(k)
C27 %™ ||@ * 1gt| p,- The result-now follows from Main Theorem.

We would like to thank the referee for his carefull reading of the paper and

~ his helpfull remarks.
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