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Abstract. We prove non interpolation results for the family of Morrey spaces. We
introduce a scale of block spaces, which are preduals of Morrey spaces in some range.
Negative interpolation results are also obtained in this case.

1. Introduction

The spaces Lp,α, for the range α ∈ (0, n/p] and p ∈ [1,∞], were introduced by Morrey
in order to study regularity questions which appear in the Calculus of Variations, later
Campanato extended the definition to the range α ∈ (−1, n/p].

Lp,α is defined as the set of functions f locally in Lp(Rn) and such that there exists
a constant σ for which

sup
Q
rα

(
r−n

∫
Q

|f(x) − σ|pdx
)1/p

<∞, (1.1)

where the sup is taken over all the cubes in Rn and r denotes the side length. The norm
‖.‖p,α is defined as the infimum of (1,1) when σ ∈ R.

In the range defined by Morrey, functions in this space have been used as weights,
to substitute the Lebesgue spaces Lp by weighted-L2, in Sobolev-Poincare inequalities,
unique continuation, potentials in wave and Schrödinger equations and some other prob-
lems in PDE, see [CS], [ChR], [FP], [Sc], [T], [W]. There are still some interesting open
problems, for example in unique continuation and in the restriction properties of the
Fourier transform, see [K], [RV1], [RV2]. In this range we can, without loss of generality,
take σ = 0, the endpoint case p = n

α is just Lp, being in the other case, p < n/α, Lp

strictly included in Lp,α.
When α < 0 ( Campanato’s extended range ) it has been proved that Lp,α is the space

of (−α)- Hölder continuous functions , see [C] and [M]. When α = 0 we have BMO.
In this work we reduce ourselves to the range α ∈ (0, n/p], p ∈ (1,∞]. Therefore (see,

for instance [Ku]) we have Lp,α is the set of functions f locally in Lp(Rn) and such that

‖f‖p,α = sup
Q
rα

(
r−n

∫
Q

|f(x)|pdx
)1/p

<∞, (1.2)
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where the sup is taken over all the cubes in Rn and r denotes the side length. Our
concerns are duality and interpolation properties of this two-parameters family of spaces.
A few more historical comments are in order.

Interpolation properties of Lp,α were the objects of attention in several works during
the 60’s. Stampacchia [St], and Campanato and Murthy [CM] proved that if T is a linear
operator bounded from Lqi to Lpi,αi , i = 1, 2, with operator norm Ki, then T is bounded
from Lqθ to Lpθ,αθ with norm at most CK1−θ

1 Kθ
2 , where 1/pθ = (1 − θ)/p1 + θ/p2,

1/qθ = (1 − θ)/q1 + θ/q2, αθ = (1 − θ)/α1 + θ/α2 and C only depends on θ, αi, pi and
qi. A similar property was proved by Peetre, see [P], for a extended family of spaces.
Actually as J. Peetre points out -see [P], pg. 77, any interpolation theorem will do, in
the sense that one can replace (Lp0 , Lp1) by an abstract pair (A0, A1), and Lp by an
abstract interpolation space A constructed from (A0, A1) and still have and inequality
as before. In particular this gives us that Lpθ,αθ contains the corresponding interpolated
space. The main purpose of this paper is to prove that the other contained does not
hold. In the range α ∈ (−1, n/p], this was proved by Stein and Zygmund [SteZ] by
constructing a linear operator bounded from (−α)-Hölder continuous functions to (−α)-
Hölder continuous functions and from L2 to L2 which is not bounded from BMO to
BMO.

Recently two of the authors, see [RV3], obtained negative results on interpolation
properties in the Morrey range. To be precise, the lack of convexity which characterises
interpolation functors of exponent θ, see [BL, page 27], is proved. In that work they need
the dimension n > 1.

In the present work we go further and give examples, in the one dimensional case, of
operators which are bounded from Lpi,α → Lqi , i = 1, 2 , 0 < α ≤ n/p,p ∈ (0,∞) and
are not bounded from the intermediate Lpθ,α to Lqθ .

We also give a description of the predual spaces of Lp,α in the context of ”block
spaces”( see [SOS] and [So] for this terminology in other situations). We say that a
measurable function b is a (q, β)-block if it is supported in a cube Q of lenghtside r in
such a way that (

1
|Q|

∫
Q

|b(x)|qdx
)1/q

≤ 1
rβ
. (1.3)

Some identification of the preduals of Morrey spaces has been already obtained -see [Z],
and [A]. But our arguments are a bit simpler since here the decompositions are into
blocks while there she uses atoms, that is mean zero blocks. This fact is, of course,
related to the two possible definitons of Morrey spaces mentioned above.

In section 2 we prove that the predual of Lp,α, when 0 < α < n/p is the space

Bq,β =
{ ∞∑

k=1

λkbk :
∑

|λk| <∞ and bk is a (q, β)-block
}

(1.4)

for β = n− α and 1/p+ 1/q = 1.
Meanwhile the spaces defined by (1.2) reduce to {0} when α > n/p, the definition of

Bq,β gives non trivial spaces in the corresponding range, beyond the preduality exponents,
β > n/q. So it makes sense to study interpolation properties in this range; in section
3 we also give a negative result in this context which is not covered by preduality and
which is a complement to the questions posed in the 60’s.

We would like to thank F. Cobos for enlightening conversations.
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2. Preduals

Definitions 1. Let 1 ≤ q < ∞, 0 < β. We say that a measurable function b is a
(q, β)-block if it is supported in a cube Q of lenghtside r in such a way that

(
1
|Q|

∫
Q

|b(x)|qdx
)1/q

≤ 1
rβ
.

Let us know consider the space Bq,β of measuble functions f such that can be written as

f =
∞∑

k=1

λkbk a.e.

where
∑

|λk| <∞ and bk are (q, β)-blocks.
Let us define

‖f‖Bq,β
= inf{

∑
|λk| such thatf =

∑
λkbk} (2.1)

where the infimum is taken over all possible decompositions of f into (q, β)-blocks.

Let us start with some elementary properties of block spaces.

Lemma 1.
(a) Bq,β ⊂ Ln/β if n/β ≤ q.
(b) Lq ⊂ Bq,β if q ≤ n/β.
(c) For any cube Q and f ∈ Lq

loc we have

‖χQf‖Bq,β
≤ |Q|β/n−1/q‖χQf‖q.

Proof:.
(a) follows from Hölder and Minkowsky inequalities and the condition

∑
|λk| <∞.

(b) Denote by Qk = {x : |xi| ≤ 2k, i = 1, ..., n}. Assume first that q < n/β. Then

f =
∞∑
1

|Qk|β/n−1/q‖f‖qbk,

where bk =
f(χQk

−χQk−1 )

|Qk|β/n−1/q‖f‖q
is a (q, β)-block.

Assume now that q = n/β and f ∈ Lq. Since fχQk
is a Cauchy sequence in Lq then

we can find nk such that ‖fχQnk+1
− fχQnk

‖q < 2−k. Now write

f = fχQn1
+

∞∑
k=1

fχQnk+1
− fχQnk

.

This clearly shows that f ∈ Bq,β and ‖f‖Bq,β
≤ 2‖f‖q.

(c) Just observe that

(fχQ)(x) = |Q|β/n−1/q‖χQf‖qb

with b a (q, β)-block.

Remarks
1. Bq,β = Lq for β = n/q. Then its dual is Lp = Lp,α for α = n/p.
2. As we observe in the introduction Bq,β is a meaningful space in the case (b) of

lemma 1 and it contains Lq.
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Theorem 1. Let 1 < p < ∞ and α ∈ (0, n/p), then if we take β and q such that
α+ β = n and 1/p+ 1/q = 1 we have

(Bq,β)∗ = Lp,α.

Proof. Assume f ∈ Lp,α and take b a (q, β)-block supported in a cube Q of side r, then∫
Rn

|fb| ≤ (
∫

Q

|f |p)1/p(
∫

Q

|b|q)1/q

= rα(
1
|Q|

∫
Q

|f |p)1/prβ(
1
|Q|

∫
Q

|b|q)1/q ≤ ‖f‖p,α.

Take now g =
∑
λkbk , then∫

Rn

|fg| ≤
∑

|λk|
∫
Rn

|fbk| ≤
∑

|λk|‖f‖p,α ≤ ‖g‖Bq,β
‖f‖p,α.

This proves that if f ∈ Lp,α then Φ(g) =
∫
fg ∈ (Bq,β)∗. Then Lp,α ⊂ (Bq,β)∗.

To prove the other inclusion take Φ ∈ (Bq,β)∗ and a cube Q, from (c) of Lemma 1
we have that Φ restricted to the subset Lq(Q) is in Lq(Q)∗, and hence there exists a
fQ ∈ Lp(Q) such that ∫

fQg = Φ(g) for any g ∈ Lq(Q).

Write Rn = ∪∞
1 Qk, Qk increasing, define f(x) = fQk

(x) if x ∈ Qk , which makes
sense since

∫
E
fQk

=
∫

E
fQk+1 for any Borel subset of Qk and hence fQk

(x) = fQk+1(x)
a.e. x ∈ Qk.

Only remains to prove that f ∈ Lp,α. Take a cube Q and j such that Q ⊂ Qj , then

|Q|α/n

(
1
|Q|

∫
Q

|f |p
)1/p

= |Q|α/n−1/p sup
‖h‖q=1

∫
Q

fhdx

≤ sup
‖h‖q=1

∫
Qj

fQj
(hχQ|Q|α/n−1/p)dx

≤ ‖Φ‖‖hχQ|Q|α/n−1/p‖Bq,β
≤ ‖Φ‖,

since hχQ|Q|α/n−1/p = hχQ|Q|β/n−1/q is a (q, β)-block.

3. Interpolation

In [RV3] it was proved the lack of logarithmic convexity of the operator norm of
an operator bounded from Lpi,α to L1 , i = 1, 2 with 1 ≤ p2 ≤ n−1

2 ≤ p1 < ∞,
0 < α < n. This operator requires the dimension > 1. We start by exhibiting an
example in dimension 1 of non-boundedness in an intermediate space. Similar examples
can be contructed in higher dimension.

Theorem 2. Take p1, p2, and p3 such that 1 < p2 < p3 < p1 ≤ 1, α = 1
p1

. Then there

exists q1, q2 ∈ (1,∞) and a linear operator T such that, we have

T : Lpi,α → Lqi , i = 1, 2, (3.1)

and
T : Lp3,α

� Lq3 , (3.2)

where 1
p3

= 1−θ
p1

+ θ
p2

and 1
q3

= 1−θ
q1

+ θ
q2

.
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Lemma 2. Let 0 < p3, α, β be positive numbers such that

max{p3, 1} ≤ β

(β + 1)α
(3.3)

and let N0 such that (β + 1) < N0
log N0

. Define

IN
j = [2N + jNβ , 2N + jNβ + 1]

for N > N0, N ∈ N,and j = 0, 1, ..., N − 1. Then

‖
∑

N>N0

N−1∑
j=0

χIN
j
‖p3,α ≤ C,

where C is a universal constant.

Proof. By inspection one can see that the biggest value of |I|α
(

1
|I| |I ∩ (∪IN

j )|
) 1

p3 is

achieved when the inf I is at a point 2N and Nβ+1 ≈ |I|.
Proof of theorem 2. Choose β and q1 such that

p3 <
β

α(β + 1)
< p1, (3.4)

2
q1

= min{ 2
p2

+ α(1 + β) − β

p1
, 2}, (3.5)

and q2 = p2.
Hence q1 < q2 = p2.
Define EN = ∪N−1

j=0 I
N
j with IN

j as in lemma 2 and

Tf(x) =
∑

N>N0

λNχEN
(x)f(x), (3.6)

with λN = 1
Nγ , γ such that

2
p2
< γ <

2
q3

=
2(1 − θ)
q1

+
2θ
q2
. (3.7)

Notice that from (3.5) 1
q3
> 1

p2
. Hence we trivially have

‖Tf‖q1 =

(∑
N

λq1
N

∫
EN

|f |q1

) 1
q1

≤
(∑

N

λq1
NN

q1(
1

q1
− 1

p1
)‖f‖q1

Lp1 (EN )

) 1
q1

≤
(∑

N

λq1
NN

1−q1(α(1+β)− β
p1

)

) 1
q1

‖f‖p1,α,

(3.8)
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since
‖f‖Lp1 (EN ) ≤ N

(β+1)
p1

−α(β+1)‖f‖p1,α.

Then ‖Tf‖q1 ≤ C‖f‖p1,α, follows from (3.5) and (3.7).
We have from (3.7) that 1 − γq2 < −1, and for q2 = p2:

‖Tf‖q2 ≤ (
∑
N

λq2
N

N−1∑
j=1

‖f‖p2

Lp2 (IN
j )

)1/p2

≤ (
∑
N

λq2
NN)

1
q2 ‖f‖p2,α ≤ C‖f‖p2,α.

On the other hand we know from lemma 2 that f =
∑

N χEN
∈ Lp3,α and from (3.7)

1 − γq3 > −1 , hence

‖Tf‖q3 = (
∑
N

λq3
NN)

1
q3 =

(∑
N1−γq3

) 1
q3 = ∞.

The proof is over.

The next theorem states that interpolation for the blocks spaces Bq,β does not hold
between points at both sides of the line q = 1

β . In fact we give an operator bounded
Lpi → Bqi,β , i = 1, 2 which is not bounded from Lpθ → Bqθ,β , and such that Bq2,β is on
the predual range and Bq1,β is out of it .

Theorem 3. Let 1 ≤ q1 < q2 ≤ 2. There exist β ∈ ( 1
q2
, 1

q1
), θ ∈ (0, 1), p1, p2 and a linear

operator T such that we have

T : Lp1 → Bq1,β (3.9)

T : Lp2 → Bq2,β (3.10)

and

T : Lpθ
� Bqθ,β (3.11)

where 1
pθ

= 1−θ
p1

+ θ
p2

and 1
qθ

= 1−θ
q1

+ θ
q2

.

In the proof of theorem 3 the following lemma will be used:

Lemma 3. Let {Ek} ⊂ R and let Bk = co(Ek) denotes its convex hull, let q1 < p1,
β > 0 and f ∈ Lp1(R) and ‖f‖p1 = 1. If {Bk} are disjoint, and

λk|Ek|
1

q1
− 1

p1 |Bk|β−
1

q1 ∈ l1, (3.12)

then
∑
λkfχEk

∈ Bq1,β

Proof. Just observe that from Hölder
|Ek|

1
p1

− 1
q1 |Bk|

1
q1

−βfχEk
is a (q1, β)-block.

Proof of theorem 3 :.
Observe that 1

q′
2
< 1

q1
. Take p2 = q2 and p2 < p1 such that

1
q′2
<

1
q1

− 1
p1
. (3.13)
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Now choose θ such that
1
q′2
< (1 − θ)( 1

q1
− 1
p1

), (3.14)

and now β such that
1
qθ
< β <

1
q1

(3.15)

where 1
qθ

= 1−θ
q1

+ θ
q2

.
Consider now Ek = [2k, 2k + 1) ∪ [2k+1 − 1, 2k+1) and define

T (f) = (
∞∑

k=1

k−γχEk
)f

for γ chosen such that
1
p′2

=
1
q′2
< γ < (1 − θ)( 1

q1
− 1
p1

). (3.16)

Since β < 1
q1

, |Ek| = 2 and |Bk| = 2k then Lemma 3 implies (3.9).
Now from condition (3.15) we have that 1

q2
< β what allows us to use Theorem 1 and

write ( remember that q2 = p2 ) for α = 1 − β:

‖
∑
k−γfχEk

‖Bq2,β
= sup

‖g‖q′2,α≤1

∫
(
∑
k−γfχEk

)g

= sup
‖g‖p′2,α≤1

∫
(
∑
k−γgχEk

)f

≤‖f‖p2 sup
‖g‖p′2,α≤1

‖
∑
k−γgχEk

‖p′
2

=‖f‖p2 sup
‖g‖p′2,α≤1

(∑
k−γp′

2

∫
Ek

|g|p′
2

) 1
p′
2

≤‖f‖p22
1

p′
2

(∑
k−γp′

2

) 1
p′
2

The last inequality follows from the fact that
∫

Ek
|g|p′

2 ≤ 2‖g‖p′
2

p′
2,α. The above series

converges from (3.16). This proves (3.10).
Finally, since 1

qθ
< β, then (3.11) is equivalent to see that T ∗ = T is not bounded

from Lq′
θ,1−β to Lp′

θ .
Take now AN = ∪N

k=1Ek and fN = |AN |−
1

q′
θ χAN

.
It is elementary to see that ||fN ||q′

θ,1−β ≤ 1.
On the other hand

||T (fN )||p′
θ

= 2
1

p′
θ (2N)

− 1
q′
θ

( N∑
k=1

k−γp′
θ
) 1

p′
θ .

Note that
1
qθ

− 1
pθ

= (1 − θ)( 1
q1

− 1
p1

) (3.17)
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and then (3.16) gives that γp′θ < 1 what allows to write

N∑
k=1

k−γp′
θ ≥ CN−γp′

θ+1. (3.18)

Using (3.17) and (3.18) we get that

||T (fN )||p′
θ
≥ CN−γ+(1−θ)( 1

q1
− 1

p1
).

Now (3.16) gives that supN ||T (fN )||p′
θ

= ∞ and the proof is completed.
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