
Lp continuity of projectors of weighted
harmonic Bergman spaces

Oscar Blasco∗and Salvador Pérez-Esteva

Abstract

In this paper we study spaces Ap(w) consisting of harmonic func-
tions in Bn the unit ball in R

n and belonging to Lp(w), where dw(x) =
w(1 − |x|)dx and w : (0, 1] → R

+ will denote a continuous integrable
function. For weights satisfying certain Dini type conditions we con-
struct families of projections of Lp(w) onto Ap(w). We use this to get
for 1 < p < ∞ and 1

p + 1
p′ = 1, a duality Ap(w)∗ = Ap′(w′), where w′

depends on p and w.

1. Introduction and preliminaries. Let us denote by Ap(w) the
spaces consisting of harmonic functions in Bn the unit ball in R

n and belong-
ing to Lp(w) = Lp(w(1−|x|)dx), where w : (0, 1] → R

+ will denote a contin-
uous integrable function. The case w(t) = tα was studied in [5, 8, 10, 12, 13]
for α > −1. Projections of Lp((1 − |x|)βdx) onto Ap(tβ) for different values
β > −1, were defined in [5, 8, 12]. In particular, in [8], families of continuous
projections are constructed for every β > −1 and p ≥ 1.

In this paper we use the integral operators Pα with kernels bα(x, y) related
to the measure (1 − |x|)αdx, α > −1, defined originally in [5] for α ∈ N and
we give conditions (Dini type) on the weight function w related to α and
p > 1, that make Pα a continuous projection of Lp(w) onto Ap(w). We use
this to get for 1 < p < ∞ and 1

p
+ 1

p′ = 1, a duality Ap(w)∗ = Ap′(w′), where
w′ depends on p and w.

We shall be using the following notation: for x, y ∈ Bn, we will write
x = Rx′, y = ry′, with R = |x′| and r = |y′| .

We denote by P (x, y) the Poisson kernel in Bn,
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P (x, y) = cn
1 − (rR)2

(1 − 2rRx′ · y′ + r2R2)n/2

=
∑
k,j

(Rr)kY k
j (x′)Y k

j (y′),

being
{
Y k
j

}
j

the real orthonormal basis on Sn−1 of spherical harmonics of

degree k. Hence, any harmonic function on Bn can be written as

f =
∑
k,j

ak,jY
k
j

where ak,j ∈ C and the convergence is uniform on compacts in Bn.
We define for α > 0 and x, y ∈ Bn

bα(x, y) =
∑
k,j

Γ(2k + n + α)

Γ(α)Γ(2k + n)
(Rr)kY k

j (x′)Y k
j (y′) (1)

and the corresponding integral operator

Pαf(x) =
∫
Bn

(1 − |y|)α−1bα(x, y)f(y)dy,

which is well-defined for functions in L1(tα−1).
We shall be using the operators of fractional differentiation Dα defined

by

Dαφ(t) =
∫ t

0

φ(m+1)(τ)

(t− τ)β
dτ,

if α = m + β,m ∈ N∪{0} and 0 < β < 1 ; and Dαφ(t) = φ(α)(t) if α ∈ N.
Throughout this paper we shall denote ε(x) = (1 − |x|), for any x ∈ R

n

or x ∈ R and we adopt the convention that C will denote a generic positive
constant that may change in each occurrence.

2. Reproducing kernels and Projectors.

Definition 1 Let γ, q > 0, and w a weight.function.
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1. We shall say that w is a dγ-weight (w ∈ dγ) if

∫ t

0

w(s)

sγ
ds ≤ C

w(t)

tγ−1
.

2. w is said to be a bq-weight (w ∈ bq), provided

∫ 1

t

w(s)

sq
ds ≤ C

w(t)

tq−1
.

3. We say that w ∈ C, if taw(t) is non-decreasing, for some a ≥ 0.

The reader is referred to [1, 3, 4, 11] for some properties and uses of these
type of weights functions.

Let us first mention some procedures to get examples of such weights
whose elementary proofs are left to the reader.

Proposition 1 Let γ, q > 0, and w be a weight function.

(i) If tbw(t) is non-increasing for some b > q − 1 then w ∈ bq.

(ii) If taw(t) is non-decreasing for some a < 1 − γ then w ∈ dγ .

(iii) If w(ts) ≤ Cw(t)w(s) and w(t)
tγ

∈ L
1
[0, 1] then w ∈ dγ.

Next we give some basic but useful properties of the weights above.

Proposition 2 Let γ, q > 0, and w be a weight.function.

(i) If w ∈ bq, then for some C > 0

w(t) ≥ Ctq−1log
1

t
, t ∈ (0, 1]. (2)

(ii) If w ∈ dγ ∩ bq then q > γ.

(iii) Let w ∈ C∩ bq for some q > 0. Then there exists C > 0 such that

w(2t) ≤ Cw(t). (3)

provided 0 < t < 1
2

.
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Proof. (i):
By the continuity of w, there exists C1 > 0, such that w(t) ≥ C1t

q−1 for
t ∈ [1

2
, 1]. Also, if t ≤ 1/2,

∫ 1

1/2
w(s)ds ≤

∫ 1

t

w(s)

sq
ds ≤ C

w(t)

tq−1
.

Thus, w(t)
tq

≥ C
t
, and (i) follows after integrating this expression.

(ii): Is an easy consequence of (i).
(iii) Since w ∈ bq implies that w ∈ bp for any p > q, we can assume that

taw(t) is non-decreasing, for some a > 0 such that a+q > 1. Now, if t ≤ 1/2,
then 1

ta+q−1 − 1 ≥ C
ta+q−1 , hence

w(t)

tq−1
=

taw(t)

ta+q−1
≤ Ctaw(t)

∫ 1

t

1

sq+a
ds

≤ C
∫ 1

t

w(s)

sq
ds ≤ C

w(t)

tq−1
,

that is,

w(t)

tq−1
∼

∫ 1

t

w(s)

sq
ds.

Then, for t ∈ (0, 1/4),

w(2t) ≤ Ctq−1
∫ 1

2t

w(s)

sq
ds ≤ Ctq−1

∫ 1

t

w(s)

sq
ds ≤ Cw(t).

If t ∈ [1/4, 1/2],

w(2t) ≤ max1/2≤s≤1w(s)

min1/4≤s≤1/2w(s)
w(t).

Lemma 1 a) Let 0 < β < 1 and w ∈ C ∩ dγ for some γ > 0. Then there
exists C > 0 such that∫ t

0

w(s)

sγ(t− s)β
dt ≤ C

w(t)

tγ+β−1
, t ∈ (0, 1]. (4)
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b) Let w ∈ dγ ∩ bq for q > γ.

If 0 < q1 < γ and q1 + q2 ≥ q then∫ 1

0

w(t)

tq1(s + t)q2
dt ≤ C

w(s)

sq1+q2−1
.

c) For γ > −1 and for any x′ ∈ Sn−1,
∫
Sn−1

dy′

(|x′−y′|+A)n+γ ≤ c(γ, n) 1
Aγ+1 .

Proof. a) Since w ∈ C implies that w(t/2) ≤ 2aw(t), for some a ≥ 0,

∫ t/2

0

w(s)

sγ(t− s)β
ds ≤ 2β

tβ

∫ t/2

0

w(s)

sγ
ds ≤ C

w(t)

tγ+β−1
.

On the other hand,∫ t

t/2

w(s)

sγ(t− s)β
ds ≤ Cw(t)ta

∫ t

t/2

ds

(t− s)βsγ+a
≤ C

w(t)

tγ+β−1

∫ 1

1/2

dt

(1 − s)βsγ+a .

b) The proof follows from the estimates∫ s

0

w(t)

tq1(s + t)q2
dt ≤ 1

sq2

∫ s

0

w(t)

tγ
tγ−q1dt ≤ C

w(s)

sq1+q2−1
,

∫ 1

s

w(t)

tq1(s + t)q2
dt ≤

∫ 1

s

w(t)

tq1+q2
dt ≤ 1

sq1+q2−q

∫ 1

s

w(t)

tq
dt ≤ C

w(s)

sq1+q2−1
.

c) The proof is immersed in [5], we include it here for completeness: using
spherical coordinates, we parametrize Sn−1 on a cube Q ⊂ R

n−1 . Then∫
Sn−1

dy′

(|x′ − y′| + A)n+γ ≤ C
∫
Q

dξ

(|y′(ξ0) − y′(ξ)| + A)n+γ

where y′(ξ0) = x′. Since |y′(ξ0) − y′(ξ)|Rn ∼ |ξ0 − ξ|Rn−1 , then

∫
Q

dξ

(|y′(ξ0) − y′(ξ)| + A)n+γ ≤ C
∫
Q

dξ

(|ξ0 − ξ| + A)n+γ ≤ C
∫

Rn−1

dξ

(|ξ| + A)n+γ

= C
∫ ∞

0

rn−2

(r + A)n+γ
dr = C

(
1

Aγ+1

)
.
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Lemma 2 Let α = m + β > 0, with m ∈ N ∪ {0} and 0 ≤ β < 1, then

bα(x, ρ2y′) = C(α)ρ1−nDα
[
ρn−1+αP (x, ρ2y′)

]
.

Proof. An easy calculation shows that

Dαrγ =
Γ(γ + 1) Γ(1 − β)

Γ(γ − α + 1)
rγ−α. (5)

By (5), Dαρn−1+α+2k = Γ(1 − β)Γ(n+α+2k)
Γ(n+2k)

ρn−1+2k. Then the proof follows

after expanding P (x, ρ2y′).

Theorem 1 Let α > 0 and w ∈ C ∩ dγ ∩ bq.
If γ + α ≥ q, then∫

Bn

|bα(x, y)|
(1 − |y|)γw(1 − |y|)dy ≤ C

w(1 − |x|)
(1 − |x|)γ+α−1

.

Proof. Write α = m + β, with m ∈ N∪{0} and 0 ≤ β < 1. Assume that
β > 0 (the case β = 0 is similar).∫

Bn

|bα(x, y)|
(1 − |y|)γw(1 − |y|)dy =

∫
1
4
Bn

+
∫
Bn\ 1

4
Bn

= I1 + I2.

Notice that Proposition 2 (i) implies that w(t)
tγ+α−1 is bounded below by a

positive constant. Then, since bα(x, y) is uniformly bounded in Bn × 1
4
Bn, it

is enough to estimate I2. Let a > 0 such that taw(t) is non-decreasing, then
Proposition 2 (iii) clearly gives w(1 − r2) ≤ Cw(1 − r), and therefore

I2 = C
∫ 1

1/4

∫
Sn−1

|bα(x, sy′)|
(1 − s)γ

w(1 − s)sn−1dy′ds

≤ C
∫ 1

1/2

∫
Sn−1

|bα(x, r2y′)|
(1 − r2)γ

w(1 − r2)dy′dr

≤ C
∫ 1

1/2

∫
Sn−1

|bα(x, r2y′)|
(1 − r)γ

w (1 − r) dy′dr

By Lemma 2, this integral equals
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C
∫
Sn−1

(∫ 1

1/2

w(1 − r)

(1 − r)γ

∣∣∣∣∣r1−n
∫ r

0

(
∂m+1

∂um+1
un−1+αP (x, u2y′)

)
du

(r − u)β

∣∣∣∣∣ dr
)
dy′.

As in the begining of the proof, it suffices to estimate

C
∫
Sn−1

∫ 1

1/2

w(1 − r)

(1 − r)γ

∣∣∣∣∣
∫ r

1/2

(
∂m+1

∂um+1
un−1+αP (x, u2y′)

)
du

(r − u)β

∣∣∣∣∣ dr dy′. (6)

If we let ỹ = y′

|y|2 for y �= 0, we have the following estimate (see [5]):∣∣∣∣∣ ∂m+1

∂rm+1
P (x, ry′)

∣∣∣∣∣ ≤ C |x− ỹ|−n−m , (7)

for x ∈ Bn and r > 1/2. Then by (7),∣∣∣∣∣ ∂m+1

∂um+1
un−1+αP (x, u2y′)

∣∣∣∣∣ ≤ C
∣∣∣x− ũ2y′

∣∣∣−n−m
.

Now, using elementary geometry we have that |x− ỹ| ∼ |x′ − y′|+ε(x)+ε(y),
uniformly for x ∈ Bn and y ∈ Bn\1

2
Bn, hence (6) is bounded by a constant

multiple of

∫
Sn−1

(∫ 1

1/2

w(1 − r)

(1 − r)γ

(∫ r

0
(|x′ − y′| + ε(x) + ε(u))

−n−m du

(r − u)β

)
dr

)
dy′

(Lemma 1 (c))

≤ C
∫ 1

0

w(1 − r)

(1 − r)γ

(∫ r

0
(ε(x) + ε(u))−1−m du

(r − u)β

)
dr

= C
∫ 1

0

(∫ 1

u

w(1 − r)

(1 − r)γ(r − u)β
dr

)
(ε(x) + ε(u))−1−m du

= C
∫ 1

0

(∫ 1−u

0

w(s)

sγ(ε(u) − s)β
ds

)
(ε(x) + ε(u))−1−m du

(Lemma 1 (a))

≤ C
∫ 1

0

w(1 − u)

ε(u)γ+β−1 (ε(x) + ε(u))m+1du
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(Lemma 1 (b))

≤ C
w(1 − |x|)

(1 − |x|)γ+α−1
.

Corollary 1 If 0 < ρ < α, then

∫
Bn

|bα(x, y)|(1 − |y|)−ρ+α−1dy ≤ C(1 − |x|)−ρ.

Proof. Take w(t) = tα−1. Then w ∈ dβ for every β < α and w ∈ bq if q > α.
Hence w ∈ dρ and the proof follows from Theorem 1 taking q = α + ρ/2.

Lemma 3 (see [12, Proposition 2.1] ). Let α > 0, and let f be a bounded
harmonic function in Bn. Then

Pαf(x) = f(x).

Theorem 2 Let 1 < p < ∞, 0 < γ < α and w ∈ C ∩ dγ ∩ bq, with q > γ.

If α > max{p′

p
γ, q − γ} then Pα can be extended as a continuous projection

from Lp(w) onto Ap(w).

Proof. Using Hölder’s inequality with the measure ε(y)α−1dy,

∫
Bn

|Pαf(x)|pw(1 − |x|)dx

≤
∫
Bn

(∫
Bn

|bα(x, y)| |f(y)| ε(y)α−1dy
)p

w(1 − |x|)dx

≤
∫
Bn

(∫
Bn

|bα(x, y)| ε(y)−
γp′
p

+α−1dy
)p/p′

×
(∫

Bn
|bα(x, y)| |f(y)|p ε(y)γ+α−1dy

)
w(1 − |x|)dx.
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(let ρ = γp′

p
in Corollary 1)

≤ C
∫
Bn

(∫
Bn

|bα(x, y)| |f(y)|p ε(y)−γ+α−1dy
)
ε(x)−γw(1 − |x|)dx

= C
∫
Bn

|f(y)|p ε(y)−γ+α−1
(∫

Bn
|bα(x, y)| ε(x)−γw(1 − |x|)dx

)
dy.

Since w ∈ C∩dγ∩bq and α > q−γ, Theorem 1 implies that the last estimate
is bounded by

C
∫
Bn

|f(y)|pw(1 − |y|)dy.

Next theorem extends the results of continuity in [5, 12], (compare with
[8, Theorem 7.3]):

Theorem 3 For β > 0, p > 1 and δ ≥ 0 denote wβ,δ(t) = tβp−1
(
log( e

t
)
)δ

.

If β < α then Pα can be extended as a continuous projection from Lp(wβ,δ)
onto Ap(wβ,δ).

Proof. An easy calculation shows that wβ,δ ∈ dγ if γ < βp and wβ,δ ∈ bq
if q > βp. In particular, if we let 0 < ε < min{α−β

2
, βp

p′ }, γ = βp
p′ − ε and

q = βp + ε, the proof follows from Theorem 2.

Given α > 0 and a positive weight function w we can represent the dual
of Lp(w) as Lp′(w′), by the pairing < f, g >=

∫
Bn f(x)g(x)(1 − |x|)α−1dx,

where w′(t) = tp
′(α−1)

w(t)p′−1 and 1
p

+ 1
p′ = 1.

Corollary 2 Let 1 < p < ∞, 1
p

+ 1
p′ = 1 and w ∈ C ∩ dγ ∩ bq, with q > γ .

Also let α > max{γ, p′
p
γ, q − γ} and w′(t) = tp

′(α−1)/w(t)p
′−1. Then

(Ap(w))∗ = Ap′(w′) (with equivalent norms)

under the pairing < f, g >=
∫
Bn f(x)g(x)(1 − |x|)α−1dx.

Proof.
It is clear that if f ∈ Ap′(w′) then Φ(g) =

∫
Bn f(x)g(x)(1 − |x|)α−1dx

defines a functional in (Ap(w))∗ and ‖Φ‖ ≤ ‖f‖Lp′ (w′).
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Conversely, let Φ ∈ (Ap(w))∗. Theorem 2 implies that Φ1 = Φ ◦ Pα ∈
(Lp(w))∗. Hence there exists a function f1 ∈ Lp′(w) for which

Φ1(g) =
∫
Bn

f1(x)g(x)w(1 − |x|)dx

for all g ∈ Lp(w).
Since we clearly have Φ1(g) = Φ1(Pα(g)), then

Φ1(g) =
∫
Bn

f1(x)
(∫

Bn
bα(x, y)g(y)(1 − |y|)α−1dy

)
w(1 − |x|)dx

for all g ∈ Lp(w).
In particular, if g ∈ Cc(B

n) we have

Φ1(g) =
∫
Bn

(∫
Bn

bα(x, y)f1(x)w(1 − |x|)dx
)
g(y)(1 − |y|)α−1dy

=
∫
Bn

f(y)g(y)(1 − |y|)α−1dy,

where f(x) =
∫
Bn bα(x, y)f1(y)w(1 − |y|)dy is a well-defined harmonic func-

tion, since f1 ∈ L1(w).
Moreover, since Cc(B

n) is dense in Lp(w), and Φ1 ∈ (Lp(w))∗ then
f(y)(1−|y|)α−1

w(1−|y|) ∈ Lp′(w), or equivalently f ∈ Lp′(w′). Therefore it follows that

f ∈ Ap′(w′) and represents Φ.
Finally, we need to prove that the correspondence f → Φ is one to one:
Observe first that, from Theorem 2 and duality, one easily gets that Pα

is also a projection from Lp′(w′) into Ap′(w′).
Now assume that Φ = 0 is represented by f ∈ Ap′(w′), then for any

g ∈ Cc(B
n),

0 =
∫
Bn

f(y)Pαg(y)(1 − |y|)α−1dy =
∫
Bn

f(y)g(y)(1 − |y|)α−1dy.

Once again the density of Cc(B
n) in Lp(w) implies that f = 0.

Finally we use the open mapping theorem to obtain that the norms ‖Φ‖
and ‖f‖Lp′ (w′) are equivalent.
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