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Dyadic BMO, paraproducts and Haar multipliers

Oscar Blasco

Abstract. Some new proofs on the boundedness of dyadic paraproducts for
functions in dyadic BMO are given.

1. Introduction

Let D denote the collection of dyadic intervals of the real line R, say D =
∪k∈ZDk, where Dk stands for the family of dyadic intervals in the k-generation, that
is |I| = 2−k. Let (hI)I∈D be the Haar basis of L2(R), i.e. hI = 1

|I|1/2 (χI+ − χI−)
where I+ and I− stand for the right and left halves of I and set xI the center of I.
For I ∈ D and φ ∈ L2(R), let φI denote the Haar coefficient,

φI = 〈φ, hI〉 =
∫

I

φ(t)hIdt

and mIφ the average of φ over I,

mIφ = 〈φ,
χI

|I|
〉 =

1
|I|

∫
I

φ(t)dt.

Observe that

(1.1) mI(hJ) = 〈χI

|I|
, hJ〉 = 0, J ⊆ I, J, I ∈ D

(1.2) mI(hJ) = hJ(xI) = hJ(t), I ( J, J, I ∈ D, t ∈ I.

We say that φ ∈ L2(R) belongs to dyadic BMO, written φ ∈ BMOd(R), if

(1.3) sup
I∈D

(
1
|I|

∫
I

|φ(t)−mIφ|2dt)1/2 < ∞.

For each I ∈ D we write

PI(φ) =
∑
J⊆I

φJhJ ,

which, due to (1.1) and (1.2), coincides with

PI(φ) = (φ−mIφ)χI .
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Therefore b ∈ BMOd(R) if and only if

(1.4) sup
I∈D

1
|I|1/2

‖PI(φ)‖L2 < ∞,

which, due to orthogonality of the Haar system, can be described by the Carleson
condition

(1.5) sup
I∈D

( 1
|I|

∑
J∈D,J⊆I

|φJ |2
)1/2

< ∞.

Due to John-Nirenberg’s lemma, one can replace the L2(R) norm in (1.3) and
(1.4) by any Lp-norm. That is, for 1 ≤ p < ∞, we have φ ∈ BMOd(R) if and only
if

(1.6) sup
I∈D

(
1
|I|

∫
I

|φ(t)−mIφ|pdt)1/p = sup
I∈D

1
|I|1/p

‖PI(φ)‖Lp < ∞.

Another equivalent formulation comes from the duality (see [G, M])

(1.7) BMOd(R) = (H1
d(R))∗,

where H1
d(R) consists of those functions φ ∈ L1(R) such that S(φ) ∈ L1(R), where

S(φ) = (
∑
I∈D

|φI |2
χI

|I|
)1/2

stands for the dyadic square function.
Let us recall that Littlewood-Paley theory gives that φ ∈ Lp(R) implies that

S(φ) ∈ Lp(R) for 1 < p < ∞ and that H1
d is the correct replacement in the limiting

case p = 1.
Other equivalent characterization of H1

d(R) are given in terms of dyadic atoms
or maximal dyadic functions. The reader is referred to [M] or [G] for the results
concerning dyadic H1 and BMO.

The reader is referred to [M, Per, G, Ch] for the basic notions on dyadic
Harmonic Analysis.

Let Ek stand for the conditional expectation over the filtration generated by
dyadic intervals in Dk, that is

Ek(f) =
∑

|I|=2−k

(mIf)χI

and ∆k = Ek+1 − Ek, that is

∆kf =
∑

|I|=2−k

fIhI .

From this one has
Ek(f) =

∑
|I|>2−k

fIhI .

Now the ”dyadic paraproduct” is defined by the formula

πb(f) =
∑
k∈Z

Ekf∆kb =
∑
I∈D

bI(mIf)hI .

For real-valued functions b the adjoint of this operator becomes

∆b(f) =
∑
k∈Z

∆kf∆kb =
∑
I∈D

bIfI
χI

|I|
.
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We shall give new proofs of the following known result (whose proof is usually
based on Carleson’s lemma).

Theorem 1.1. (see [M, pag 273], or [Per2]) Let φ ∈ L2(R). The following
are equivalent:

(i) φ ∈ BMOd(R)
(ii) πφ(f) =

∑
I∈D φI(mIf)hI defines a bounded linear operator on L2(R).

(ii) ∆φ(f) =
∑

I∈D φIfI
χI

|I| defines a bounded operator on L2(R).

The objective of this note is to get some new proofs of the characterization of
dyadic BMO in terms of dyadic ”paraproducts” which makes use of the notions of
Haar multipliers, interpolation and Lorentz spaces. Some ideas to be considered
later on were used in the work by S. Pott and the author in [BP1, BP2] (see also
[Bl]) when analyzing the boundedness of dyadic paraproducts in the bidisc or in
the operator valued case where the classical tools were not valid any longer.

Recall (see [Per]) that a sequence of functions (ΦI)I∈D is said to be a Haar
multiplier, if there exists C > 0 such that

‖
∑
I∈D

ΦIfIhI‖L2(R) ≤ C‖f‖L2(R) for all f ∈ L2(R).

We write T(ΦI) for the operator

T(ΦI)(f) =
∑
I∈D

ΦIfIhI .

Is is clear that for ΦI(t) = αI for I ∈ D one has ‖T(ΦI)‖ = supI∈D |αI |. In
general, using the Haar functions as test functions, one gets that if (ΦI)I∈D is a
Haar multiplier then

(1.8) sup
I∈D

‖ΦI‖L2(R)

|I|1/2
≤ ‖T(ΦI)‖.

Given b ∈ L2(R), we define the ”dyadic sweep” of b, to be denoted Sb, by

Sb = S(b)2 = ∆b(b) =
∑
I∈D

|bI |2
χI

|I|
.

Hence b ∈ L2p(R) implies Sb ∈ Lp(R) for 1 < p < ∞ and ‖Sb‖Lp ≤ C‖b‖2L2p .
Let us include now the proof of the following known fact.

Proposition 1.2. Let b ∈ L2(R). Then b ∈ BMOd(R) if and only if Sb ∈
BMOd(R).

Proof. Note that PI(χJ) = 0 for I ⊆ J . This shows that

PI(Sb) = PI(SPIb).

Therefore

sup
I∈D

1
|I|1/2

‖PI(Sb)‖L2(R) = sup
I∈D

1
|I|1/2

‖PI(SPIb)‖L2(R)

≤ sup
I∈D

1
|I|1/2

‖SPIb‖L2(R)

= sup
I∈D

(
1

|I|1/4
‖PIb‖L4(R)

)2
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From John-Nirenberg’s Lemma one has

sup
I∈D

(
1

|I|1/4
‖PIb‖L4(R)

)2

≤ C sup
I∈D

1
|I|
‖PIb‖2L2(R)

= C sup
I∈D

1
|I|

∑
J⊆I

|bJ |2

= C‖b‖2BMOd .

Hence ‖Sb‖BMOd ≤ C‖b‖2BMOd .

Conversely, let I ∈ D and cI =
∑

I(I |bJ |2 1
|J| . Note that (Sb − cI)χI =∑

J⊆I |bJ |2 χJ

|J| . Hence∑
J⊆I

|bJ |2 = ‖(Sb − cI)χI‖L1(R)

≤ ‖(Sb − cI)χI‖L2(R)|I|1/2 ≤ C1‖Sb‖BMOd |I|.
Hence ‖b‖2BMOd ≤ C1‖Sb‖BMOd .

�

Note that only the implication b ∈ BMOd(R) implies Sb ∈ BMOd(R) makes
use of John-Nirenberg’s lemma. We shall give another approach later independent
of it.

We start mentioning the following formula:

(1.9) πb(f) =
∑
I∈D

[PI+(b) + PI−(b)]fIhI .

Indeed,

πb(f) =
∑
J∈D

bJ(mJf)hJ

=
∑
J∈D

bJ(
∑
J(I

mJ(hI)fI)hJ

=
∑
I∈D

(
∑

J⊆I+

bJhJ +
∑

J⊆I−

bJhJ)fIhI

=
∑
I∈D

[PI+(b) + PI−(b)]fIhI .

Therefore

(1.10) (πb + ∆b)(f) =
∑
I∈D

PI(b)fIhI .

Therefore πb + ∆b being bounded in L2(R) is the same as (PIb)I∈D being a
Haar multiplier. Hence from (1.8) one has the estimate ‖b‖BMOd ≤ ‖πb + ∆b‖.

This means that only (i) =⇒ (ii) in Theorem 1.1 needs a proof. Note that,
using that π∗b = ∆b one sees that (ii) ⇐⇒ (iii). Hence (ii) in Theorem 1.1 implies
πb + ∆b is bounded and, due to the previous remark, (i) holds.

We shall present a proof the following list of equivalent formulations.

Theorem 1.3. Let b ∈ L2(R)be real-valued. The following are equivalent:
(1) πb(1) = b ∈ BMOd(R)
(2) πb is bounded on L2(R).
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(3) πb is bounded on Lp(R) for some (or for all) 1 < p < ∞.
(4) ∆b is bounded on L2(R).
(5) ∆b is bounded on Lp(R) for some (or for all) 1 < p < ∞.
(6) πb + ∆b is bounded on L2(R).
(7) πb + ∆b is bounded on Lp(R) for some (or for all) 1 < p < ∞.
(8) (PIb)I∈D is a Haar multiplier.
(9) (bIhI)I∈D is a Haar multiplier.

(10) Sb = ∆b(b) ∈ BMOd(R).

2. First proof of Theorem 1.1

We shall need the following lemma which is essentially contained in [Per,
Lemma 2.10] and whose modification is included here.

Lemma 2.1. Let 1 < p < ∞ and let T be a linear (or sublinear) operator of
weak type (p,p) such that

supp T (hI) ⊆ I

for all I ∈ D. Then T is strong type (q, q) for 1 < q < p.

Proof. If suffices to see that T is weak type (1, 1) and then use interpolation.
Assume f ∈ L1(R) and let λ > 0. Apply Calderón-Zygmund decomposition (see
[GR] or [Per, Lemma 2.7]) to decompose f = g + b where g ∈ L∞(R), ‖g‖∞ ≤ λ,
‖g‖1 ≤ 2‖f‖1, b =

∑
j bj where bj = (f−mIj f)χIj = PIj f and {Ij} form a disjoint

sequence of dyadic intervals such that
∑

j |Ij | ≤ ‖f‖1
λ . Now, as usual,

|{|T (f)| > λ}| ≤ |{|T (g)| > λ/2}|+ |{|T (b)| > λ/2}|.
Note that

|{|T (g)| > λ/2}| ≤ 2pC
‖g‖p

p

λp
≤ 2p+1C

‖g‖p−1
∞ ‖f‖1
λp

≤ 2p+1C
‖f‖1

λ
.

On the other hand, since supp T (bj) ⊆ Ij ,

|{|T (b)| > λ/2}| ≤ | ∪j Ij | ≤
‖f‖1

λ
.

�

(i) =⇒ (ii): Let us show that b ∈ BMOd(R) implies πb is bounded on L2(R).
Our first step is to see that b ∈ BMOd(R) implies that there exists C > 0 such

that

(2.1) ‖πb(χA)‖L2(R) ≤ C|A|1/2

for any open set A ⊂ T.
Given an open set A we write PA(f) =

∑
I⊆A fIhI . Note that condition (1.5)

gives
|bJ |2 ≤ ‖b‖BMOd |J |, J ∈ D

and also that, since A is a disjoint union of dyadic intervals, one has

‖PAb‖2L2(R) =
∑
I⊆A

|bI |2 ≤ ‖b‖2BMOd |A|

The first observation is that

πb(χA) = PA(b) +
∑

|A∩J|<|J|

bJ
|A ∩ J |
|J |

hJ .
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Then

‖πb(χA)‖2L2(R) = ‖PA(b)‖2L2(R) +
∑

|A∩J|<|J|

|bJ |2
|A ∩ J |2

|J |2

≤ ‖b‖2BMOd |A|+ C(sup
J∈D

|bJ |2

|J |
)

∑
|A∩J|<|J|

|A ∩ J |

≤ C‖b‖2BMOd |A|.

Now (2.1) implies (see [SW]) that πb : L2,1(R) → L2(R) where L2,1(R) is the
corresponding Lorentz space. This shows that the adjoint operator ∆b : L2(R) →
L2,∞(R) is bounded.

Notice that

(2.2) ∆b(hI) = bI
χI

|I|
and

(2.3) πb(hI) = (PI+b + PI−b)hI

Due to (2.2) we can apply Lemma 2.1 to get that ∆b : Lq(R) → Lq(R) is
bounded for any 1 < q < 2. Now take again the adjoint to obtain that πb :
Lp(R) → Lp(R) is bounded for 2 < p < ∞.

Now use (2.3) and apply Lemma 2.1 again to obtain πb : L2(R) → L2(R) is
bounded.

3. Second proof of Theorem 1.1

A fundamental tool is the following result which can be found in [BP1] or [B]
for operator valued functions.

Lemma 3.1. Let b ∈ L2(R). Then

∆bπb = πSb
+ ∆Sb

− Γb,

where Γb(f) =
∑

J∈D
b2J
|J|fJhJ .

Proof. Note that PJ(Sb) = (Sb −mJSb)χJ =
∑

I⊆J b2
I

χI

|I| . Then

∆bπb(f) = ∆b(
∑
I∈D

bImI(f)hI)

=
∑
I∈D

b2
ImI(f)

χI

|I|

=
∑
I∈D

b2
I

∑
I(J

fJhJ
χI

|I|

=
∑
J∈D

(
∑
I(J

b2
I

χI

|I|
)fJhJ

=
∑
J∈D

PJ(Sb)fJhJ −
∑
J∈D

b2
J

|J |
fJhJ

= πSb
(f) + ∆Sb

(f)− Γb(f).

�
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Now we first show some apparently weaker result.

Lemma 3.2. If b ∈ BMOd(R) then πb + ∆b is bounded in L2(R).
Moreover ‖πb + ∆b‖ ≤ C‖b‖BMOd .

Proof. For f, g ∈ L2(R),

〈πb(f) + ∆b(f), g〉 =
∑
I∈D

[(mIf)gI + (mIg)fI ]bI

= 〈b,
∑
I∈D

[(mIf)gI + (mIg)fI ]hI〉

Hence it suffices to see, using the duality (H1(R))∗ = BMOd(R), that

h =
∑
I∈D

[(mIf)gI + (mIg)fI ]hI ∈ H1(R)

and ‖h‖H1 ≤ C‖f‖L2(R)‖g‖L2(R).
Notice that |mIfχI | ≤ mI |f |χI ≤ f∗χI where f∗(t) = supt∈I∈D

1
|I|

∫
I
|f(t)|dt

stands for the dyadic maximal function. Therefore

S(h) = (
∑
I∈D

[(mIf)gI + (mIg)fI ]2
χI

|I|
)1/2 ≤ C(f∗S(g) + g∗S(f))

what gives

‖S(h)‖L1(R) ≤ C(‖f∗‖L2(R)‖S(g)‖L2(R)+‖f∗‖L2(R)‖S(g)‖L2(R)) ≤ C‖f‖L2(R)‖g‖L2(R).

�

(i) =⇒ (ii) Since b ∈ BMOd(R) one has invoking Lemma 1.2 that Sb ∈
BMOd(R). Now Lemma 3.2 implies πSb

+ ∆Sb
is bounded in L2(R). On the other

hand the assumption b ∈ BMOd(R) guarantees that |bJ |2 ≤ C|J | for all J ∈ D.
Hence Γb is bounded on L2(R). Finally using Lemma 3.1 one gets that π∗b πb, and
hence πb is bounded on L2(R).

4. Final remarks

To get the proof of the complete list of equivalences we can use the following
two propositions.

Proposition 4.1. Let b ∈ L2(R) be real-valued. The following are equivalent:
(1) πb is bounded on L2(R).
(2) πb is bounded on Lp(R) for some (for all) 1 < p < ∞.
(3) ∆b is bounded on L2(R).
(4) ∆b is bounded on Lp(R) for some (for all) 1 < p < ∞.
(5) (bIhI)I∈D is a Haar multiplier.
(6) (PI+b + PI−b)I∈D is a Haar multiplier.

Proof. (1) ⇐⇒ (3) ⇐⇒ (5) ⇐⇒ (6) and (2) ⇐⇒ (4) are immediate.
(1) =⇒ (2) From (2.3) and Lemma 2.1 one obtains that πb is bounded on Lp(R)

for 1 < p < 2. Thus ∆b is bounded on Lq(R) for 2 < q < ∞. Now again Lemma
2.1 and (2.2) gives ∆b is bounded on Lq(R) for 1 < q < ∞. Finally take adjoints
to get that πb is bounded on Lp(R) for 1 < p < ∞.
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(2) =⇒ (1). If πb is bounded on some Lp(R) for p > 2 the result follows from
(2.3) and Lemma 2.1. In the case 1 < p ≤ 2 one can repeat the argument in the
previous implication. �

Proposition 4.2. If ∆b : L2(R) → L2(R) is bounded then ∆b : BMOd(R) →
BMOd(R) is also bounded.

In particular if b ∈ BMOd(R) then Sb = ∆b(b) ∈ BMOd(R).

Proof. Let f ∈ BMOd(R). Notice that PI(χJ) = 0 if I ⊆ J , hence, for a
given I ∈ D one has

PI(∆b(f)) = PI∆b(PIf).
Hence

‖PI(∆b(f))‖L2(R) ≤ ‖∆b(PIf)‖L2(R) ≤ ‖∆b‖‖(PIf)‖L2(R) ≤ ‖∆b‖‖f‖BMOd |I|1/2.

This gives that ‖∆b(f)‖BMOd ≤ ‖∆b‖‖f‖BMOd . �

The reader should notice that this last argument gives a proof of the fact
b ∈ BMOd(R) implies Sb ∈ BMOd(R) with no use of John-Nirenberg’s lemma.
This idea was important in the bidisc where the equivalence between the norms for
different values of p was not at our disposal (see [BP1]).
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