EMBEDDINGS BETWEEN OPERATOR-VALUED DYADIC BMO
SPACES

OSCAR BLASCO AND SANDRA POTT

ABSTRACT. We investigate a scale of dyadic operator-valued BMO spaces, cor-
responding to the different yet equivalent characterizations of dyadic BMO in
the scalar case. In the language of operator spaces, we investigate different op-
erator space structures on the scalar dyadic BMO space which arise naturally
from the different characterisations of scalar BMO. We also give sharp dimen-
sional growth estimates for the sweep of functions and its bilinear extension in
some of those different dyadic BMO spaces.

1. INTRODUCTION
Let D denote the collection of dyadic subintervals of the unit circle T, and let
(h1)rep, where hy = ul%m(xﬁ — X1-), be the Haar basis of L?(T). For I € D
and ¢ € L*(T), let ¢; denote the formal Haar coefficient [} ¢(t)hrdt, and m;¢ =
ﬁ J; ¢(t)dt denote the average of ¢ over I. We write Pr(¢) = dycrbhy.
We say that ¢ € L?(T) belongs to dyadic BMO, written ¢ € BMOY(T), if

1
1) sup(ir: [ [6(0) ~ miofan)' /2 < .
rep ] Jr
Using the identity Pr(¢) = (¢ — msd)xr, this can also be written as
1
2 — P < o0,
2) sup 71 Pr(9)]]z2 < 00
or
1
(3) sup — 19]% < 0.
AT

Due to John-Nirenberg’s lemma, one can replace the L?(T) norm in (1) and (2) by
any LP-norm. That is, for 0 < p < co, we have ¢ € BMOY(T) if and only if

1 1
(4) sup(ipi [ 16(0) = migPat)/? =sup oo 1P (@)1 < o
rep 1| J; rep |I|Y/P

It is well-known that the space BMOY(T) has the following equivalent formula-

tion in terms of boundedness of dyadic paraproducts: The map

(5) o LP(T) = LX(T),  f=Y frhi— Y ér(mif)hs

IeD IeD
defines a bounded linear operator on L?(T), if and only if ¢ € BMOY(T).
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For real-valued functions, we can also replace the boundedness of the dyadic
paraproduct mg by the boundedness of its adjoint operator

(6) Ay L*(T) — LX(T), f= ZflthZd)IfI‘I‘

IeD 1€D

Another equivalent formulation comes from the duality
(7) BMOY(T) = (Hy(T))*,

where the dyadic Hardy space H}(T) consists of those functions ¢ € L'(T) for
which the dyadic square function S¢ = (3, |1 2|XT’|)1/2 is also in LY(T). Let

us recall that H}(T) can also be described in terms of dyadic atoms. That is,
H}(T) consists of functions ¢ = >, .y Awar, A € C, D)o [Ak| < 00, where the
ap are dyadic atoms, i.e. supp(ag) C I for some I € D, fIk ax(t)dt = 0, and
lak||co < e 1 - The reader is referred to [M] or to [G] for standard results about H}

and BMO4.
Let

S¢_ S¢ Z|¢I|2|I|
IeD

denote the sweep of the function ¢. Using John-Nirenberg’s lemma, one easily
verifies the well-known fact that

(8) ¢ € BMOY(T) if and only if S, € BMOY(T).

The reader is referred to [B3] for a proof of (8) independent of John-Nirenberg’s
lemma.

The aim of this paper is twofold. Firstly, it is to investigate the spaces of
operator-valued BMO functions corresponding to characterizations (1)-(7). In the
operator-valued case, these characterizations are in general no longer equivalent. In
the language of operator spaces, we investigate the different operator space struc-
tures on the scalar space BMOY which arise naturally from the different yet equiv-
alent characterisations of BMOY. The reader is referred to [B4, BP1, BP2, PSm]
for some recent results on dyadic BMO and Besov spaces connected to the ones in
this paper. The second aim is to give sharp dimensional estimate for the operator
sweep and its bilinear extension, of which more will be said below, in these operator
BMO? norms.

We require some further notation for the operator-valued case. Let H be a
separable, finite or infinite-dimensional Hilbert space. Let Fyo denote the subspace
of L(H)-valued functions on T with finite formal Haar expansion. Given e, f € H
and B € L?(T, L(H)) we denote by B, the function in L?(T, H) defined by B.(t) =
B(t)(e) and by B, ; the function in L*(T) defined by B. ¢(t) = (B(t)( ), f). Asin
the scalar case, let By denote the formal Haar coefficients f 7 t)hrdt, and m;B =
il I‘ [, B ; B(t)dt denote the average of B over I for any I € D. Observe that for Bj

and m IB to be well-defined operators, we shall be assuming that the £(H)- valued
function B is weak*-integrable. That means, using the duality £(H) = (H&H)*,
that (B(:)(e), f) € L*(T) for e,f €H and for any measurable set A, there exist
By € L(H) such that (Ba(e), f) = ([, B(t)(e)dt, f) for e, f € H.
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We denote by BMOY(T, H) the space of Bochner integrable H-valued functions
b: T — H such that

1
9) [bllgmods = sup (= / 1b(t) — mb||*dt)'/? < oo
rep ] J;

and by wBMOY(T, H) the space of Pettis integrable H-valued functions b : T — H
such that

1
(10 Plsvos = s ([ 1606) = mib, )Py ? < oc.
rep.eenlef=1 I /1

In the operator-valued case we define the following notions corresponding to
the previous formulations: We denote by BMOY_ (T, £(H)) the space of Bochner
integrable £L(H)-valued functions B such that

1
an IBlosiog,.., = sup(rr: [ 1B(6) = muBlde)” < o
IeD |I| I

by SBMOY(T, £(H)) the space of L(H)-valued functions B such that B, €
BMOY(T, H) for all e € H and

1
(12) HB”SBMOd = sup (T/H(B(t)*mIB)6H2dt)1/2 < oo,
repeerfel=1 U] J1

and, finally, by WBMOY(T, £(H)) the space of weak*-integrable £(H)-valued func-
tions B such that B, ; € BMOY for all e, f € H and

1
(13) [Blwsvos = sw (o [ (B ~ miBle. HPd? < oo,
1ep,jlel=lfi=1 | J1

or, equivalently, such that

| Bllwsmod = sup HBeHwBMOd(’ﬂ‘,’H) = sup H<B’A>||BMOd(T) < 0.
e€H, lel|=1 AeSy, || Al <1
Here, S denotes the ideal of trace class operators in £(H), and (B, A) stands for
the scalar-valued function given by (B, A)(t) = trace(B(t)A*).
The space BMOZ, (T, £(H)) is the space of weak*-integrable operator-valued
functions for which

= sup(—~ 2y1/2
(14) IBlvon,, =suplry 30 1B <o
We would like to point out that while B belongs to one of the spaces
BMOY, ... (T, L(H)), WBMOY(T, L(H))) or B € BMOZ, (T, L(H)) if and only if
B* does, this is not the case for the space SBMOY(T, £(H)). This leads to the
following notion (see [GPTV, Pet, PXu]): We say that B € BMOY (T, L(H)), if B
and B* belong to SBMOY(T, £L(H)). We define

(15) | Bllsmog, = [ Bllsemoq + [[1B*[lsBmos-

We now define another operator-valued BMO space, using the notion of Haar
multipliers.

A sequence (®)rep, 1 € L*(I, L(H)) for all I € D, is said to be an operator-
valued Haar multiplier (see [Per, BP1]), if there exists C' > 0 such that

1> @r(fD)hallzzra < CO NIV for all (f1)1ep € 1°(D,H).

1€D IeD
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We write ||(®7)]|mue for the norm of the corresponding operator on L?(T,H).
Letting again as in the scalar-valued case PtB = ) ;~; hyB;, we denote the

space of those weak*-integrable £(H)-valued functions for which (P;B)ep defines

a bounded operator-valued Haar multiplier on L?(T,H) by BMO 1 (T, £(H)) and

write

(16) | Bl|BMO e = (P B) 1eDllmutt-

We shall use the notation Ap(f) = > ;cp(P1B)(fr)hs.

Let us mention that there is a further BMO space, defined in terms of paraprod-
ucts, which is very much connected with BMOuyut(T, £(H)) and was studied in
detail in [BP2]. Operator-valued paraproducts are of particular interest, because
they can be seen as dyadic versions of vector Hankel operators or of vector Carleson
embeddings, which are important in the real and complex analysis of matrix valued
functions and its applications in the theory of infinite-dimensional linear systems
(see e.g. [JPa], [JPaP]).

Let B € Fp9. We define the dyadic operator-valued paraproduct with symbol
B,

mg : L*(T,H) — L*(T,H), f= Z Jrhr — Z Br(mif)hr,
IeD IeD
and
Ap: LA(T,H) — LATH), = frhr— Y. BI(fI)|XTI|.
IeD IeD
It is easily seen that (7p)* = Ap-.

We denote by BMOypara (T, £(H)) the space of weak*-integrable operator-valued

functions for which ||7g|| < oo and write

(17) IBllBMOpar = 75l

We refer the reader to [B4, BP2] and [Mel, Me2] for results on this space. It is
elementary to see that

(18) Ap(f) = ZBI(mIf)hI"‘ZBI(fI)% =npf+Apf.

IeD IeD
Hence Ap = mp + Ap and (Ag)* = Ap-. This shows that ||B|smo,.,.. =
1 B*[[BMO e

Let us finally denote by BMOgpara(T, £(H)) the space of symbols B such that
mp and mp+ are bounded operators, and define

(19) 1BllBMO.para = 751 + |75

Since Ap = 7}, one concludes that BMOgpara (T, L(H)) € BMOpu (T, L(H)).

We write = for equivalence of norms up to a constant (independent of the dimen-
sion of the Hilbert space H, if this appears), and similarly <, > for the corresponding
one-sided estimates up to a constant.

Recall that for a given Banach space (X, || -|), a family of norms (M, (X),| - |l»)
on the spaces M,,(X) of X-valued n x n matrices defines an operator space structure
on X, if [ [y ~ || - ],

(M1) [A® Bllnsm < max{[[Alln, | Bllm} for A € M,(X), B € My (X)
(M2) || ABm < llallag,, . ) ARl Bl s, (c) for all A € M, (X) and all scalar
matrices o € My, 1, (C), B € My, (C).
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(see e. g. [ER]). One verifies easily that all the BMO%-norms on £(H)-valued func-
tions defined above, except BMOY and BMO%arl, define operator space struc-

norm

tures on BMOY(T) when taken for n-dimensional H, n € N.
The aim of the paper is to show the following strict inclusions for infinite-
dimensional H:

(20) BMOY

norm

(T, £L(H)) € BMOyuit (T, L(H)) C
¢ BMOY (T, £(H)) € WBMOY(T, L(H))

S

and
(21) BMOg,1(T, £(H)) & BMOgpara(T, £(H)) & BMOyuie (T, L(H)).

This means that the corresponding inclusions of operator spaces over BMOY(T),
where they apply, are completely bounded, but not completely isomorphic (for the
notation, see again e. g. [ER]). We will also consider the preduals for some of the
spaces shown. Finally, we will give sharp estimates for the dimensional growth of the
sweep and its bilinear extension on BMOpara, BMOpyuie and BMOY . completing
results in [BP2] and [Me2].

The paper is organized as follows. In Section 2, we prove the chains of strict
inclusions (20) and (21). Actually the only nontrivial inclusion to be shown is
BMOY, (T, L(H)) € BMOyu1(T, £(H)). For this purpose, we introduce a new
Hardy space H, adapted to the problem, and then the result can be shown from an
estimate on the dual side. The remaining inclusions are immediate consequences of
the definition, and only the counterexamples showing that none of the spaces are
equal need to be found.

The reader is referred to [Mel] for more on the theory of operator-valued Hardy
spaces.

Section 3 deals with dimensional growth properties of the operator sweep and its
bilinear extension. We define the operator sweep for B € Fyy,

Sy=S XMp:p,
and its bilinear extension
AUV =S XMury, (U V € Fo).

fen 11
These maps are of interest for several reasons. They are closely connected with
the paraproduct and certain bilinear paraproducts, they provide a tool to under-
stand the dimensional growth in the John-Nirenberg lemma, and they are useful to
understand products of paraproducts and products of certain other operators (see
[BP2], [PSm]).
Considering (8) in the operator valued case, it was shown in [BP2] that
2 ~ 2
(22) 1SBllemon , + I1Bllsemos ~ I1BllEmod

mult para

Here, we prove the bilinear analogue

* 1 * *
(23) IA[U* Vlismog,,, +sup 77l D UsVall = g
mu IED| | JCI
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It was also shown in [BP2] that

(24) 1S5]lspmod < Clog(n + 1)||Bl|3gyoa

for dim(H) = n, where C'is a constant independent of n, and that this estimate is
sharp.

We extend this by proving sharp estimates of ||Sg|| and ||A[U*, V]| in terms
of ||BH |U|, V|| with respect to the norms in SBMO?, BMOpara, BMOpy; and
BMO¢

norm-*

2. STRICT INCLUSIONS

Let us start by stating the following characterizations of SBMO to be used later
on. Some of the equivalences can be found in [GPTV], we give the proof for the
convenience of the reader.

Proposition 2.1. Let B € SBMOY(T, L(H)). Then

IBll3grod = sup 1Bellfmodra
e€H,|lel|=1

= sup |I|H I( 5)“%2(7'{)

IeD, HeH 1
= s ”ZBJBJH
JCI
1
~ sup / (B(t)—m,B)*(B(t)—m,B)dtH
rep || ]

= sup [|m;(B*B) — m(B")m;(B)]|.
IeD

Proof. The two first equalities are obvious from the definition. Now observe that
1Y BiBsll= sup > (Byle),Bs(f)) = Sup Y IBs @ = 1Pr(Be)z2)
JCI llell=1,][fll=1 JCI llell=1 JCI

The other equalities follow from

|lmy(B*B) — m;(B*)mi(B)|| H|11.| B t) —m;B)*(B(t) — mlB)dtH
e, II H 1 |I| / —miB)*(B(t) —miB)e, e)dt
T eenel=t ] /”P’BeH dt.

O

Lemma 2.2. Let B = Z,ivzl Byry where 1, = 375 _o-r |I|*/2h; denote the
Rademacher functions. Then

N

(25) [ Bllsmos = Hshlpl(z | Biel|*)/?
elI=4 k=1
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N N
(26) IBllemo., = sup (3 [I1Brel*)/* + sup (3 [|Bjel*)"/?
lell=1 k= =1 =1
N
(27) IBlwemos = sup (Y [(Bre, f)*)"/>.

Ifl=llell=1 =
Proof. This follows from standard Littlewood-Paley theory. O

For z,y € H we denote by x®y the rank 1 operator in L(H) given by (z®y)(h) =
(h,y)z. Clearly (z ® y)* = (y ® x).

Proposition 2.3. Let dimH = oo. Then
BMO a1 € BMOY (T, £(H)) € SBMOY(T, £(H)) € WBMOY(T, L(H)).
Proof. Note that if (®;)rep is a Haar multiplier then

(28) sup 72 @s(e)lz2r ey < (@) e
1€D,||e|=1

The first inclusion thus follows from (28) and Proposition 2.1. The other inclu-
sions are immediate. Let us see that they are strict. It was shown in [GPTV] that
BMO i (T, £(H)) # BMOL (T, L(H)).

Let (ey) is an orthonormal basis of H and h € H with ||k|| = 1. Hence by (25),
B =3 h®e,r, € SBMOY and B* = 372 e, ® h 1, & SBMOY(T, L(H)).
Thus B € SBMOY(T, £(H)) \ BMOZ (T, £(H)). Similarly by (25) and (27), B €
WBMOY(T, L(H)) \ SBMOY(T, L(H)). O

Note that
(29) Apf=Bf =Y (mB)(f)h

I€D

which allows to conclude immediately that L>°(T, L(H)) € BMO (T, L(H)).
Our next objective is to see that BMOY_ (T, £(H)) € BMO (T, £(H)). For

that, we need again some more notation.

Let S; denote the ideal of trace class operators on H and recall that S = HOH
and (S1)* = L(H) with the pairing (U, (e ® d)) = (Ul(e), d).

It is easy to see that the space BMOyu1t (T, £L(H)) can be embedded isometrically
into the dual of a certain H' space of S; valued functions:

Definition 2.4. Let f,g € L?(T,H). Define

f@g=> hi(fremig+mif®gr).
IeD

Let Hy(T,S1) be the space of functions f = Y ;o Aifr ® gi such that fi, g €
LA(T,H), || fell2 = lgkll2 = 1 for all k € N, and Y3, |\i| < oc.

We endow the space with the norm given by the infimum of Y po, |\i| for all
possible decompositions.

With this notation, B € BMOy,t acts on f ® g by
(B.f o) = [ (B @90t = (A L.g)

By definition of Hll\(T, Sl), ||BH(H}\(T,5'1))* = ||AB||
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We will now define a further H* space of S;-valued functions. For F' € L'(T, Sy),
define the dyadic Hardy-Littlewood maximal function F* of F' in the usual way,

N 1
F*(t) = sup —/HF(S)HSlds.
rener I Jy

Then let H} . 4(T, S1) be given by functions F' € L'(T, 1) such that F* € L'(T).
By a result of Bourgain ([Bou], Th.12), BMO4

(HL.  4(T,S1))* (see also [B1, B2)). o

max,d

embeds continuously into

Lemma 2.5. Hy(T,S1) C H}, 4(T,S1).

Proof. 1t is sufficient to show that there is a constant C' > 0 such that for all
fg e LA(T,H), f®g € Hypy o(T,S1), and [[f ® gllur  (rs) < Cllfll2llgll2- One
verifies that

f®g= th(fl®m19+mlf®91):f®g_Zﬁfﬂggf
IeD I€D|I|

Towards the estimate of the maximal function, let F; denote the expectation with
respect to the o-algebra generated by dyadic intervals of length 2%,

ExF= > hiFy,
IeD,|I|>2—F
for each k € N. Then we have
(30) Ei(f ®9g) = (Exf) ® (Erg),

as

S h(fremigtmrfegr) =Y hi((Exf)i@mi(Brg)+mi(Exf)®(Exg)r)-

1€D,|I[>2* 1eD
Thus
(89" () = sup | Ec(29)(O)ls, < sup | EDOINED O+ sl
1D
<1 Ol @1+ X L1l

IeD
and
I(f ®9) Ml < [l l2llg™ll2 + [ fll2llgll2 < Clifl2llgll2
by the Cauchy-Schwarz inequality and boundedness of the dyadic Hardy-Littlewood

maximal function on L?(T,H). O
In particular, Hx(T,S;) € LY(T, S1).

We can now prove our inclusion result:

Theorem 2.6. BMOY, (T, £(H)) € BMOpyu(T, L(H)).

Proof. The inclusion follows by Lemma 2.5, duality and Bourgain’s result.

To see that the spaces do mnot coincide, use the fact that BMO9Y(f,) <
(5o (BMOY) to find for each N € N functions b, € BMO, k = 1,..., N, such that
supi<p<n [|bkllBMoa < 1, but [[(bk)k=1,...~ lBMO¢(T,150) = €N, eN—00 as N — oo.
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Let (ex)ren be an orthonormal basis of H, and consider the operator-valued
function B(t) = Zszl be(t)ex ®ex € L*(T,L(¢3)). Clearly By = Zgil(bk)lek(@ek,
and for each CV-valued function f = Zgzl frew, fi,---, fn € L3(T), we have

N
= Mo (fr)ex
k=1

Choosing the fi, such that || f||3 = Zivzl ka”%mr) =1, we find that

N
HAB ||L2('11‘ £2) Z HAbk fr) ||L2 < CZ ||bk||123Mod||fk||%2('ﬂ‘) <C,

k=1

where C' is a constant independent of N. Therefore, Ag is bounded.
But since [[Bllgymos,, = [(bk)k=1,....n[BMOa(r, 1) = cn, it follows that

BMOu1¢(T) is not continuously embedded in BMOY_ (T, £(#)). From the open
mapping theorem, we obtain inequality of the spaces. O

The next proposition shows that the space BMO%Mrl belongs to a different scale
than BMO4 and BMO -

Proposition 2.7. L>=(T, L(H)) € BMOYZ, (T, L(H)).

Proof. This follows from the result L= (T, £(H)) € BMOpara in [Me2] (see Lemma
3.1 below) and next proposition. We give a simple direct argument. Choose an
orthonormal basis of H indexed by the elements of D, say (e;)ep, and let &; =
er ®@er, ®rh = (h,er)er. Let A\ = |I|*/? for I € D, and define B = > rep hiAr®r.
Then > ,cp |Brll? = Y jep ] = oo, so in particular B ¢ BMOg¢, (T, L(H)).
But the operator function B is diagonal with uniformly bounded diagonal entry
functions ¢;(t) = (B(t)er,er) = [I|'/?h;(t), so B € L®(L(H)). O

Proposition 2.8.
BMOZ,1(T, £(H)) & BMOspara(T, L(H)) & BMOyue (T, L(H)).-

Proof. The inclusion BMOY, ; € BMOgpara is easy, since (14) implies that for
B € BMOCaﬂ, the BMO%aLrl norm equals the norm of the scalar BMOY function
given by |B| := 3", h1||Br]|. For f € L*(H), let | f| denote the function given by

[£1(t) = [l (). Thus
ImBflz = Z |1 Brm f||* < z:(HBIHmIm)2 = |lm3( f1l]-

1€D I1eD

The boundedness of g+ follows analogously.

To show that BMOY,, | # BMOgpara, we can use the diagonal operator function
B constructed in Proposition 2.7. There, it is shown that B ¢ BMOY,_ ,, and
that the diagonal entry functions ¢y = (Bey,es) are uniformly bounded. Since
the paraproduct of each scalar-valued L°° function is bounded, we see that 7 =
@D cp Te, is bounded. Similarly, mp- is bounded. Thus B € BMOgpara. It is clear
from (18) that BMOgpara(T, L(H)) € BMOyu (T, L(H)).

Using that L>(T, L(H)) € BMOgpara(T, L(H)) (see [Me2]), one concludes that
BMOgpara(T, L(H)) # BMOmu (T, L(H)). O
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3. SHARP DIMENSIONAL GROWTH OF THE SWEEP

We begin with the following lower estimate of the BMOpara norm in terms of
the L norm of certain Mat(C,n x n)-valued functions from [Me2].

Lemma 3.1. (see [Me2], Thm 1.1.) There exists an absolute constant ¢ > 0 such
that for each n € N, there exists a measurable function F : T — Mat(C,n x n) with
|1F|loo <1 and ||7p| > clog(n + 1).

Here are our dimensional estimates of the sweep.

Theorem 3.2. There exists an absolute constant C > 0 such that for each n € N
and each measurable function B : T — Mat(C,n x n),

(31) IS5 BMO,.ura < Clog(n + 1)[[BllByo, ...
(32) 19B11EMO. < Clog(n + 1)1 Bl[Ero -
(33) IS5 llBmog,,,, < Clog(n+ 1)) Bllgyog, -

norm norm

and the dimensional estimates are sharp.

Proof. Let B : T — Mat(C,n X n) be measurable. Since || B||« = limg— o | Ex B«
in all of the above BMO norms and ExSp = EipSg.p for k € N, it suffices to
consider the case B € Fyq.

We start by proving (31). Since

(34) Ims] < C'log(n + 1)||Bllsmos,
for some absolute constant C’' > 0 (see [NTV], [K]) and
(35) IBllemog, < [1Bl[BMO e »
we have

1S5 lBMO,u < C"log(n + 1)[|SElBMO e < Clog(n + 1) BllEmo

by (22).

For the sharpness of the estimate, take I as in Lemma 3.1. Again, approximating
by EpF, we can assume that F' € Fyg. Since each function in L (T, Mat(C,n xn))
is the linear combination of 4 nonnegative-matrix valued functions, the L°°-norm of
which is controlled by the norm of the original function, we can (by replacing ¢ with
a smaller constant) assume that F' is a nonnegative matrix-valued function. Each
such nonnegative matrix-valued function F' can be written as F' = Sp with B €
Foo, for example by choosing B = 3 ;cp |rj—g- hrBr, where By = |T|Y/2(FTY/2]
F= EIGD"”:Q,,C x1F!. Tt follows that

para

1SBIIBMO para > clog(n + 1)[1SB |0
> ¢/2log(n + 1)([1SBlBMO . + [ Blgmos ) 2 log(n + 1) Bllimo, ...

again by (22). Here, we use the estimate || B||3y;0a < [15B]lsc, which can easily be
obtained by »

1PrBel3 = (ISP, Bells < |11[1Sp;Belloo < ISP, Blloc < 1111SBlloo for e € H, [lef| = 1.
This proves that (31) is sharp.
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Let us now show (32). Note that by (18) and (34), for B € Foo,
< C"”log(n + 1) || Bl[ino -

para

11951 BMOma: S I1BlEMo

For sharpness, choose B € Fyo, ||Bllec < 1, |15 > clog(n + 1) as above, to
obtain

1551130 e + 1BlEnog, 2 1BlENo

para
> *log(n + 1)*|| BII3, = ¢*log(n + 1)*|| Bl[guo,,..
and thus
185 1BMOmu: 2 1og(n +1)% | BllEnmo,,
as || Bllgmog, < [1BI[BMO
Finally, let us show (33). Again, we can restrict ourselves to the case B €

Foo by an approximation argument. We use the fact that the UMD constant of
Mat(C,n x n) is equivalent to log(n + 1) and the representation

Su(t) = /E (T, B)*(1)(T, B)(t)do (B € Foo)

(see [BP2], [GPTV]), where T, denotes the dyadic martingale transform B —
ToB =Y ,cp0rhiBr, 0 = (o1)1ep € {—1,1}P, and do the natural product prob-
ability measure on ¥ = {—1,1}? assigning measure 2~" to cylinder sets of length
n, to prove that

| PrSs L rMat(cnxn)) = |1PrSp Bl (v Mat(cnxn)) < 218 BIlLt (T Mat(C,nxn))
< (log(n + D)(1Pr Bl 72 (r Mas(c,nxnyy < (08(n+ 1)1 Blgmog, . s

which gives the desired inequality.
To prove sharpness, choose B € Foo, ||Blleo < 1, ||75]|| > clog(n + 1) and note
that by Theorem 2.6,

1SBllBMog,,,, + HB”%MOSO 2 15B]BMOm: + ||BH%MogO

norm

2 IBlBrO0 . = ¢ log(n+ 1)?||BII3, > ¢*log(n + 1)?|| Blyoq

norm

Since || Bllgmog, < [[BllBmog, , this implies

1SBllBMOd. . = log(n + 1)2||B||2BMogmm~
O
We now consider the bilinear extension of the sweep. By [PSm], [BP2] or [B4]
(36) oy = Aaw+v) + Du- v (U, V € Foo),

where Dy« v is given by Dy« yhre = hjl%l YyciUjVsefor I € D, ecH.

Proposition 3.3.

* * 1 *
Iyl 2 1A, VIIBMOwa +sup I D UsVsll (U, V € Foo).

Proof. Obviously || Dy« v = sup;ep ﬁH > scrUiVsll. Thus by (36),

* * 1 *
Iy | < A", Va0, + 00 | 3 U5V
ren 117 75
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For the reverse estimate, it suffices to observe that Dy y is the block diagonal
of the operator 7j;my with respect to the orthogonal subspaces h;H, I € D and
therefore || Dy« v || < ||7fimyv || O

Here are the dimensional estimates of the bilinear map A.

Corollary 3.4. There exists an absolute constant C > 0 such that for each n € N
and each pair of measurable functions U,V : T — Mat(C,n x n),

(37) [A[U", V][lsmoa < Clog(n + 1)U |lssmos ||V [[sBmoa:
(38) AU, V]lIBMOara < Clog(n + DU [BMOpura |V [BMO e
(39) AU, V] BMO e < Clog(n + 1)) U BMO e |V [[BMO e
(40) AU, V]llemog,,, < Clog(n +1))?(|U]lsmog,,, IV Bmod

norm norm norm’

and the dimensional estimates are sharp.

Proof. Only the upper bounds need to be shown. For (37), use Proposition 2.1 to
write || Bllspmod = SuPrep, jej=1 [[AB(hre)|| and (36) to estimate

AU, V]lsemos < sup  |[afmvhrel|+  sup  [|[Dy- v (hre)|.
IeD,|le||=1 I€eD,|le||=1

Now observe that for e € H, I € D, one has
Vlisemoalle]l < C"log(n + 1)[|U||snmoa |V [|seaoa el

by (34). Since Dy« yhre = ﬁ > sc1UjVsehy, one obtains

lmg;mvhrel| < |U|lBmo

para

[Du=v(hre)| = sup  [(Dy«v(hre), hif)]
Fer,|fl=1
sup |Z Vie,Us )l < VellBmoacr,#)IU l[seamos,

serifl=1 11 &=

and the proof of (37) if complete.

Using first (34) and (35) and then Proposition 3.3, we obtain (38). In a similar
way, using first Proposition 3.3 and then (34), (35) yields (39).

Finally, for (40) observe first that for any U,V € Fyo, e, f € H, t € T,

(A" VI(©e, N
. (0
] '1;;<|f|1/2v“ vt

1/2
- (émwv’ '2> (é” e '2>

= (Su(t)e,e)'*(Sv(O)f, ) < |ISu @2 Sv(6)]'/?

and therefore

(41) IA[T, VI < I1Su @IV 1Sy (O)IY? - (t e T).
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Now consider the BMO4

norm

IPrAIU*, V]| L1 (7, Mat(C,nxn))
| PrA[PIU™, PrV]| L1 (r Mat(Conxn))

norm of A[U*,V]. For I € D,

< 2[A[PU”, PrV]||l Ly (1 Mat(C,nxn))

< 20ISpu OIS pv Ol ny

< 2||SPIU||1L/12(T,Mat(«:,nm))||SPIV||1L/12(T,Mat(«:,an))

< 2(log(n + 1))?||PrU|| L2(r Mat(©,nxn)) | PrU L2(r Mat(€nxn))
< 2(log(n + 1))*[1|[|U]lsmoq,. IV IIBmog, .

where we obtain the third inequality from (41) and the fourth inequality from the
proof of (33). This finishes the proof of (40). O
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