CHARACTERIZATION OF WEIGHTED BESOV SPACES

JOSE LUIS ANSORENA AND OSCAR BLASCO

ABSTRACT. We find conditions on the weight w in order characterize functions in weighted

Besov spaces Bﬂ)"izs in terms of differences Ay f.

INTRODUCTION.

There are many ways to define Besov spaces (see [1, 19, 24]). It is well known that
Besov spaces can be defined, for instance in terms of convolutions f * ¢; with different
kinds of smooth functions ¢ and that they can be also described by means of differences
A, f (see [10, 11, 22]).

Our objective will be to find weights (which extend the case t*) where we can still get
such a characteritation of weighted Besov spaces and to give a general procedure which
works not only in the classical case but also in the weighted one. Our arguments will be
based upon two main points: The Calderén’s formula, a quite simple Schur Lemma.

We want to notice that this characterization can be used to get the atomic decomposition
of the spaces.

The paper is divided into two sections. Section 1 has a preliminary character and it is
devoted to introduce the notation and the main lemmas to be used later on. In Section
2 we prove the result about coincidence of seminorms in the spaces defined by differences
and convolutions.

Throughout the paper a weight w : Rt — R™ will be a measurable function w > 0 a.e.,
1 <p,q <ooandp,q stand for the conjugate exponents. S denotes the Schwartz class
of test functions on R™, 8’ the space of tempered distributions, Sy the set of functions in
S with mean zero and S’y its topological dual.

Given a weight w and 1 < p,q < oo we shall denote by A4 the space of measurable
functions f : R” — C such that

1AL FII2 dz \
Hfmq:(/R 022 /1l ) < o0 (1< q< o)

wow(lz))e [z
or
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[ fl|ap,oe = 1inf{C > 0: [|Azf]|p < Cw(|z]) a.e.x € R"} < o0 (g = o0)

where Ay f(y) = f(z +y) — f(y).
Given a weight w, ¢ € Sp and 1 < p, ¢ < oo we shall denote by Bﬁ)” » the space functions

f:R" = C with f € L! <R”, %) such that

160 % £ dr)*
p,q — — Y —— ]_<
f 1 e, (/Rn w(t)i t) < 00 (1<g<o0)
or
||f|]35),$:inf{C>O:||gbt*f||p§Cw(t) a.e.t >0} < o0 (g = o0)

where ¢,(z) = & ¢ (£).

To state the results of the paper, let us first recall the following notions.
A weight w is said to satisfy Dini condition if there exists C' > 0 such that

/ @dt < Cw(s) a.e. s> 0.
0

A weight w is said to be a bi-weight if there exists C' > 0 such that

/ wdt < Cw a.e. s > 0.
s t? s

We shall denote by Wy 1 the space of b;-weights which satisfy Dini condition.
Let us also use the notation A and A; for the following classes

A:{gbe&):/Ooo(qg(tf)f%zlforﬁeR”\{O}}.

Ay = {¢ € A: ¢ radial and real, supp ¢ C {|z| < 1}, xip(x)dr =0,i=1,...,n}.
R'I’L

Section 2 is devoted to prove the following theorem.

Main Theorem. Let 1 < p,q < oo, ¢ € A and w be a weight that can be factorized as
1 —1
w(t) = \a (H)p= (t71) where \, pu € Wo.1. Then

AT =By (with equivalent seminorms).

For particular cases w(t) = t the reader is referred to [10, 11, 14, 22] for similar results
for special functions ¢ and their applications. In our weighted situation some closely
related results for the unit disc are included in [3] and [5].

The reader should be aware that the case 1 < ¢ < oo in Main Theorem could have
been shown by interpolation with the extreme cases, but a direct proof is presented in the

paper.



CHARACTERIZATION OF WEIGHTED BESOV SPACES 3

§1. PRELIMINARIES.
Let us recall some notions on weights we shall need later.

Definition 1.1. Let ¢ > 0, 6 > 0 and w be a weight. w is said to be a d.-weight if exists
C > 0 such that

(1.1) / taw(t)% < Csfw(s) ae s> 0.
0

w is said to be a bs-weight if there exists C' > 0 such that

(1.2) / %f)@ng(j) a.e. s > 0.
s AN/ s

If (d.) (respect. (bs)) denotes de class of d.-weights (respect. bs-weights) we write
Wes = (d2) N (bs).

The following properties are elementary and left to the interested reader

(1.3) w € (d.) = w € (de) for any &’ > e.
(1.3") w € (bs) = w € (bs) for any &' > 6.
(1.4) Let W(t) = w(t™') then w € (b.) <= w € (d.).
(1.5) w € W s = w(t) > Cmin (t_g,t‘s) :

Let us now give some examples.

It is elementary to see that if @ € R and w,(t) = t* then w, € W, 5 for any § > o and
> —a.

Let us give a bit more general example. Let a, 3 € R and w, g(t) = t*(1 + |logt|)”.
Then w3 € W, 5 for any 6 > a and € > —a.

Indeed, let us take § > a. Then making the change of variable ¢t = su we have

* waplt) % s Jdi
/5 =) dt_/s 71+ log )"

o d
< so‘_é/ w0 (1 + |log s| + 10gu)5—u.
1 u
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For 3 < 0 then

/OO Lasll) gy <

Cs wa,ﬁ(s)'

sY7°(1 + |logs])® = P

to+1 ~d—«

For 3 > 0, using (a + b)? < Cs(a” + bP), we have

/ wt(s’ig )dt < COps™? <(1 + | log s|)6/ i —|—/ uo‘_‘;(logu)ﬁ;u)
s 1 1

u

< Cla, p,5) " es3).

g0

Since wq g(t) = w_q g(t71) then also have w, g is a d.-weight for ¢ > —a. O

Let us now establish the main lemma to be used later on. Observe that a net {¢;}ica
converges to ¢ in &) if there exist {¢;}iea C C such that ¢; — ¢; converges to ¢ in S'.

One of the main facts in our approach, which follows ideas from [6] and [14], is the use
of the Calderén reproducing formula.

Let ¢ € A and ¢ € S then for £ € R™ \ {0},

wozéwwx@*m@%.

This shows that 1. 5 = fj 1 * ¢y x4t converges to ¢ in S.

Lemma A. (see Appendix [14]). Let f € L* (R”, Mﬁ) and p € A. For)0 < e <

define
dt

7 .

é
fes@) = [ @rrons D))
Then f. s converges to f in 8’y ase — 0 and 6 — 0.
To finish this preliminary section let us state a version of Schur lemma that will be useful

for our purposes and whose elementary proof we include here for the sake of completeness.

Lemma B. Let 1 < ¢ < oo and % + % = 1. Let (Q1,%1, 1) and (Q2, 39, u2) be two

o-finite measure spaces and let K : Q; x Q3 — R* be a measurable function and write
Tk (f) for

Tk (f)(w2) = 5 K (w1, we) f(w1)dpy (wr).

If there exist C' > 0 and measurable functions h; : Q; — Rt (i = 1,2) such that

(19) / K(wl, wg)h‘{(wl)dul (U)l) S Chg/ (wg) Mo — a.e.
Q1
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(1.10) K (w1, wa)hd(we)dus(we) < Chi(wy) u1 — a.e.
Q2

Then Ty defines a bounded operator from L9(€2y, uy) into L1(Qs, p2).
Proof. From (1.9) and Holder’s inequality we have

VFK(f)Ovzﬂf£<?h20vi>( z<<uu,uu)h;quulnf<uu>wduq<uu>)

1951

Apply now (1.10) and Fubini’s theorem to get

1
q

Tk (f)llg <C (/Q ( . )K(wlawz)hg(wﬂdm(wﬂ) hl(wl)_q|f(w1)|qd,ul(w1))

< C?||fllq-

§2.  CHARACTERIZATION OF BESOV SPACES

Let us first establish some general facts that can be used to relate properties about
differences A, f and convolutions ¢; * f.

Lemma 2.1. Let 1 < p < o0, p > 0 and ¢ € A. Then there exists C > 0 such that if

felLt (R”, (H—Iii%) then we have:

z[\" g dz
(2.1) qut*prsc/Rn mm((’t—|> (’;—0 )HA,EfHPW.

° d
(2.2 18,71 < € [ i (150 o 11,

Proof. Notice that, since / ¢(x)dxr = 0, then

n

G f(y) = A Oe(z) Ao f(y)da.
From Minkowski’s inequality one gets
" —x dx
— — Ay fllp—-

n tn

(2.1). H@wméé

Hence (2.1) follows from the trivial estimates
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" Plo(y)| < C if [yl > 1.
lp(y)| < C if |y <1

To prove (2.2) observe first that for 0 < e < o

é
(2:2) Bafes) = [ (Beat) =602 10)T

Hence Minkowski’s inequality and Young’s inequality give

0 dt
Az feslly < [ 1[A—zdel1]|¢e * f||p7-

Note that
A8l < 2l[¢]l1 if [y] > 1.

||Ay¢||1<|y|/ wax |7 6()ldu iyl <1

n |z—
Hence

(VN HA‘T“”¢H1 < C'min (1, "t”—’> .

Therefore, using the previous estimate (2.2") and Lemma A, a simple limiting argument
shows (2.2). O

Although for the purposes of this paper only a particular case of next lemma will be
used we state a general version of it that we find interesting in its own right.

Lemma 2.2. Given 0 <€, < 00, 1 < g < oo, and w a weight, let us consider

s = itoin () () )

Ifw(s) = )\ﬁ(s)u% (s™1) for some pair of weights A, u € W- s, then there exist C' > 0
and g : R™ — R* measurable such that

(2.3 | Restsig 0% < ¢t o)
(2.4) /000 R575(s,t)gq(t)% < Cgi(s).
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Therefore

/OmRe’é(s’t)gq/(S)%:ﬁ/ooo)\(s)min ((;)E,(g)(S) %

On the other hand

/Ooo Rs,é(S,t)gq(t)% = w(s) /Ooo () min ((;) (£)5> %

9 et
—1

wis) (% p)d oot

= /S_l % z—l—s w(s) ; tu(t)7

< Op(s™Hw(s) = Cgi(s). O

Let us now state the following result in order to avoid repeating arguments in several
of the remaining proofs.

Lemma 2.3. Let 1 < p < oo and let f be a measurable function.
n dx n dx
If ||Ayfllp € L <R 7W) then f € L' (R ’(W> :

Proof. Choose ¥ € ¥ (R",dx) with ¥ > 0 a.e. Then Holder’s inequality and Fubini’s
theorem give
/ / [f(z+y) —nﬁy)ldx W(y)dy < oo.
\Jee (Ut Ja)

/ 1f(z+y) - fy)

(L+ [a)""

Since (1 + |z|)~™*Y € LY(R™) then

/ ‘f(x—%dg; < oo fora.e. yeR".
re (14 |2])

Therefore

dr < o for a.e. y € R".

Finally since there exists C' > 0 such that 1+ |z +y| > C(1 + |z|) for all y € R™, then
one has
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|f ()]
/Rn —(1 n |x|)n+1 dr < co. [

Let us now start with the case ¢ = oo in the Main Theorem which easily follows from
Lemma 2.1.

Theorem 2.1. Let 1 <p<oo, ¢ € Aand w € Wy 1. Then
AL = BoY (with equivalent seminorms).

Proof. Assume f € AP:>°. Note that

A,
[ foH / ""’”nﬂ "
R (1 + [x]) 1+| )
/ tn 1 gt
1+tn+1
*° dt
/ / w(t)t—2><oo

I/\

| /\

what combined with Lemma 2.3 gives
e (14 [2])
Let us prove that ||¢; * f||, < Cw(t). From (2.1) in Lemma 2.1 for p = 1 we have

1 dx
o * fll, < C —/ ALf dx+t/ AL fll,———
s Sl <€ (g [ Neflpdete [ 18uflbpi

e (ti [ wtiehas +¢ /Mwuxnuf%ﬂ)
C (/Ot (;)nw(s)% +t/t°o w(s)g) < Cu(t).

Assume now f € Bp)%. Then from (2.2) we have

| dt o0 dt
1Afll, < C (/ o= 1l +1al | ch*prt—g)
() = w(t)

We prove now the case ¢ = 1 in the Main Theorem.

IN

IN
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Theorem 2.2. Let 1 <p < o0, ¢ € A and w such that u(t) = w=1(t"1) € Wy1. Then

AP = Bfi}’l(ﬁ (with equivalent seminorms).

Proof. Assume f € AP;l. Let us first prove that

i@l
/. (L Jaf) <

From (1.5)

1 1 1 1 1 C
el = Cigp min <1= _) 2 € min <|90|”, —> 2
ERT T o) 2 Rl o) 2 T

Hence
A, A, d
/ | f\kﬂd C/ | f\lp_ffb’n<OO
R (14 |z]) now(|z]) |zl
and we apply Lemma 2.3 again.

We shall now prove that ||fHB”’1¢ < C|fllppa-
Using (2.1) in Lemma 2.1 with p =1

/ooo . *tpr T C/ U - ((9) <|x|)) H%Hp rzﬂ T
:O/Rnllefllp /Ooomin(<|337|) <|xi|)) () dt} |;i°’|”n
¢ [ iagi| [ T S,’l)%+ /|°|° ik ﬁtl)%] o

Lo a1 ar] de
< [ Naddly | [ nog+ | u<t>7]—

_|93| |z|-1 t2 |z[™

1 dx
sc/ 8 Fllop (2~) o7

18z fllp dx
—c [ ==l 22
/n w(lz]) |zl

Take now f € Bp’ . From (2.2) in Lemma 2.1 and Fubini’s theorem
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1Al dz _ [ ' ! :
Lt =€ ) e sty | [ wterymin (1.51) ]

o0 r o0 d

—c [Thove sl | [ utsymin (1.5 ) 7]
[ L u(s) 1 s) | at
—c [Tl | [ Sd+»/;82d]7

> d
<c [Tlioc (e

o [ lg Al dt
‘CA W) & -

dx
|z
dt

t

Theorem 1.3. Let 1 <p<o0,1<q< o0, ¢ € Aandw a weight such that
1 =1 1
w(t) = A7 (B (t7)
for some pair of weights A\, u € Wy 1. Then

AT = BL%  (with equivalent seminorms).

Proof. Assume f € AP Let us show first that
/ —\f(:c)\nﬂ dr < oco.
R (1+ [x])

w(la]) |l

(L+ [

Let us denote

O(z) =

We shall see that under the assumptions A, 1 € Wy 1 one has that ® € L (R” d—w) .

9 |$‘n
Indeed ,
o dt o / tma dt
o7 (1) — / My~ () —— .
/0 ey M ( )(1+t)q("+”t

Using (1.5) we have u(s) > C'min(1, s). Therefore

/ C/ ) max 1 t(q—l)) o dt
; A+ 07 1

gc(%x@%+ﬁw¥2%)<m

From Holder’s inequality one has
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18uflly , _ [ 1Al do
Ana+mW“x L e <o

and we apply Lemma 2.3.
Let us now prove

1 F 1Bz, < Cllflage-

From (2.1) in Lemma 2.1 with p =1

||¢t*f||p<0 K.t HAfopd_x
o) = Lo Kl Tl
where
K(x,t) = %min (1, |;—|) .
Take
(Ql, Zl,,ul) = (Rn,B (Rn) ; %)
and

(0.2, p2) = (0,00 5((0.00)) 1 ).

"l

Since K(z,t) = Ro1(]z|,t) we can apply Lemma 2.2 with ¢ = 0 and § = 1 to get a
measurable function ¢ satisfying (2.3) and (2.4).
Now write hi(z) = g(|x|) and ha(t) = g(t). Obviously, using polar coordinates, (2.3) and

d
(2.4) give (1.3) and (1.4) in Lemma B, what shows that Tk is bounded from L? (R”, ﬁ)
€T n

into L? ((0, 00), %) Therefore

Hmﬁgéﬂﬁkam7>

1.7,
SC‘ (=)

L4((0,00),4t)

w

La (Rn, gfn )

< Ol fllagse-

(i) Let us take f € B)%. From (2.2) in Lemma 2.1

251 < ¢ [~ e U0 Tt
0 w

w(|z)

where

Rz t) = 20 i (1,m).
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Now take ]
(21,31, 1) = ((0,00),B((O, 00)), _x)

and p
ua
(925227M2) = (Rn7B(Rn)7—> .

[

Combine now again Lemma 2.2 and Lemma B to get the boundedness of T from

L1 ((0, 00), %) into L4 (]R”, |d—T) Therefore
x n
* *
1£lag soHTR (M) chM < Ollfllpgs. ©
w(t) Lo( i) w(t) La(¢) v

Remark. Note that in the previous theorem one of the embedding could have been proved
under weaker assumptions. In fact, if A, u € W, 1 then AR C Bﬁ)’%.
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