ATOMIC DECOMPOSITION OF WEIGHTED BESOV SPACES

JOsE Luis ANSORENA AND OSCAR BLASCO

ABSTRACT. We find the atomic decomposition of functions in the weighted Besov
spaces under certain factorization conditions on the weight.

INTRODUCTION.

After achieving the atomic decomposition of Hardy spaces (see [8,22, 33]), many
of the function saces have been shown to admit similar decompositions. Let us
mention the decomposition of B.M.O. (see [32, 25]), Bergman spaces (see [9, 23]),
the predual of Bloch space (see [ 11]), Besov spaces (see [15, 4, 10]), Lipschitz spaces
(see [18]), Triebel-Lizorkin spaces (see [16, 31]),...

They are obtained by quite different methods, but there is a unified and beautiful
approach to get the decomposition for most of the spaces. This is the use of a
formula due to A.P. Calderén (see [6, 7]). The reader is referred to the book by M.
Frazier, B. Jawerth and G. Weiss [18] for a collection of spaces where the Calderén’s
formula produces the atomic decomposition and applications of it.

Atomic decompositions of weighted versions of different spaces have been also
considered in the literature (see [27] for weighted Hardy spaces, [5] for Lipschitz
spaces,...).

In this paper we shall be concerned with weighted Besov spaces Bg:fy. We shall
find some conditions on the weights to have atomic decomposition on the spaces.

We refer the reader to [19, 29, 18] for general notions and applications of atomic
decomposition and to [1, 24, 30] for different formulations and properties of Besov
classes.

The classes of weights where the results are achieved consist of those which
factorize through powers of Dini and b; weights. Our arguments for the cases
1 < p,q < oo will be based upon two main points: Calderén’s formula and a quite
simple Schur Lemma. To obtain the other extreme cases p, ¢ € {1, oo} we need some
new results on the classes of weights which enable us to apply the same procedure
as in the previous cases. The reader should be aware that the case 1 < ¢ < oo
could have been shown by interpolation with the extreme cases, but a direct proof
is presented in the paper.
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Throughout the paper a weight w : Rt — R will be a measurable function
w >0 ae., 1<pqg<ooandp,q stand for the conjugate exponents. S denotes
the Schwartz class of test functions on R"™, &’ the space of tempered distributions,
Sp the set of functions in S with mean zero and &’ its topological dual. We denote
by D the collection of dyadic cubes @ in R™, i.e. Q = Q;,={z € R":27z; <z; <
2/(z;+ 1)} for z € Z™,j € Z. As usual |Q|,1(Q) stand for the volume and the side
length of the cube Q respectively. We shall write T(Q) for Q x (%, Q)] € R
and c@ for a cube with the same center as @ but with side length equal cl(Q).

Given a weight w, ¢ € Sy and 1 < p,q < oo we shall denote by Bﬁ)’i the space

functions f : R" — C with f € L' (Rn’ ﬁ) such that
1
e = flIF dt «
P = _— < 1<¢g<
il = ([ e ) <oc (1< <o)
or
\|f||35j¢e =inf{C > 0:||¢g¢ * fl|, < Cw(t) aet>0} < oo (g = o)

where ¢;(x) = tlngb (2).
To state the results of the paper, let us first recall the following notions.
A weight w is said to satisfy Dini condition if there exists C' > 0 such that

/k @dt < Cw(s) a.e.s>0.
0

A weight w is said to be a by-weight if there exists C' > 0 such that
/ Mdtgcw a.e. s > 0.
R t2 s

We shall denote by Wy 1 the space of b;-weights which satisfy Dini condition.
Let us also use the notation A4; for the class of functions ¢ € Sy such that

. 2
(a) o= (b)) % =1, (x £ 0)
(b) ¢ radial and real,
(c) supp ¢ C {|z| < 1}and
(d) Jgn ig(x)dr =0,(i=1,...,n).
We refer the reader to Section 1 for the notion of (4, p)-atom and the unexplained
notations. The aim of the paper is to prove the following theorem.

Main Theorem. Let1 <p,q < oo, ¢ € A; and w be a weight that can be factored

1
as w(t) = )\%(t),u_Tl(t_l) where A\, pn € Wo,1. Then if wg = (fll((QQ))/Q w(t)q/%> !

we have f € BpY if and only if there exist A > 0, {sq}qep and (A,p)-atoms
{ag}gep such that f = Z sqaq (convergence in &'y ) and

QeD
1
- Y
Q
Z Z w—Q < 00.
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Moreover

L)
Q=

o0

BYY, ~inf Z Z |Z_Q|p f = Z s5QaQ

j=—oo \UQ=2 ¢ QeD

171

(with the obvious modifications for p and q equal o0).

This can be understood as a generalization of the cases proved in [15, 4, 10]
corresponding to w(t) = t*.

The paper is divided into three sections. Section 1 has a preliminary character
and it is devoted to introduce the notation and the main Lemmas to be used later on.
In Section 2 we get the atomic decomposition for the spaces in the case 1 < p < o
and 1 < ¢ < co and we postpone the remaining cases to the last section.

§1. PRELIMINARIES AND BASIC LEMMAS.

Let us recall some notions on weights we shall need later.

Definition 1.1. Let €, € R and w be a weight. w is said to be a d.-weight if
there exists C' > 0 such that

(1.1) / taw(t)% < Cs®w(s) a.e. s> 0.
0

w is said to be a bs-weight if there exists C > 0 such that
w(t) dt
(1.2) / wit) dt SC’M a.e. s> 0.
s 10t 89

If (d.)(respect. (bs)) denotes de class of d.-weights (respect. bs-weights) we

write
We.s = (d:) N (bs)-
Remark 1.1. The main examples of such weights are given by
wWa,5(t) = t%(1 + |log )"
It is left to the reader to show that wa,g € We 5 for any § > @ and € > —a.

Let us collect some elementary properties to be used in the sequel.

(1.3) w € (d:) = w € (ds) for any &’ > e.
(1.4) Let w(t) = w(t™') then w € (b.) <= W € (d.).
(1.5) w e W 5= w(t) > Cmin (t=,¢).

The next properties on weights belonging to Wy ; are needed for some results
later on.
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Lemma 1.1. Let € >0, § > 0 and w € W, 5. Then

(1.6) / tsw(t)ﬂ <C inf vwu).
0 t s/2<u<oco
(1.6 / w(t) dt <C inf w(u)
s 10t 0<u<2s ud®

Proof. From (1.4) it is enough to prove (1.6). Let v > s. From (1.1)
y dt b dt
/ tfw(t)— < C/ tfw(t)— < Cutw(u).
0 t 0 t

If we integrate this inequality in [s,2s] against the weight ———-—
yltets

S _odt [ du 2s du i du

Hence, if s/2 < v < s,

, 1 i dt o du

w(v)
5

v

and, finally,

/S tsw(t)ﬁ < gw(fu)ﬂ < 2€+6Cw(v)v5
0 t — ’Ué - c’ ’

Corollary 1.1. Let w € Wy 1. Then for any s > 0

(1.7) /0 mm(% 1)w(t)% <C_ it w(w).

The next result was pointed out to the authors by F. Ruiz and J. Bastero, who
showed us the proof we present here.

Lemma 1.2. Let w € (d.) (respectively w € (bs)). Then there exists p > 0 such
that w € (d.—,) (respectively w € (bs_,)).

Proof. From (1.4) it is enough to consider w € (d.). Write A(t) = t°w(t). Clearly
A € (do). Let us define the operator

H(/\)(t):/o M) s (> 0).

S

Since H(A) < CA then H™(\) < C™\.
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Applying Fubini’s theorem and an easy induction one gets

H"(\)(t) = = i o /Ot @102@"_1 (é) ds.

Take p > 0 such that pC < 1

C
n—1rrn < )
> p H()\)_l_pc)\

/ot¥ G)pds el

¢ ds c
E—pP < E—p .
/0 s w(s)—s <10 pC’t w(t). O

Hence

Finally this gives

Definition 1.2. Let 1 <p < oo and A > 0. A differentiable funtion aq is called
an (A, p)-smooth atom if

(1.8) supp ag C 3Q for some @ € D.
(1.9) /aQ(x)dx = /xiaQ(x)dx =0 (i=1,2,....,n).
A s, A
(110 a0l < g |pnte@)| < jgmps (=12

Let us now establish one of the main lemmas to be used later on. This result
is closely related with Calderén reproducing formula, and gives a procedure to

dx
decompose functions in L' ([ R, ———— .
P ( 1+ |x|>"+1>

Lemma A. (see [6, 18]). Let f € L! (R”
00, Q) € D, define

,(Hﬁﬁ%) and ¢ € A;. Given 1 <p <

—lei7 [ / B0 Sy

dt
= * dy—
wa$)e) = oy [ [ oo —vione s
Then ag(f) are (A,p)-smooth atoms for A = 2! max{|¢(x)\,|£q§(m)\ i =
.,n} and '
F=73solfagf) = L Z > s in 8.

QeD —M [(Q)=2F
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dz
1 n .
Lemma 1.3. Let 1 <p<oo,¢p€ Ay, fEL (]R ,W) If we write
e =10 [ e sy
then for any j € 7
1/p .y
(111) > lsalhP ] < [l LG
(Q)=2/ 2
Proof. Assume p < oo (the case p = oo is similar)
> IseNlP| = sup Z Basolf
1(Q)=27 > B =1
1y dt
= sup > BalQl™xg | léwx F)ldy—
ey =1|"27VEY \y(@)=2

2.7
RN dt
< sup /2 > BelQI™ " xq llée* fllp

S5 =121 Q)= o

2.7
S/v ||¢t*f||pt O
2i—

Lemma 1.4. Let 1 <p <00, A>0, {ag}toep C C, and {ag }gep verifying (1.8)
and (1.10) for A and p. Then fort >0 and j € Z

1/p

(1.12) Z agagl|| < C Z |04Q|p

Q)= » Q=2

1/p
. t
(1.13) Z ag(de xag)|| < Cmin <2—J, 1> Z lag|?
UQ)=2 » 1(Q)=27
Proof.
First observe that Z sgaq has only a finite number of non-zero terms since

UQ)=2J

there are a finite number of overlapping cubes of the form {3Q}. Hence
1/p
Y. agag| <Al Y lagllQlPxsel| <C| D lagl
(Q)=27 (Q)=27 H(Q)=27

p p
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Use the previous estimate (1.12) and Young’s inequality to get

> agdirag)|| <lodh|| Y. agag

Q=27 ) 1(Q)=27 )

1/p

<lel | D lagl”

Q=2

On the other hand, assume [(Q) = 2/ and t < 2/. Note that = ¢ 5Q and
x— x—

y € 3Q implies y' > 1 and so ¢ (Ty) ag(y) = 0. Hence supp ¢, *ag C 5Q).

Moreover

CAlz -y
lag(y) —aq(z)] < C sup [vag(é)|lz -yl < ——=-
tele) H(Q)»*

Therefore, using that [ ¢, =0,

61 % ag(@)] = \ [ oute - aa) - aa;(x))dy\
CA
< W/m(xymywy

t
ZCAW/W(Z«HZW
t

We have proved that |¢; x ag(x)] < CWXMQ. Hence

(@)
¢ _
HZSQ@*GQH <0y > el P x5
? (Q)=2 ,
1/p
t
<Cy; > el . O
1(Q)=27

Lemma 1.5. Let 1 < p < o0, {aglgep € C, {ag}gep (A,p)—smooth atoms.
There exist {cg}gep C C with cg # 0 for finitely many @) € D such that we have
for p < oo and p = oo respectively
1/p
dz < Cmin (1,277) Z laglP
Q=23

[ ‘ZZ(Q)@ZO[;;Zi: o)

(1.14") / ’E“Q):W aglag — CQ)‘

: 4]
AT )™ dx < C'min (1, 57 ) sup lag]

(Q)=2
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Proof. Let

o = { ag(0) if I(Q) >1 and 3Q N B(0,1(Q)) # 0

0 otherwise.
For j < 0 we have cg = 0 and then we simply use the estimate

> aglag@) —cg)| <A Y |agllQl7 xse(®)
1(Q)=2 (Q)=2/

Hoélder’s inequality gives

‘Zz(cz):za‘ ag(ag — CQ)‘
/n Grapt @S| 2 laal

For j > 0 we argue as follows:

Note that, for fixed j, there exist a finite number, independent of j, of dyadic
cubes of length 27 such that 3Q N B(0,1(Q)) # 0. Call such a family F; and denote
by E; = UQe]:jBQ'

In the same way as in the case j < 0 we have

dx

/ ‘ZQgﬁ aq(aq — CQ)’
no (L )t

1

> 1

p
(Mg ) (Lerme)

Q¢EF;
1/p

< @2 i(+n/p) Z lag|?
QEF;

Para Q € F; y « ¢ E; we use the simple estimate |ag(z) — Cq| < 24277/,

/ Raer caleole)~ ) corme [ e 3 el
R"\ E; (1+ [z[)+? jafz2s (1+ [} ==
< 02—1'"/1’/_ t72dt Y ag
¥ QEF;
— C2—i(1+n/p) Z lag
QEF;

§C2—j(1+n/p) Z |aQ|p
QEF;
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Finally, we observe that it follows from the mean value theorem and (1.10) that
there exists C’ > 0 such that

_ =l
Q)™

|aQ(x)_CQ|SC/ (ZEEEj,Qij).

It is clear that if € E; then there exist K, independent of j, such that |z| <
K27, Therefore

‘ZQGF aglag — cqQ) in
d dr < A27771/ —dz «
/ (G wierc 0T |x| e 2 ol

i QEF;
in K2 t
cars ([0 ) S
0 ( QEF;
<C2” s (1+log(2”)) Z lag]
QEF;
<C277 il Y Jagl-
QEF;

<o S Jagl
QEF;

Combining the previous estimates we have (1.14) and (1.14°) O

Observe that a net {¢; }iea converges to ¢ in S} if there exist {¢; }iean C C such
that ¢; — ¢; converges to ¢ in S’. Using this it is elementary to show the following
lemma.

Lemma 1.6. Let {f;};cz be measurable functions defined in R™ such that there
exist {c;}jez real numbers with

ZjeZ |f5 — ¢l

== - " dx <
pe Lt gt TS

d
Then }_;.; f;j converge in S; to some function f € L (R", ﬁ)

§2.  ATomic DECOMPOSITIONS FOR Bg’fu FOR 1 <p < oo AND 1 < ¢ < o0.

Let us first state a version of Schur Lemma that will be useful for our purposes
and whose proof follows easily from Holder’s inequality.
Lemma B. Let 1 < ¢ < oo and % + % = 1. Let (1,31, p1) and (Qa, X9, p2) be

two o-finite measure spaces and let K : ; x Q3 — RT be a measurable function
and write Tk (f) for

Tk (f)(w2) = . K (wy,wz) f(wr)dp (wr).
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If there exist C > 0 and measurable functions h; : ; — R™ (i = 1,2) such that

(2.1) K (wy, wg)h‘f/(wl)d,ul(wl) < Chg/(wg) p2 — a.e.
Q4

(22) o K(wl,wg)hg(wg)dug(wg) S Ch‘ll(wl) M1 — a.e.

Then Ty defines a bounded operator from L9(y, u1) into LY(Qq, o).

Theorem 2.1. Let 1 < p < 00,1l < ¢ < 00, ¢ € Ay, w(t) = Al/q/(t)u_l/q(t_l)
1/4’
Hey ot
where \, u € Wy,1. Denoting wg = [(Q) w? (t)? we have f € B})%, if and
-
only if there exist A > 0, {sqg}gep C C, {ag}tgep (A4, p)—smooth atoms such that

f= Z sgag in 8y and

Q€ED
i q/p
) Isal)"
(2.3) S Q&) < o0
=0 \u@=2 » @
Moreover
oo . a/p\ V1
, S [sel
||fHBgf1¢, ~ inf Z <E ;= Z $QAQ
j=—o0 \1U(Q)=2i Qep
j 1/q
2.
r,oodt
Proof. Assume f € BlY and write w; = / w? (t)? . The atomic de-
271

composition is obtained from Lemma A. The only thing to prove is the estimate
(2.3). Using (1.11) we have

v 1/p
s * w(t) e %l dt
EI(@Q SA w, X (O
1(Q)=2

Hence from duality and Hélder’s inequality

oo

> so\" _ > Bi ¢ * fllp dt
S S GE) ) e [ E om0 RS

i=—oo\I(Q)=2i" '@ 87 =1 j=—o00 I

< sup Z BJ—X(QJ 120 @] 1z,
Zﬁq =1||j=—cc ,

q
= 1 £ll2.
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Conversely, let us assume that f = Z sgagq where {sg}oep satisfies (2.3). We
QeD

use now (1.14) in Lemma 1.5 and Lemma 1.6 to prove that Z sqag converges in S
QeD
dx

to a function f € L! (R”, W) It suffices to prove that w; min (1, 2_j) €
ly(Z).

E wg,min(1,2*j)q,
JEZ
Yo, 1\7 dt
q : )
SCE /ijlw (t)mm(l,t) .

JEL

e’} q/
< C/ w? (t) min (1, 1) dt
0 t) t

<C (/01 )\(t)u_q,/q(t_l)% + /100 A= /9@t G)q %) .

Using (1.5) we have p(s) > min(1, s). Hence

! 1 o0 ’ ’
> wf min(1,279)" <C (/ )\(t)% +/ YO %)
0 1

JEL
co( [0t [Taoh) <o

Since [|¢¢ * fllp < 35z [ 2 1@)=2i @ (¢ * ag)ll, we can use (1.13) in Lemma
1.4 to get

1/p

Sifise § 2ooml3) (3, (2

=—c0 Q=i N 1@
Let us write (24, %1, 1) = (N, P(N), dv) where v denote the counting measure
dt
and (Qg, 39, ug) = ((O, +00), B((0, +00)), ?) and consider the following kernel

K(j,t) = % min <2ij 1) .

1
27 ad’ 1/qq’
dt
;= At)— inf t
o) (L» ot> it uto)]

g(t) = Ao (8 (7).

Take

and take
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Clearly we have

’

(2.4) g'(t) = w(t)u(t™), g" (Hw(t) = A(t).

=

. =1
On the other hand w; < ( 22;,1 A(t)%) " (infy-j <p<o-s+1 p(t)) @ . This implies

2j
/ dt
2.5 ; inf t) <al al < At)—.
(2.5) wJ27j<g%27Mu()_aj, wja; _/QH (1)~

Hence from (2.4), Corollary 1.1 and (2.5)
= dt > £\ dt
S I at
/0 K(j,t)g%(t) , —w]/o p(t™1) min (Qj,l) p
ds

o [ atepmin (21

< Cwj inf u(t) < Cat

s
q
2-i<t<2-i+1 J

On the other hand, applying (2.4) and (2.5)

) . y C 0o .
Z K(j,t)a] §m Z min

j=—00 Jj=—00

IN
IS
:‘Q
[]¢
E.
]

W | N N
| = s
j—t
N———
w\»

8,
>
S
w | &

j=—o0 o
< L/ min ,1) )\(s)@
w(t) Jo s
A(t)
<C =Cg(t)?
(t)
Hence, by Lemma B,
» 1/p
H e * £l <clTw T <|5_Q>
w(t) a(dty  \WQ
La() 1(Q)=27 Loy
» 1/p
<C Z ('s—Q|> <oo. O
. wqQ
(Q)=27 1

00,9 PP, p,1
§3.  ATOMIC DECOMPOSITIONS FOR Bl By’ AND By,

Theorem 3.1. Let 1 < p < co, w € Wo1, ¢ € Ay, Then f € B))7 if and only
if there exist A > 0, {sg}tgep C C, {ag}gep (A,p)—smooth atoms such that

f=> sqaq

QeD
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in 8} and
1/p )
¥ dt
(3.1) S el | <o wnT
1(Q)=2/ >
Moreover

1/
(Zl(Q):W’ |SQ|p) p. F= sqaq

£l pp ~ in { sup ~ =2
2j,1w(t)% QeD

w, P jEZ

Proof. Assume f € BZ’;;. Apply Lemma A and Lemma 1.3 to obtain (3.1).
Conversely assume {sg }gep safisfies (3.1). Invoking Lemmas 1.5 and 1.6 we can

dx
see that so(ag —cg) converge in S to a function f € L (R”, —) as

27
, dt
soon as we notice that min (1,277) / w(t)? e l1(Z).
271

dt

27
Zmin (1,27j)/ w(t)ﬂ < C'/ w(t)min (1,¢71) —
: 2i—1 t R t
JEZ
boodt > dt
< — —.
_0/0 w(t) +/1 w(t)

Note that ¢ * f = Z Z so(¢ * ag) in S). Hence
J=—00l(Q)=27

o0

(3.2) oe = fllp < D || D sqlérxag)

j==o0 Q=2 »

Applying (3.2) and (1.13) in Lemma 1.4 we have

> . t 2! ds
o sty <0 3 min(51) [ ue®

j=—00

- s t ds
(o ds
C E /Zjlmm(s, )w(s) .

j=—c0

sc(/otms)%H/tmw(s)%)

<Cw(t). O

IN
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Theorem 3.2. Let 1 <p < o0, ¢ € Ay w a weight such that wi(t) = w it ) e
Woi. Let us denote w; = sup{w(t);2/~1 < ¢ < 27} and wg = wyq). Then
fe ij}’lqﬁ if and only if there exist A > 0, {sg}gep C C, {ag}gep (A, p)—atoms

such that f = Z sqaq in 8§y and

QEeD
oo v 1/p
(3.3) Y (5—Q|> < 0.
= \1Q=2 "¢
Moreover
oo 1/p

Hf”Bfu’]ld) ~ inf Z Z (lj}_@l) : f= Z sQaqQ

j=—o0 \U(Q)=2/ Q QeD

Proof. Assume f € Bp’ . Use one more time Lemma A and (1.11) to have
1/p .

> () < 7l flly at

UO)=27 wq 2i—1 w(t) t

Adding them up we get

1/p
“+o0 p
g
S Y (—Q < Ifll o -
= X U)Q w,$
J==00 \U(Q)=2

Conversely take {sg}oep satisfying (3.3). As in Theorem 2.1 we shall prove

dx
that E sgagq converges in S} to a function f € L' (R", W) Now it
x
QeD

suffices to prove that w; min (1,277) € Io(Z) which easily follows from (1.5).
As in Theorem 2.1 we apply (1.13) to get

[fe  fllp < Z I saldexag)ly

j=—o0 UQ)=2

1/p
<CZm1n(J1,> Z lsol?
Jj=—o0 U(Q)=27
Therefore
1/p
| pe * fllp dt - </ I < ¢ )dt)
bty oosm ([ i (S ) 2 (8 e
/]R+ U)(t) t je—oo R+ U)(t) 27 1 t l(Q):2f
1/p

oY [ Tt (i () mo )

j=—00 \UQ)=27
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From Corollary 1.1 we can estimate

o0 9—i+1 d 1
(/ min ( . ,1> wl(s)f) <C inf  w(t) <C—
0

2-i<t<2-dF! w;
This shows
- » 1/p
dt
/ ||¢t*f||p <C Z Z <LQ|) O
R+ w j=—oo \I(Q)=2i wqQ

Analyzing the previous proofs one realize that the only difficulty to extend to
the case p = oo comes from the failure of (1.14), which in this case can be replaced
by (1.14’ ). This problem can be overcome by using Lemma 1.2.

Theorem 3.3. Let 1 < ¢ < 00, ¢ € Ay, w(t) = AV ()= 9(t~1) where \, u €
1/q’
@ dt
Wo,1. Denoting wg = /(Q) w? (t)? for ¢ > 1 or wg = sup{w(t); 1(Q)/2 <
t <1(Q)} for g =1 we have f € B, ifand only if there exist A > 0, {sq}qgep C C,

{ag}gep (A, p)—smooth atoms such that f = Z sgaq in 8§y and

QeD
-~ sl \*
(2.8) Z sup (—Q> < 00.
e l@)=2 \ WQ
Moreover
oo 0l . 1/q
. s
If s 2 inf S [ D sup (w—Q) D f= sqag
Jj=—00 (Q)*2J Q QGD

(the obvious modifications for ¢ = 00).
Proof.
Denote w; = (fzz,-],l w? dT) or w; = sup{w(t): 2771 < ¢ <27}
Using Lemma 1.2 then p, A € (b.) for some 0 < € < 1 and this is enough to show

that w; min (1, l,j]‘) el (7).

U=

Indeed, for ¢ = oo we have w(t) = A(¢) and w; min (1 ljl) < Cw;min (1, 5)

» 97
From this

Zw]m1n< |9|)<c</A / At t6+1)<oo

JEZ

For ¢ = 1 we have w(t) = p~(¢t7!) and using (1.5)

] 1 1
w; min 1,@ < C- min | 1, — | < C < o0,
27 info—i cpc—st1 pu(t) 287
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C independent of j.
For 1 < ¢ < oo take 0 < a < 1 such that ¢'(1 —a) =1 — ¢ and use

. |1 . 1
wjmln(1,§ < Cw; min 1’@ .

Therefore
: 1 oo
q/ . |j| ’ _ // 1 dt 1 dt
jgezwj (min (1, §>)q <C (/0 At )~ 79(t )? + . A(t)t? g T1 ) <

Ackknowledgement. We would like to thank the referee for his careful reading of the
paper and for fixing a little detail in the proof of lemma 1.5 that we had overlooked
in the previous version.
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