DYADIC BMO ON THE BIDISK

OSCAR BLASCO AND SANDRA POTT

ABSTRACT. We give several new characterizations of the dual of the dyadic
Hardy space Hlvd(TQ), the so-called dyadic BMO space in two variables and

denoted BMOgr od - These include characterizations in terms of Haar multipli-

ers, in terms of the “symmetrised paraproduct” Ay, in terms of the rectangular
BMO norms of the iterated “sweeps”, and in terms of nested commutators
with dyadic martingale transforms. We further explore the connection be-
tween BMOSrod and John-Nirenberg type inequalities, and study a scale of
rectangular BMO spaces.

1. INTRODUCTION

Throughout the paper D denotes the set of dyadic intervals in the unit circle
T. In the case of the bicircle T?, D; denotes the dyadic intervals in the first, Do
the dyadic intervals in the second variable. We write R = D; x D5 for the dyadic
rectangles, |I| for the length of T and |R| for the area of R. (hy)rep stands for the
Haar basis in L?(T) and (hr)rer for the product Haar basis of L?(T?).

Here h;(t) = ‘]ﬂ;l/Q (x7+(t) — x7- (1)) for each dyadic interval I € D, where I~
denotes the left half of I, and I denotes the right half of I. For each dyadic
rectangle R =1 x J € R, hg is defined by hgr(s,t) = hi(s)h;(t).

We denote by Hoo the space of all functions in L?(T?) which have a finite ex-
pansion in the product Haar basis.

Given g € L*(T), we use the notation g; = (f, h;) and m;g = ﬁ J; 9(t)dt. Sim-
ilarly, given f € L2(T?), we use the notation fr = (f,hgr), f1(s) = (f(-,s),h1),
myf(s) = ﬁ [; f(t,s)dt, fr(t) = (f(t,-),hy) and m;f(t) = ﬁ [; f(t,s)ds. There-

fore
fts) =" frhr(t,s) =Y fi(s)hi(t) =D fr(t)hs(s).
RER IeD JeD
Let Prg = (9 — mrg)xs for g € L*(T). Observe that Py is the orthogonal
projection on the subspace spanned by the Haar functions hy, I’ € D, I' C I. If

9= rep 9rhr, then
(1) Prg = Z hrgr.

I'eD,I'CI

Similarly, for each measurable set Q C T2, let Py be the orthogonal projection
on the subspace spanned by the Haar functions hg/, R" € R, R’ C Q. In particular,
for each dyadic rectangle R =1 x J € R and for f =) hr fr € L2(T?), we
have Prf = Pr® P;f ZR’G’R,R’QR hr fr-
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It is easy to see that for R € R and f € L*(T?),
(2) Prf = x1xs (f =mif —myf+mixs) Xrx-

Recall that g € L?(T) is said to belong to dyadic BMO, to be denoted BMO®(T),
if
1
sup(ir: [ 1a(0) = migPd) /2 < o
rep | J;
By John-Nirenberg’s lemma, this is equivalent to

1 1/p
sup (7 [ 1o~ mugPar) <o
rep \|I| J;
for any 1 < p < oc.
Hence g € BMOY(T) if and only if there exists a constant C' such that for all

leD
S g <o,
I'eD,I'CI
or equivalently

sup ——— || Prgll, < o0
IeD |I|1/p || ||P
for 1 <p < .
The space BMO appears in many different contexts. We shall use that

BMOY(T) = (H“(T))* where H% is defined in terms of the dyadic square func-
: 1/2 :
tions S, Sg = (ZIE% |XTI||gI\2> . That is ,
HY(T) ={g € LY(T): Sg € LY(T)}.

Using Carleson measures, this gives rise to a description of BMOY in terms of
symbols g for which the dyadic paraproduct g,

mo(f) =Y grmufhy

1€D

or its adjoint operator Ay, Ay(f) = ;cp ngIﬁ, is bounded on L?(T) (or equiv-
alently, on LP(T) for 1 < p < c0).

The situation in two variables it is rather different and much more delicate. One
main reason for the difficulties encountered in the multivariable theory is the failure
of the naive generalization of the Carleson Embedding Theorem to several variables
(see [C], [Fef]). The reader is referred to [ChFef2] for an overview on the theory
and an outline of the main differences.

Several new results (e. g. [FS] and [PS]) further exhibit the differences between
certain BMO spaces on the polydisk defined by multi-variable versions of the dif-
ferent yet equivalent characterizations of BMO(T).

A function f € L?(T?) is said to belong to the rectangular dyadic BMO space,
to be denoted BMOY . | if

rect?

1 1/2
3 sw (— [ 156028 = migs) =m0 —mszfIthd8> < o0,
& /s

R=IxJER

Or equivalently,
1
P |R|—1/2||PR80||2-

||<PHBMO§ect = ;16173
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We will also consider a p-version of the dyadic rectangular norm for 1 < p < oo,

1
(4) lellBmos, = sup |R|—1/p||PR90HP'
Here, | -[lgmoa_, = II- ”BMOE’ect,z' In the one-variable case, the corresponding norms

are of course all equivalent because of John-Nirenberg’s lemma.

Let us start by defining BMOY,.,4(T?) as the dual of H%4(T?), the space of

functions f € L'(T?) such that S(f) € L*(T?), where S(f) = (3. per |frI*h%)Y2.

Although BMOgmd(TQ) cannot be characterized by (3) [Fef], it was shown by
Bernard in the dyadic case [Be] and also by Chang and R. Fefferman in a continuous
version [ChFefl] that BMOgmd (T?) can also be described as the space of functions

¢ € L*(T?) for which there exists C' > 0 such that

1
) Pllprod = sup ——— || Payll2 < oo,
(5) el Sup, |Q|1/2|| I

where the supremum is taken over all measurable sets 2 C T2. This immediately
implies BMOgmd C BMO,cct,2-
The connection between both spaces can be also seen from the description of

BMOzmd in terms of the boundedness of the dyadic paraproduct in two variables,

defined by wél’Q)(f) =Y rer brmrfhg.
It follows from Chang’s generalization of the Carleson Embedding Theorem (see

[Ch]) that b € BMO? _, if and only if the double paraproduct 7T£L2) is bounded on

pro
L?(T?). In our paper the following fact will be rather crucial:
(6) llellproa = lmG2|l.

An similar characterization for BMOY, , was proved in [PS], Proposition 3.3.1,
namely that b € BMOY , if and only if 7rb1’2) maps L%(T)®L?(T) boundedly into
L?(T?), where L?(T)®L?(T) stands for the projective tensor product. This also
implies that BMOerd C BMOY, (see [Fef] for an alternative approach).

We shall try to better understand the difference between both spaces. Two
approaches are used to this end. First we observe that John-Nirenberg type in-
equalities do not hold in BMO?__,, in the sense that the 2-norm in the definition
of BMO?ect cannot be replaced by any other p-norm. This solves a question left
open in [FS]. Secondly, we analyse the behaviour of the sweep of functions in the

BMOgrod and in the BMO4 spaces.

rect,p

Our main new tool will be characterizations of BMOgmd in terms of Haar
multipliers. Recall that sequence of functions (¢r)rer is called a Haar mul-
tiplier (see (23) or [Per]) on LP(T?), if the map f = > pcp frRAR(ES) —
> rer @r(t, s) frhR(t,s) defines a bounded operator on LP(T?).

We shall say that b € BMOS . if {(Prb)}rer defines a Haar multiplier on
L2(T?).

Using the characterization of BMOﬁrod in terms of dyadic paraproducts, we
observe that b € BMOgrod if the operator A, = (Wéu))* given by Ay(f) =
> rbrhrfrhr defines a bounded operator on L?(T?). Hence b € BMOZmd if
and only if (brhgr)rer is a Haar multiplier on L?(T?).

On the other hand, letting the Haar multiplier (Pg/b)rcr act on hg, we see
that s || PrOll2 < [[bllmae, implying that BMOY . € BMOY ..

mult
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We shall get a description of BMOY . in terms of the boundedness of the oper-
ator

Ay =7+ (@7 4 A + (A7,

where A, (see Definition 2.4) is an operator combining the one-variable paraprod-
uct 7 and its adjoint. This will allow us to prove that BMOS, ,;; (T?) = BMOS,,4(T?)
(see Theorem 2.8).

On the other hand, BMOY , can also be described using A,. We show that
BMOY ., can be characterized in terms of ”average boundedness” of A or in terms
of its boundedness from L?(T)®L?(T) into L?(T?).

The paper is divided into four sections. The first one is devoted to the intro-
duction of the space BMOY . and the proof of some of its properties. We see that

BMOY . can be characterized as the space of symbols b for which the operator A,
d

is bounded, and that this space coincides with BMOp, 4.
The second section deals with results on sweep functions. We prove the following

formula connecting the boundedness of 7r,51’2) and Ag, (see Lemma 3.2):
(7) 7751’2)*7Tl()1’2) = Ag, + Dy,

where Dy, is bounded if b € BMOY

rect,2"

This allows us to see that b € BMOﬁrOd if and only if S, € BMOgrOd. We also
obtain a characterization of BMOgmd in terms of nested commutators with dyadic
martingale transforms, sharpening a result from [PS].

In the third section, we further use the formula (7) to quantify the difference
between the BMO spaces we have considered, and to get a characterization of
BMOfHOd relying only upon the BMOY, ., norm of the n-fold sweeps.

Finally, in the fourth section, we apply the results from the third part together
with interpolation to study the scale of spaces BMOY introduced in (4) and show

rect,p
that these spaces are pairwise distinct. As a corollary, we obtain that BMOY, _, C

prod =
Np>1 BMOY

rect,p*

2. BMO viA HAAR MULTIPLIERS.
Definition 2.1. We shall say that b € BMOY,,, if {(Prb)}rer defines a Haar

mult

multiplier on L*(T?), i.e. there exists C > 0 such that

1Y Prb frhgll2 < Cl £
ReR

for all f € L?(T?). We define ||b||muit as the norm of the corresponding operator.

Let us start by pointing out some simple facts about this space. y
Given I € D we write Py for the operator on L?(T) given by (1), and P; = P;®id
for the corresponding projection on L2(T?),

Pi(f)(ts)= > ho(t)fr(s).

I'eD,I'CI

Similarly, given J € Da, we write P; forid @ P;. o
Of course, Pr(f)(t,s) = Pr(f(s,-))(t) and Prf = P;(Prf) for R=1x J.



BMO ON THE BIDISK 5

Proposition 2.2.
(8) L>®(T?) € BMOy,,4(T?)

(9) BMO%(T) ® BMO%(T) € BMOY, ,,(T?)

Proof. Using (2), one easily obtains the following formula:
> Prbfrhr = fo—"> (mib)frhi = > (msb)fshs+ Y mgbfrhr.
RER IeD JeD ReER
Now (8) follows from this expression together with
1> mad) frhal[ ey = Y llmab fallF2em
JeDp JeD

since

11D (msb) frhallTeey < Bllss D 1Fsll7zen = lIBIZ[1£15,

JeD JeD

and the trivial estimates for the terms bf and ZRGR mpbfrhg.
To see (9), note first that for b € BMOY and f € L*(T),

(10) > Prbyfrhr = (mo, + Do) f = (m, + (75,)") -
Iep

Therefore (Prby)rep defines a bounded Haar multiplier on L?(T).
Now let b(t, S) =b (t)bg(S) with bl,b2 S BMOd(T) Then PR(b) = P[(bl)PJ(bg)
and therefore

> Prbfrhr =) Pib (Z PJb2thJ> hr.
I

RER IeD JeD
This yields

1> Prbfrhrll} = /HZPIbl (Z&bfﬂw) (s)hr(t)|[5dtds
I

RER IeD JeD
2
< Clballiuo [ 3| (Prbafih)i(e)| ds
IeD |JeD
< Clbal[Baol1b2lEno Z | Z | frxa)?
IED JED
with some absolute constant C' > 0. O

As announced in the introduction, we first relate this space to BMOgmd. For
this purpose we introduce the dyadic paraproducts in two variables (see [PS]):

Definition 2.3. Given b € L?(T?), we write
w2 () = 3 brmefhr
RER

and

Agl’Q)(f) ( (1, 2) Z beR|R|

RER
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The formula
1) (w0 =AM (9) = / (ZmR thR>dtds
ReR

for f,g € Hoo completely describe the action of the operators 77151’2)and Al()l’z).
Let us now define the following mixed operators (see [PS]).

Definition 2.4. Given b € L?(T?), we define the operators wa, and Ay, by

(12) (ma, (), 9) = {f; Ay (9)) = /TZ b ( > mI(fJ)mJ(?JI)hIxJ> dtds

IXJER
for f,9 € Hoo.

We write

Ay = (12)+A12)+Am,+m,,

Clearly we have the following expressions:

(13) () Es) = ;)sz(mzf)(S)hI(t)
(14) AP (P(ts) = ;Am(ff)(s)h%(t)
(15) Ar,(f)(t,s) = ;Dm(ff)(s)h%(t)
(16) o, (F)(t5) = éAbI(mff)(S)hI(t)

Lemma 2.5. Let R = I x J € R and denote Ry, = IT x JtUI~ x J~ and
R_=IT"xJ UI" xJ" . Then

17) 7w P (hg) = (Pr, (b) + Pr_(b))hg = (Pr, (b) — Pr_(b))|R|~*/?

Proof. Using that mp:(hg) # 0 only if I’ C I and J' C J and that in this case
mp/(hr) = hr(xg), where g = (t1/, sy) is the center of R, we obtain that

0w = 3 bwha(on)i

ICrLIICT
Observe that hr(zg) = hR(t s) = |R|1/2 for R" C Ry and (t,s) € R*. Similarly
hr(zr) = hg(t,s) = \R\l/Q for R C Ry and (t,s) € R~. This gives (17). O

Corollary 2.6. Let b € L?(T?). Then b € BMOY, , if and only if (P, (b) +
Pr_(b))hr)rer is a Haar multiplier on L?(T?).

Lemma 2.7. Ab(f) = ZRER PR(b)thR.
Proof. Note that for ¢, g € Hog, we have

(18) 09 = 74(9) + Bo(9) +7g(0).
As in (10), one obtains
(19) Y Pi(®)gshs = ms(9) + Dolg)-

JeD
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Combining (19) with the formulas in (13) we get

Ay (f)(t,5) = Z(ﬂ-bl + Ay, )(mrf)(s)hi(t) + Z T, + Ao, ) (f1)(s)h ( )

IeD IeD
— Z Z Py(br)(s)(mzf)shy(s )+ Z Z Py(br)(s)(fr)shs(s)h7(t)
TeD Jep TeD JeD
= > O @b)(s)yma(f)ha(t) + > O (Bsb)i(s)(f)rh7 (1) h(s)
JeD IeD JeD IeD
= 3 (Fhoen (1) ORs(9) + > ( Brbte )( s (s)
JeD JED
= Y Bi(By0)(t, ) frxshixs(ts)
IxJER
= Z PR t S thR(t S)
RER

O
We now are ready to prove our characterization of BMOgmd in terms of Haar
multipliers.

Theorem 2.8. BMOY = BMO4

prod — mult -

Proof. To see that BMOY prod < BMO¢
7(1:2) implies the boundedness of A,,. This was proved in [PS], we include here a
proof for the sake of completeness.

By (12) and the characterization of BMOgrod as the dual of H™? the space
of functions with integrable square function, we simply need to show that F' =
ZIXJER m[(fj)mJ(g])h]XJ(t,S) belongs to H%?. Note that

it suffices to see that the boundedness of

mult>

1/2
S(F)(t,8)< > Imz(fJ)IQImJ(91)|2h?xJ(t,8)) ~

IXJER
Therefore
1/2
(Z > (90)" (5) 3 (s)(£3(6) R3¢ >>
JeD IED
1/2 1/2
= (Z( 7(s))2h3(t )) (Z(f?(t))2h3(8)> :
IeD JeD
and hence
1/2
S( )(t,s)dtfs < ( *(s))2h3(t dtds> ( 5(s)2h3(t dtds>
f. 2o f e

- (5 Lsorar) (5 Lo dt>2

1/2 1/2
§C<Z|91||g> (ZIM%) = Cllgll2llf]2-

I1eD JeD
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To prove the reverse inclusion BMO! . € BMO4 we shall use the character-

mult prod»

ization of BMOpmd given in (6).
It is clear that for each measurable set €2, we have Pqo(b) = Po(m, (1, 2)(XQ)>. We
shall show now that
Po(m"? (xa)) = Pa(M(xe)).
Let Re R and R C Q. Then

(A" (xa), hr) = (xa,m" P (hr)) = |RI™/*(xa, Pr+b— Pr-b) = 0.

This shows that PQ(AZ() 2) (xa)) =0.
On the other hand, we also have for R =1 x J C ) that

wa,(hr) = Y brymu (hr)xshr.
I'cr

Using that (xq, xshr) =0 for all I’ C I, we obtain Pq(ma, (xa)) = 0.
Similarly, Po(Ar, (xa)) = 0. Finally,

1Pa®)] = [[Pa(my"? (xa))ll = ||Pa(As(xa))]]
< [JAsx))l] < [1As]1912.

O

As a consequence of Thm 2.8, we can sharpen Thm 7.7.2 from [PS] and char-
acterize BMOprod in terms of the boundedness of nested commutators with dyadic
martingale transforms. This can be understood as a dyadic analogue of the charac-
terization of the continuous product BMO space BMOy,;0a as the space of functions

for which the nested commutator
[Hy,[Ha,b]] : L*(T?) — L*(T?)

is bounded, where Hy resp. Ho denote the Hilbert transform in the first resp. second
variable on L?(T?). The latter was proved in [FS] and [LF].

Let X1, Yo be the spaces of all sequences of signs indexed by the elements of
Dy, Dy, 1 = {0,1}P1, ¥ = {0,1}P2, and let do; denote the natural product
probability measure on X7, which assigns measure 2~" to each cylindrical set of
length n. Let dos denote the corresponding measure on ¥o. Let X = 31 X 35, with
do denoting the product measure, and R = Dy x D, as before.

For o1 = (01(I))1ep, € 31, 02 = (02(J))jep, € X2, let T,,,T,, denote the
dyadic martingale transforms

L LA(T?) = LX(T?), f= > frxshrcs = Y o) frcshix,
IXJER IXJER

T,, : L*(T?) = LX(T%), f= Y frxshixs—= Y. 02(J)frxshix.
IXJER IXxJeER

Theorem 2.9. Let b € L?(T?). Then the following are equivalent:

(i) be BMOprOd
(ii) The nested commutators
(20) (T5,, [To,, 0] - L*(T%) — L*(T?)

are uniformly bounded for all o1 € X1, 09 € Ys.
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(iii) The nested commutators [Ty, ,[Ty,,b]] : L*(T?) — L?(T?) are bounded on
average, in the sense that the map

®y 0 L*(T?) — LA(D) x Xp x T?), f + [T,,, [T,,, )] f

is bounded.

In this case, we have

21)  bllsmos =Ml < ([Pl < sup |[[T5,, [To,, O] < 4[[As]l-
pre 01€X1,02€%2

Proof. We use the ideas of the proofs of Thm 3.4, Cor 4.1 in [GPTV], adapted to
the two-variable case, and of Thm 7.7.2 in [PS].
(From [PS], p 493, we know that
[To'l’ [thz ) b“ = [T017 [T<T2 ’ Ab]]

Therefore sup,, s, oyes, [[To15 [Tos, bllll < 4][Ap||. The second inequality in (21) is
obvious. Finally, for f € L?(T?) one has

@2 = / / T, T W o e
1 X 22

://E . | Z 0’1(1)0’2(J)[151,[]5‘],b]]f||2L2(T2)d01dC,2

IXJER
= > P[P b fl 72 e
(22) IXJER
= > P[Py M) fl G2y
IXJER
= Z [(PrPyAy — PrAy Py — PrAyPr + Mo PrPy) f|7 2y
IXJER
> > IPPiA P = A SR
IxXJER

since PrAyP; = 0 and P;A,P; = 0. This proves the first inequality in (21). O
The martingale transformation approach is also interesting in the study of
BMOZ .. Although A, is in general not bounded for b € BMOY, ., the space

rect?
BMOY , can be characterized in terms of ”average boundedness” of Aj, and

also in terms of the boundedness of A, from L?(T)®L?(T) into L?(T?). For
o = (01,09) €3, let Ty = Ty, Ty, : L2(T?) — L2(T?).

Theorem 2.10. For ¢ € Hoo, [|¢llgnoa , is equal to the norm of the operator
U, L*(T?) — L*(T? x X), f — AT, f.
Proof. Let f € L?(T?) and ¢ € Hgg. From Lemma 2.7 we have

(23) Apf =Y Profrhg.

ReR
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Thus
2
| Liactsads = [ [ 1S o) Pro)e)fahnt)| dod
sJT 2 || e
Xr(t
- /ZW oI P 0
ReR
= > [ Fl? ]| Pl
e |E
Thus the operator norm of ¥, is supper lRll/Q | Prell = [l¢llsmod, -

Proposition 2.11. Ifb € BMOY,,, then Ay maps L?(T)&L?(T) into L?(T?).
Proof. Assume f(t,s) = f1(t) f2(s) with ||f1|] = ||f2|| = 1. Then we have
> Prbfrhr =Y Pr(Y_ Pb(f2)shs)(s)(f1)rhi(t)
RER IeED  JED
Writing g(t,s) = > ;ep Pr(b(t,-))(5)(f2) sh(s), we obtain
IS Prbdhelid = [ [15 Prlateos)O()iha) Pt
RER I€D

Now let us consider g as a function in ¢ taking values in the Hilbert space L?(T).
Recall that as in the scalar case, the Haar multiplier norm of (Prg)ep is controlled
by the vector BMOY(T) norm of g given by

1
sup Wllngllm(mr,m(qr)y
Thus
sup [ 113 Pilalc- ) O a0yt < Cup 7l 1Pralie ooy

[Ifil|=1 IeD

Notice now that

P> Py(b $)(f2)sha(s)) =Y Pras(b)(t, s)(f2) shs(s).

JeD JeD

On the other hand, applying a corresponding argument to the function (ﬁfb) (t,s) =
> jep(Prxab)(t, s)h;(s) understood as a function in s which takes values in L*(T),
we obtain for ||fa|la =1

1Prgliem oy = / |2 Prxs()(t5)(f2)sha (s) *dtds
T Jep
— I Z Procy(0)(, 8)(f2) sh (s)|[72(ryds
T JED
< Cbup 7l ||PI><J( WZem,r2cry < CUIBIGyoa -

This finishes the proof of the proposition. O
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3. SWEEPS OF FUNCTIONS IN BMO.

Let us now recall that the (dyadic) sweep of a function ¢ € L?(T?) is defined as

follows:
XR
S, = Z |§0R|2®7
RER
ie. S, =S8(p)2.
We list some properties of the sweep which will be relevant for our purposes, the
proofs of which are elementary and left to the reader.

Proposition 3.1. (i) S,(t,s) = > ;cp SW(S)XIII(P.
(i) S, = AZ(p).
(i) Po(Se) = Pa(Sr).
(iv) If p > 5 then ¢ € L**(T?) if and only if S, € LP(T?).
(v) If S, € L™ then ¢ € BMOS, 4.
(vi) [[Sell2 < Cllellsmos,  llell2-

Here it is the basic result relating the boundedness of ﬂém) and Ag,.
Lemma 3.2. Let b € Hog. Then
’/TISLQ) 7T£L2) = Ag, + Dy,

where Dy is a linear operator on L*(T?) with || Dy| < Cl|b||3,,0a » and C > 0 is
rect

an absolute constant.

Proof. Let R=IxJ, R =1I'xJ €R.
First, observe that

(24) <W£1’2)*W£1’2)hR,hR/>

fg < E hIIIXJII bIIIXJ// mI”XJ”(hR)a E h/I”XJ” bI”XJ” mI”XJ”(hR')>

1" xJ"€D1 xDa 1"xJ"€D1xD2

= Z |bI”><J”|2m[”(h[)mf”(h]’)mj”(hj)mj”(hj’)-
1" X J" €Dy x Do, 1" CI,J"C.J

We now do a kind of triangular truncation with respect to the indices I,1’,.J,.J".
) I21r,J2J.

<7r(51b’2)hR, hR'> = (Sv, hrymp: (hg)

XI// J
frd < Z W>i]/l||b1//x‘]/'|27hR,>mR'(hR)

1" xJ"€D1xD2

= Z |bI”><J”|2m[”(hI')mJ”<hJ’) m[l(h[)m]l(hj).
1" xJ" €Dy xD2

This is nonzero only if I’ C I and J’ C J. In this case, we get contributions
only for I C I’ and J” C J', and the expression agrees with (24).
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(i) ICI', JC J. Observe that

(AP hp hp) = (hi, 7P by = (18P hp, hi).
As shown above, this equals <7TZE1,2)*
is 0 otherwise.

(iil) 121, JC.J.

77151’2 hghg) if I' 2 T and J' 2 J, and

1"

<’/TASth,hR/> < E SbI//XJ//hI//‘JN| I”(hRJ”)ahR’>
1" xJ"€D1xD2

< Z Sb]“thI” |m1~(h1) hR’>
I'eD;

=Sypxgmp (hy)my(hp) = (Sy, hprxgymp (hr)ms(hy)

XI1'"xJ"
< Z |III||><J//||b1”><J”|27hI/><J>m[’(h])mj(hj/)

I'""xJ"€D1 XDy

= Z |bI//><J//|2m]//(hjl)mjll(h,])m]'(h[)mj(h,]/)-
1" x J" €Dy xD2

This is nonzero only for I’ C I and J’ 2 J. In this case, the sum has only
contributions for I"” C I' and J” C J, and agrees with (24).

(iv) I' 2 I'and J* ¢ J. Note that (Axg hr,hr) = (Tag, hrshr). As shown
above, this is only nonzero for I’ 2 I and J' C J, and agrees with (24) in this
case.

(v)y I'=TorJ=J. Let f € L2(T2) Then
> (x S D s frxrs s frcar)

1D,y J,J' €D

= Z Z > (b Frea Frcmn (hyyme (he)

IeDy I”CI J" €Dy
= 3 lmeful,
1eD;

where for each I, fr stands for the one-variable function ) ;.. by fix.s, and

1/2
b’ for the function Y ;. p,. hJ|I|+/2 (Z[ﬁg |b]u><J|2> . It is easy to see that
167 lemoa < [bllsmoq , for all I € Dy. Thus the above sum is bounded by
clbllZy0a IIfII?, where ¢ is an absolute constant.
rect
The same estimate holds for the terms corresponding to J = J'.

Now we have counted the terms corresponding to I = I’, J = J' twice and need to
estimate them separately. Let f € L?(T?). Then

(25) Z Z ("D P by frers hisa fixa)

1€Dy JED>

=> Z 7] || Yo s Plfrca P < blaoa 1117

I€eD, JeD, 1"Cr,JrcJ
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Defining D;, now by

(26) (Duof, f) = Z <7T1(,1’2) Wél’Q)hlifIxJ,hz/xJ/fzfo/> +
IXJ I X ERI'=T

1,2)* (1,2
> (ms" D s b freas his frs)s
IXJ I XJ ERIAL T =J
we obtain the statement of the lemma. O

Now we are ready to state the main result of this section.

Theorem 3.3. Let b € BMOY Then b € BMOY if and only if Sy €

rect,2* prod
d
BMO? ;.

Proof. We will first show that there exist C' > 0 such that
(27) 1Sbllproa < Cll0ll;

prod*
Indeed, by Chang’s Theorem [Ch], [ChFef2] it is sufficient to show that there
exists a constant C' > 0 with

1PaSsll2 < ClIbl15,04l]

for all 2 C T? measurable (see (5)). Using Proposition 3.1, we obtain

(28) [[PaSilla = [PaSrosllz < [1Spabll2 < [[Pabllproall Pabllz < [1Bl15,0412
For the converse, assume that S, € BMOzmd. Then Ag, is bounded by Thm
2.8. Now Lemma 3.2 finishes the proof. O

Remark. The first implication can also be shown with the John-Nirenberg The-
orem for product BMO, which was proved in [ChFefl] (for a dyadic version, see

[T])-

The sweep can be understood as a bilinear map. For f,g € Hoo, let Sy 4 =
ZRGR ‘Xﬁf’l‘g’r7 S0 Sf = Sf,f

Corollary 3.4. S:BMOY, , x BMOY  , — BMOY_, is bounded.

pro pro pro

Proof. The Cauchy-Schwarz inequality gives the pointwise inequality Sy, <
(Sp)H/2(S,)M? for f,g € Hop. Let Q C T? be measurable. Using an adaption
of 3.1(iii), we see that

”PQSf»g”Q = ||PQSPQf7Psng2 < ||SPQf7Ps29H2 < ”(SPszf)l/Q(SPszg)1/2”2

1/2 1/2
< 18Paglly | Spaglly® < 12121 £llproa gl proa
by (28). O
Another application of Lemma 3.2 yields the following result.
Theorem 3.5. Let || - ||« be an positive homogeneous function of degree 1 on Hoo
such that

(i) There exists ¢ > 0 such that || - |gmod . < cll - ||«

rect

(ii) There exists k > 0 such that ||Sy||« < ko]

Then there exists a constant C' such that for all ¢ € Hoo, ||go||BMO§ru < Cligll.

d
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Proof. Write
T, = Wg} 2 7T(S1 2% Tas, +7as "+ Dy,
with || Dy | < CH@HBMO;*M as above.
Let E,, = span{hixy: I € D1,J € Do, |1|,|J| > 27"}, let P, be the orthogonal

projection onto E,, in L?(T?), and let
c(n) = sup{|[melm, [l [l <1}
A trivial estimate shows that ¢(n) < oo for each n € N. For n € N and € > 0,

choose f, € E, and ¢ € Hoo with ||¢|« =1, ||full =1 and |7, frll > (1 —€)c(n).
Then

(29) (1=e)’c(n)® < lmpfull® = (Tme fus )
= (m§ 2>fn, f) 4 TS fs S + (T, Fuo f) + (Thg fro Fu) + (D fns ).

By definition of ¢(n), the first two terms can be estimated by c(n)|| Sy |« < ¢(n)k.

For the next two terms, we have to remark that that

(30)  (mas, frs fr) = (Tap,s, fos fn) < \Tap,s, | < ellmp,

Here, we use as in the proof of Thm 2.8 that there exists a constant ¢ such that
|7a, || < Ellwi || for all b € Hoo (see [PS], Thm 7.7.2).

The last term is easily controlled by (D, fr, frn) < CHapHZBMogect. Altogether, we
obtain that

1 2 1 ,2
SEl < el s,

(1,2

(31) 782 g, 17 < el . ||+ CllelBmon..

With [|¢llpaos,, < cllglls and 7525, | < cm)[Sells < e(n)|¢]|?, it follows

that

(32) (1 —€)2¢(n)? < 4éke(n) + AC

Thus ¢(n) < V4¢2k? + Cc? + 2¢k. With C = VAEk? + Cc2 4 2¢k, it follows that

[7ell < Cliel] O
We can now characterize BMOpmd in terms of the BMOTect o-norm.

Theorem 3.6. Let ¢ € BMOY (T2). Then ¢ € BMOpmd if and only if

(||Sgb)|\113/1\iod Jnen is bounded, where Sé) is the n-fold sweep of ¢, defined re-

cursively by S&") = Sg:;l).
Proof. By Thm 3.3, we have for each n € N

n—1 n n
”S(n)”BMOd < Hsg(on)”BMOﬁ,.od < c.c?...c? ||‘P||BMOd = c? “SDHQBMOZmd’

and consequently

( ) 1/2"L
||Stpn HBMOrriect < CHSDHBMOZTM

Conversely, the map ¢ — sup,,cy ||5<(p")||]13/1\i7;d
rect

neous function on Hgyg with satisfies conditions in Theorem 3.5. O

clearly defines a positive homoge-

Another consequence of Theorem 3.5 is

Corollary 3.7. S does not map BMOY._, x BMOY ., boundedly into BMOY

rect rect *
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Proof. We know that the || - ||proq norm cannot be controlled by the || - ||;ec: nOrm.
So Condition (ii) in Thm 3.5 cannot hold, and in particular S does not map

BMO?ect X BMOrect boundedly into BMOrect O
4. THE SCALE BMOWM,
Recall that for 1 < p < oo, a function ¢ € L?(T?) is said to belong to BMOY,, ,

if

lellrect,p = bup | Prellp < oo

? s
Note that BMO? C BMOY, for p1; < pa.

The reader should also be aware that functions in BMO?, ., p are actually in
LP(T?), due to the identities mz(f) = mr(Prxrf) and m(f) = mI(P']I‘XJf).

rect,p2 rect,p1

The following proposition characterizes the behaviour of the BMOreCt _p norms
under the sweep.
Proposition 4.1. Let p > 1 and let C, = || S||p20—120. Then

HS HTGCt;P S 4C2||@||rect 2p*
Proof. Since Pr(S,) = PR(Spmp) and ||Pr(g)||, < 4\|g||p7 we obtain
2 2
[Spllrect,p <4 Sup |R|1/1’ 15Pr() llp < 405 bUp |R|1/P | Pr(e )HQp'

This gives the result. O

It is known that BMOpmd - BMOTect 5. Indeed, this is basically the content

of Carleson’s original counterexample [C] (for the continuous case, see [Fef]). As
pointed out in [Fef], the example in [C] implies that BMOY,, , ¢ L*(T?).

We shall improve this by showing that actually BMOpmd ¢ BMOZ,, p for all
p. We will show that for any py > p; > 1, BMOZ ¢ LP2(T?) and therefore in

rect,p1
particular BMO?, , n € BMOY, For the case p1 = 1, po = 2, this answers a
question posed in [FS].
As a corollary, we show that BMOpmd < Mp>1 BMO¢

rect,pa*

rect,p*

Theorem 4.2. Let p > 2. Then BMO?,, C BMOY

pro rect,p *
Moreover
1-2 2
(33) lellrect.s < Cllellrat Pl 5
Proof. Let us first show that BMOZ, ., € LP(T?) and
(34) llelly < Cllell 217 e3P
Pllp = Pllprod 11¥Ll12

For p = 2¥ | k € N, we shall prove (34) by induction.
It is obvious for £k = 1. For k = 2 we have

(35) leld = 11Sell2 = 11252 (@)ll2 < Cllellprodllol2-
Assume it holds for p;, = 2F.

1-2 2
el s = 1Sl < ClISl o™ 1154113
Now from (27) and (35) we obtain
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1—-2 2 1-2 2 |
ellpess < Cllol bt P10l < Cllgll2PE [l [5/ P+

Now the general case follows by interpolation.
Given p > 2 and p # 2F for any k € N, find m € N such that 27! < p < 2™,

Write % = 12;@? + g;;i. Now apply the previous case combined with

1_9m, GWL
el < llellzm=r I llom-
Let us use (34) to obtain the desired estimate for the BMOffectﬁp—norm. Given
R € R we have

1-2 2 1-2 2
|Prollp < ClIProlls 2P| Prells’” < Clloll2lPllol12E, o RIVP.

prod prod rect,2

This finishes the proof. O

Proposition 4.3. Let 2 < p. There exists ¢ € BMO%,, o \LP(T?).
In particular BMO? a C BMO? C BMO?

pro rect,p = rect,2*

Proof. We shall find a sequence ¢y such that supy ||on||rect2 < o0 but
supy |l¢n||p = 0o. A standard argument then gives the existence of ¢.

(From Carleson’s construction [C] we know that for each N € N there exists a
collection of dyadic rectangles @ such that

(36) > IR =1

Red N
1
(37) | Ureay R| < N
(38) > |RI<CIR|, ReR
Re®n,RCR’
where C' is a constant independent of N.
Defining
on= Y [RI'hg
Redy
we have that
HQDNHQ - 13 H(PN”rect,Q S C

but, since supp(on) C Ugeay R,
lewllp > | Uneoy BIF# > N5,

O
We now can answer in the negative the above mentioned question of C. Sadosky
and S. Ferguson posed in [F'S].

Corollary 4.4. There exists ¢ € BMOfecm1 \ Up=1 LP(T?). In particular, for each

p > 1, BMOfectp c BMOfect,l, and the norms || - ||rect,n and || - ||rectp are not
equivalent.

Proof. We use the sequence of functions (¢, )nen with
lenllrect,2 < C and |[onllp > nt/2t/

for each n € N, p > 2 from Proposition 4.3.
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Define ¢ = > >0 1 Spyn-  Then ¢ € BMO,ew,1 by Proposition 4.1, but

n=1 n2

[Sponllp = llpanll3, > 2"(1=1/P) for each n € N, p > 1 and consequently
(15 ¢ Up>1Lp(T2)' 0

To differentiate the spaces BMOfCCW and BMOZmd we shall introduce the fol-
lowing coefficients.

Definition 4.5. Let E,, = span{hixy : I € Dy,J € Do, |I|,|J| > 27"} and let P,
be the orthogonal projection onto E,, in L?(T?).
For each ¢ > 1 and each n € N

c(n,q) = sup{||my|| : ¢ € En, |@llrect,q < 1},
and for p > q,
a(nyp, Q) = Sup{”@”rect,p fp € By, H@Hrect,q < 1}7

We first analyse the behaviour of these constants.
Of course we have

(39) C(n7p2) < C(nvpl)v p1 < po

(40) a’(n7pa QI) S a(n,p, q2)a q1 S q2

(41) a(”apZa Q) S a(napla Q)7 P1 S D2.
If p > q, clearly

(42) c(n,q) < a(n,p,q)c(n, p).

Let us now extend Therorem 4.2.

Theorem 4.6. Letp > q > 2 and ¢ € BMOZmd. If ¢ < 28 < p for some k € N
then

(43) ellrect,p < Cpyg
In particular, for p > q1 > q2 > 2 we have

17
ol dlP Il |92, .

(44) a(n’pa QQ) S Cpc(na QQ)liql/pa(na q1, qQ)ql/p'
Proof. We shall see first that
(45) llelly < Cogllellroallelly

for the above values of 8 = ¢/p. We do this in several steps.
First suppose that ¢ = 2" for some n € N. Theorem 4.2 gives the case n = 1.
Assume that the result is true for n > 2, and let us consider the case ¢ = 2"+,
Let p > 2"+ Applying the induction assumption to S, for p/2, we get

lel2 ~ 11Sollp
1—9ontl on+1
< OllSollyz PlIS,llan /7
2(1—2nt1 on+2
< CllellZg® Pllglian ™.

This shows that ™ 41
1-2" 2"
lelly < Cliglrar "Pliplnes’™.
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Let us now proceed to the general case. We may assume that ¢ < 2¥ < p for
some k € N. We can apply the previous case for n = k together with interpolation.
Writing 55 = 1770‘ + & we obtain

1—2F ok

lell, < Clielhra llellz
12k _ k
< Ollolaa P dlelli=lelle)

Consequently
_ a2k 1—2F —a)2k
el 27 < Cllpllrag PNl 2/,

Note that (1 — a)2¥/q =1 — a2*/p. Hence we get with 6 = ¢/p that

-0
1ellp < Cllllpranllelly-
To finish the proof, note that for each R € R,

1—
I1Prelly < CpgllProlldd? || Prel| ¥/

— prod
17
< Coglloll, &P l|2E, IRV,

O
Let us now establish a further connection between the constants introduced in
4.5.

Theorem 4.7. There exist K1 > 0 and Ko > 0 such that for alln € N and p > 1
CQ(H, 2p) S ch’gc(nap) + KQ)
where Cp = || S || 2o — 120 -

Proof. Write

* —
T, Ty = ASW + Dy,

with || Dy || < C’HcpH%Mod _as above.

Forn € N, p > 1 and € > 0, choose f,, € L*(T?) and ¢ € E,, with ||¢]|rect.2p = 1,
[fnllz =1 and [|my fall2 = (1 —€)e(n, 2p). Then
(1 - 6)20<n,2p)2 < ||7Tgoan§ = <7T:;7Tgofnafn> = <AS¢fn7fn> + <Dgofn7fn>
Therefore, we obtain that

(46) (1 - )e(n.2p)* < [As, ||+ Clelygon. .

Since [[@||rect,2p = 1, Proposition 4.1 implies |[Sy||rect,p < 403. Therefore, since
lellrect,2 < ||@llrect,2p, it follows that

(47) (1—¢€)?c(n,2p)® < 4C2c(n,p) + C.
Using (42) we get the second part. O
Corollary 4.8. Let p > 1. Then BMO? , C BMO?

prod = rect,p *

Proof. Observe first that Proposition 4.3 implies that
(48) lim ¢(n,2) = occ.

n—oo

This shows that BMO?% € BMO?

prod = rect,p

for any 1 < p < 2.
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On the other hand, the estimates (42) and (44) in the case ¢ = ¢1 = g2 imply
that if p > ¢ > 2 with ¢ < 2% < p for some k,

(49) c‘J/p(n, q) < Cc(n,p),

where C' is independent of n.
Hence BMOﬁmd = BMOfECW for some p > 2 would imply sup,, ¢(n,p) < co and

therefore sup,, ¢(n,2) < oo, contradicting (48). O

The particular case p = 4 means that a question left open in [PS] can be answered
in the negative. There, it was asked whether the condition

2

1
(w2 Dy 2 = ¥l Z XDxJ lbrs[*my f

(50) |
1 rsentsps, g I

12(12)
<C|\flzzry  (f € L*(T),I' € Dy)

((27) and (28) in [PS]) already implies that b € BMOﬁmd. Note that f here denotes

a function in the second variable. We know from Prop 4.1 that b € BMO,cct 4
implies S, € BMOY . By Lemma 3.2,

rect”

(S x 2 g 1) = |I(As, + Do) £,

where Dy, is bounded on L?(T?) and Ag, maps L?(T)®L?(T) boundedly into L?(T?)
by Prop 2.11. Thus b € BMO,cc 4 implies (50). This condition is therefore not
sufficient for b € BMOgmd.

As pointed out in [PS], this has also consequences for the study of operator-valued
Carleson measures, in the sense that a certain vector BMO condition of the sweep
of an operator-valued measure does not imply boundedness of the corresponding
vector Carleson embedding.

We can further show that even the intersection of all BMO?

rect,p
bigger than BMOﬁmd.

spaces is still

Corollary 4.9.
BMO§,q & (| BMOL..; -

prod =
p=1
Proof. Obviously Np>1 BMOfectm = NpeN BMOfectm. With the locally convex
topology defined by the increasing sequence of seminorms (|| - ||rect,p)pen, the latter

d

is a metrizable locally convex linear space. Since each of the BMO is complete

rect,p
in || - |lrect,p> Npen BMOfectyp is complete in this topology and therefore a Fréchet

space. We know from Thm 4.2 that BMOﬁrod C M1 BMO? and that the

= rect,p’
embedding is continuous with respect to the norm topology on BMOgrod and the

locally convex topology on ﬂp>1 BMO,.cct,p. Let us assume towards a contradiction
that the embedding is surjective. Then the open mapping theorem implies that the
locally convex topology on [, BMOfecm is normable with | - ||proq and therefore
contains a nonempty open neighbourhood of 0 which is bounded with respect to
Il - lprod- Since the family (|| - ||rect,p)pen is increasing, this means that there exists
p € N and € > 0 such that ||b||proq < 1 whenever ||b]|yect,p < €, in contradiction to

Corollary 4.8. O
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We will now separate the BMOffect’p spaces. Note that for Corollary 4.4 means
that
(51) lim a(n,p,1) = o0
for all p > 1.

Let us see that this holds in general.
Corollary 4.10. Let p > ¢ > 1. Then BMOY,,, = C BMOY,

rect,p rect,q *

Proof. We have to show that lim,_, . a(n,p,q) = cc.

It suffices to prove lim, ., a(n,q + €,q) = oo for sufficiently small . For fixed
g > 1, choose ¢ > 0 and k € N such that ¢ < ¢+ < 2F < 2q.

Using Theorem 4.7, (42) and (49), we obtain constants Cy,Cy and Cs indepen-
dent of n such that

2(n,2q) < Cie(n, q) < C1Cha(n, g+e,q)c(n, g+¢) < C1C2Csa(n, g+e, q)c(n, 2q)%.

This shows that )
c(n,2q)7+= < Ca(n,q+¢,q)
where C is independent of n. Now the result follows from Corollary 4.8. O
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