Restricted weak type on maximal linear and
multilinear integral maps.
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Abstract

It is shown that multilinear operators of the form T'(f1, ..., fx)(x) =

Jon K@ y1, s y) fr(n) - fr(yr ) dyn ...dyy, of restricted weak type (1, ...,1,¢)
are always of weak type (1,...,1,q) whenever the map = — K, is a

locally integrable L'(R")-valued function.
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1 Introduction and the main result.

Throughout the paper 0 < ¢,p1,...,pr <00, [,k € N, n; € Nand n = n; +
. +ng. We write y = (y1, ..., yx) € R" = R™ x ... x R™ and m,,(A) denotes
the Lebesgue measure in R™. Given a Banach space X we write L°(R!, X),
LP(RY, X) and L} (R’ X) for the spaces of (strongly) measurable functions
on R! with values in X, Bochner p-integrable functions (0 < p < oo) and
locally Bochner integrable respectively (we use the notation L°(R!), LP(R!)
and L} (RY) if X = C).

Let us recall that a multilinear operator 7' : LP*(R™) x ... x LP*(R™) —
L°(R!) is continuous if for every measurable set £ C R! of finite measure

there exists a function Cg : (0,00) — RY with lim,_,. Cr(A) = 0 such that

k
m({z € E:[T(f1,.... fi)(@)] > )\H [ fill Lo ®niy } < Cr(A)

i=1
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for f; € LPi(R™), 1 =1, ..., k.
Particular examples are the operators of weak type (p1, ..., pk, ), i.e. those
for which there exists C' > 0 such that

ok
m({x € R": |T(f, o, fi)(x)] > A} < XH | fill Los (s -
=1

When the previous estimate holds only for characteristic functions of
measurable sets, i.e. there exists C' > 0 such that

k

C :

m({x € R T (g, oo x) (0)] > A} < 5 [ s (B)/7
i=1

for measurable sets F; in R™, the operator is said to be of restricted weak-
type (p1, - Pk, 9)-

Lots of examples in Harmonic Analysis turn out to be only of weak type
or restricted weak type (see [10]) for some tuples (p1,...,pk,q). It is well
known that interpolation techiques allow then to pass from restricted weak
type in two different tuples to strong type estimates in intermediate spaces.

In general linear operators of restricted weak-type (p,q) need not be of
weak-type (p, q) (see [9] for the case p > 1).

It was first shown by K.H. Moon that convolution and maximal of convo-
lution operators of restricted weak type (1,1) are always of weak-type (1,1).

Theorem 1.1 (/8]) Let K; € L'(R"™) for j € N. Denote T;(f) = f* K; and

T*(f) = supjen|T;(f)]-
If T* is of restricted weak type (1,q) for some q > 0 then T™* is also of
weak type (1,q) with constant independent of the quantities || K||;.

Recently Moon’s theorem has been extended to the multilinear case by
L. Grafakos and M. Mastylo.

Theorem 1.2 ([5]) Let K; € L*((R)*) N L= ((RY*) for j € N. Define

Ti(fuy o fi) () = o Kj(x =y, v — yi) f1(y1) - e (ye)dys .. dyp,
and

T*<f1> sy fk)(x) = Supj€N|T‘j(fla 7fk)(x)|
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forz € R and f; € LMRY, i =1,..., k.

If T* is of restricted weak type (1,...,1,q) for some ¢ > 0 then T* is also
of weak type (1, ...1,q) with constant independent of the quantities || K1 and
15[ oo

Although the proofs of the previous theorems work the same for all values
of 0 < ¢ < oo, I would like to point out that that only the case ¢ < 1 is
relevant.

Proposition 1.3 Let T; : L'(R™) x ... x L'(R™) — LO(R") be a sequence of
continuous multilinear operators and set T*(f1, ..., fi) = sup,en [T5(f1, - fr)l-
If g > 1 and T* is of restricted weak type (1,...,1,q) then T* is of weak

type (1,...,1,q).

PROOF. Tt is known that weak — LI(R™) is a complete normed space for
q > 1 (see [10]). Hence there exists a norm ||.||pq.c(gt) such that

l9lznceen 2 sup Ay ({z € R < |g(@)] > A}).
>

Therefore, if f; = Z;W:ll oz;X Ei for pairwise disjoint measurable sets EjZ C
R™ 1 <1 <k, then

"({z € R sup | Ty(f1, ooy fi) ()] > A})

JEN

< C’Hsup|ZZT IXE;la-~-704§kXE§k)‘Hqu°°
=1 j;,=1

< C||ZZSUP|T O'/leEl 7"‘7a§kXE;?k)|HLq’°°
i= 13271 J

< CZZI@ 1o, |||Sup|T(XE1> e Xt ) paee
=1 jZ—l

< ZZm ok [my, (EL)...omy, (EE)
i=1 5;,=1

k
= C'HHfiHLl(R”i)' U
i=1



On the other hand, it was shown by M. Akcoglu, J. Baxter, A. Bellow
and R.L. Jones that, in the linear case, if we replace R by Z the Moon’s
result is not longer true.

Theorem 1.4 ([1]) There exists a countable set C of probability densities on
Z such that Mcf = supyec g * [ for non-negative [ € (Y(Z) is of restricted
weak type (1,1) but not of weak type (1,1)

Making use of such a construction and the transference principle due to
A. Calderén (see [2]), P.H. Hagelstein and R.L. Jones have recently shown
the following:

Theorem 1.5 ([7]) There ezists a sequence of translation invariant opera-
tors T; acting on L*(T) such that T*(f) = sup;ey |T;(f)| is of restricted weak
type (1,1) but it is not of weak type (1,1).

The operators in [7] are given by

Z w] i(0+k) )

kEZ

for a sequence {wj} of probability measures on Z with finite support. In
other words, T} (f) (") = K;* f(e") = [ K;(e®=) f(e'®)) 4L where K; =
D _kez Wi (K)o € M(T).

The aim of this paper is to exhibit a general class of the continuous
multilinear operators Tj : L' (R™) x .. x L'(R™) — LO(R") for which the res-
tricted (1, ..., 1, q)-weak type of T*(f1, ..., fv) = supjey |Tj(f1, .-, fx)| implies
the (1,...,1,q)-weak type of T*. We shall restrict ourselves to the class of
operators T} given by

Ti(fu, - fi) (@) = . Ki(@,y1s o ye) f1(v1) - fr(yr)dys .. dy
where K; : R x R™ x ... x R™ — C is measurable.
The reader is referred to [3] for some families of kernels where the restric-
ted weak type in the linear situation also implies better estimates.
Let us start by mentioning some weak assumptions for the integral above
to be well defined for almost all z € R.

Definition 1.6 Let T : L'(R™) x .. x L}(R™) — LY°(RY) be continuous
multilinear operator. We shall say that T is an integral operator with kernel
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K if there exists a measurable function K : R x R™ x ... x R™ — C such
that K°(z) = K, given by

Kz(yl, "'7yk) = K(xvylu 7yk)

is strongly measurable L'(R™)-valued function, i.e. K° € L°(R!, L'(R")),
and
T(frse fi)(@) = [ K@, y1, s i) fr(y)- fa(yr)dy...dys
Rn
for almost all x € R' and f; € L®(R™) fori=1,...,k.
We shall write T' = T .

Remark 1.1 If K : Rl x R™ x ... x R™* — C is measurable and K° €
LP(RY LY(R™)) for some 1 < p < oo then it follows from Minkowski’s ine-
quality that Ty : LY (R™) x ... x LY(R™) — LP(RY) is bounded and

k
1Tk (1, os Fi)limy < NEC o, magenyy [T il s,

i=1
Now we state the main result of the paper:

Theorem 1.7 Let 0 < q <1 and let T} be a sequence of continuous multili-
near operators from L*(R™) x ... x L*(R™) — LO(R!) with kernels K; such
that
K} € L, (R, L'(R")). (1)
Let T*(fu, s fi) (@) = supjen | fon K (@, 91, s ) f1 (1) fr(yr) dyn ... dyg|
for fj € L*(R"), 1 <j <k.
If T* is of restricted weak type (1, ...,1,q) then T* is of weak type (1,...,1,q).

Let us mention that our result gives the following corollary (which seems
to be new even in the linear case) when applied to a single operator

Corollary 1.8 Let 0 < ¢ < 1 and let T : L*(R") x ... x L}(R") — L%(R")
be multilinear with kernel K such that K° € C(R", L}(R")).

Then Tk (fi,..., fr)(z) = f(Rn)k Ki(z,y1, o y) fr(vr)- fr(yk)dys .. dyy is
of restricted weak type (1,...,1,q) if and only if it is of weak type (1,...,1,q).

Let us mention some particular examples where Corollary 1.8 or its ma-
ximal formulation can be applied:



Proposition 1.9 Let k > 1, ny = ... = ny = 1 (hence n = kl) and let
¢ € LY(R™) and ® real valued function uniformly continuous on R' x R™.
Define K : R! x R™ x ... x R™ — C by

K(x,y1,...,yr) = i@y y’“)gb(x — YLy ey T — Yi)-

Then K° : R' — LY(R™) is uniformly continuous and bounded.

PROOF. Clearly ||K.| 11 @ny = ||¢]| 21 @®ny for all z € R".

Given € > 0 take § > 0 so that |e’®@yimk) — @' W14k | < ¢ whenever
o — | + 320 v — il < 6.

Denoting 7.¢(y1, ..., yx) = &(x — y1, ..., x — yg), if for |z — 2’| < § then

1K, — Kplh < l lo(x — y1,.os — yi) — O(2' — Y1, o ' — yi)|dyy...dyy,
R

+ |eiq>(””’y1 """ k) _ i@ s y’“)||¢(x — Y1y ooy T — Yg)|dy1...dyg
]Rl

< meew®d = Sl + el gl

Now use the fact that * — 7.¢ is uniformly continuous from R! into
L*(R™) to finish the proof. O

In particular one obtains Theorems 1.1 and 1.2 as particular cases of
Theorem 1.7.

2 Proof of the main theorem.

Let us first establish the approximation lemmas to be used in the proof.
Denote, as usual, ¢, (u) = &¢(%) for u € R" and t > 0.

The proof of the following result is the same as in the scalar-valued case
and it is left to the reader (see [10]).

Lemma 2.1 Let X be a Banach space and ® € L'(R!, X). Let P, denote
the Poisson kernel in R!, that is P,(x) = ——+. Then

(2 +|=[?) 2

b, = P, x ®(x) = / ®(z —u)P(u)du € Co(RY, X) N LYRY, X),  (2)

RI

iug”q)tHLl(Rl,X) = |®f| L1 e, x), (3)
>
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lim | @ — | 1 er x) = 0, (4)

ll,in(% |®(x) — ®(x)||x = 0 for almost all x € R". (5)

Lemma 2.2 Let ¢ € Co(R") N LY (R"), ¢ >0 and [, ¢(y)dy = 1.
Let K is a relatively compact set in L'(R™). Then

lim sup |[¢y * F' — F|| 1 gny) = 0. (6)
t=0 pekc

For each t > 0 the family {¢, x F : F € K} is equicontinuous, i.e. given
€ > 0 there exists 0 > 0 such that

sup ¢+ F(y') — ¢+ Fy)l <€, |y —y| <é. (7)
Fek

PROOF. Tt is known (see [4], Theorem 4.8.20) that a set X C L'(R") is
relatively compact if and only if K is bounded,

lim sup |7, F — F| r1@n) = 0, (8)
y=0 pek
where 7,F(y') = F(y — y) and

lim supu/“ F(y)|dy =0 (9)
ly'|>M

M—oco Fek

Using the standard approach one obtains the estimate
o FW) = FOL < [P =)~ PO ooy
y|<
s [P =) - Py
ly|>6
As usual, this leads to

[¢¢* F' = Fllpigny < /| |7y F = Fllrnye(y)dy + 2[| F|| L.y Gu(y)dy
y|<d

ly|>6

< sup |7, F — F| pimny + 2||F||L1(Rn)/ o(y)dy.
ly| <6 y|>$



Given € > 0, using (8) there exists § > 0 so that

sup sup ||7,F — F||p1@n) < €/2.
ly|<d FeF

For such a ¢ one has

sup ||y x F' — F|pimny < €/2 + 2sup || F|| 11 @n) o(y)dy.
FeF FeF

[
|y|2?

Taking limit as ¢ — 0 one gets (6).
To obtain (7) use that F' — ¢; * F' is continuous from L'(R") to Cy(R™).
Hence {¢; % F': F' € K} is relatively compact in Cy(R™). O

Proof of Theorem 1.7.
Assume T is of restricted weak type (1,...,1,¢q). Let N € N;A > 0 and
let f; # 0 be a non-negative simple functions on R™ for 1 < < k and denote

Fy) = filya)--fu(yn)-
Let us show that there exists C' > 0 (independent of N)

C k
my""({Je] < N sup |Tx,(fi, o fi) ()] > A}) < ;H I fillr@niy - (10)
=1

1<j<N
Let t >0 and 1 < 5 < N and let us use the notation

Kin(z,y) = Kj(2,9)X{jo|<n} (7),

I~(t7j7N(a:, Yy ooy Yp) = /l Py(x —u)K; n(u, 1, ..., Yi)du.
R

Consider the Banach space

Xy = L'R™, ) = {(g) - / sup |g;(»)ldy < oo},

Rn 1<j<N
and ®y : R! — Xy given by
Py(r) = (K?(SU)X{|I|§N})§V=1' (11)

From the assumption (1) one has K9y € L'(R', L'(R"))). Hence ®y €
LYR!, Xy) and (K, \)N.| = P, + Oy,
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Taking into account (5) in Lemma 2.1 one obtains that there exists A C R’
with m;(A) = 0 and if = ¢ A then

lim sup |Pt * Kj,N<x7y17 7yk) - Kj,N(xayh 7yk)|dy1dyk = 0.
=0 Jrn 1<j<N

Therefore, if z ¢ A then

lim sup T, - (fro fo) (@) = sup (T, (1 fi)(2))]

t—=01<j<N 1<j<N

Now, for any n > 0,

mi{lz] < Nosup [Tie, (i, oo i) (@)] > })

1<5<

= m{z ¢ A: sup |TKJN(f17--7fk)($)|>77})

1<5<

tim infm, ({|z] < N : égN!Tgl/Mm(ﬁ, o fe) (@) > m}).

IN

Let M € N be fixed. Using (2) in Lemma 2.1 one has that
KY {2l < N} — LY(R™)

is continuous for all 1 < j < N. Hence F;;n = {(f(l/M’j,N)x x| < N}
is relatively compact in L!'(R™) for each 1 < j < N. Select, for instance,
o(y) = W in Lemma 2.2 and define Hy, ;(2,y) = ¢ * (Ki/pjn)e
for 1 < j < N. Let us denote

Ty, (f1; e fio) (@) = . Hyg (@91, y) fr(yn) - fi(yn)dyn .. dys.
If 1 <j<Nand|z|] <N then
T, g S f) (@) = Ty, (f1s o fi) ()]
| VRysasten) = Higy el Fw)ldy

||f||L<>o(Rn)H¢t * (KI/M,j,N)x - (f(l/M,j,N)mHLl(Rn)

IN

IA

For a given € > 0, from (6), there exists t = ¢(M) > 0 such that

- - €
sup ||(K1/M,j,N)$ - ¢t * (KI/M7j7N):E||L1(R") <ta
1<j<N,|z|<N I|.f || oo ()



Therefore, for 1 < 7 < N and |z| < N,

Tty g (1 oo F)(@) = Ty, (frs s fi) ()] < e (12)

On the other hand, from (7) there exists § > 0 such that

€

sup [Hy(a,y) — Hyy(@,y)] < T e
1<j<N,|z|<N L1 (Rn)

Now consider, for 1 <7 < k, R™" = U §N ) where I are d18301nt cubes

with length side 0 (in particular, m,, ( = 0™ and dzam( ) < /1)

and write f; = Zylag)xlm for some ag) > 0. Denote a@ = ||fillco-

Since oz() < a' and the Lebes ue measure is non- at0m1c we can then find
JO 1 Such that am,, (Js ) = ag)mni(fé )) = a{’§". Hence, denoting
B0 = US:1JS and £ = EW x ... x E® one gets | f;]|1 = aPm,,(ED) and
£l = aW...a®m,(E) .

Let us write I(j, ;) = 117 x . x I1 and Jy, g = T x o x T for
1<y <M;and 1 <[ <k. One has

THt (fla ceey fk)(x) - TH}VI,J‘ (&(1)XE(1>7 ceey Oé(k)XE(M)(w) =

- Z Z( (1)"' TH’f (XI(_I),...,XI(_k))(.Z')
J1 ik

Ji=1  gp=1

— a(l)...a(’“)THMj(XJJ(P,---,XJJ(_?)(?E))

M), M,
1 k
S (o [ il
Jji=1l  gk=1 LT )
- ool / Hiy (. y)dy)
J(Jl vvvvv Jk)
Now, denoting agj, ... j,) = agi)...ag-]:) and @ = aW...a® one has that
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Now observe that y € I(;,

.....

THt (f17 sy fk)(‘r) - TH]th (a(l)XE(l)u L) a/(k)XE(k))<x) =

vvvv (J15--53k)
My Mj,
Z Z Q... gk)mn(I(m ~~~~~ Jk))
ji=1  jp=1
1 / / t / /
x( HM x,y)dy — Hy, .(x,y)dydy>
an(] ..... ]k))mWf(J(]l ~~~~~ I(]l ..... Jk) J( """ ? ’

s and ¢y € J(Jl ,,,,, i) then |y — /| < /nd.

77777

Hence (13) shows that, for 1 < j < N and |z| < N

IA

VAN

’THJtVI,j (fl, cen f]g)(l') - CVT‘H]tM’j (XE(l)v ey XE(M)(‘%)‘ <

My Mj,
Z Z Ay, jk)mn(I(]l ~~~~~ Jk))
a=l =1
1
5 Sh et
mn(l(h ,,,,, ]k))mn(J(Jl ~~~~~ TGy i) 7 G ? ’
‘ k M; ]
o I ellm))
g Ji=

k
||f€||1 ljl: Hf%”l =c

Therefore, using (12) and the previous estimate one gets

my({|z| < N : sup | KI/MJN(fl,...,fk)(:U)\ > A+ 3¢}

1<5<
< m{{]z| < N: sup |THt (fl,..., fi)(@)] > X+ 2¢})
1<5<
< m({]z]| < N : sup |THt ( (I)XE(l),...7O[(k)XE(k))(l')| > A+ €}
1<5<N
A
< m({fel <N sup [Tz, 00 Oe, o Xew)(@)] > .

1<j<N
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From the restricted weak type assumption we conclude that

A
my({[z] < N : 1§?£N|TRI/MJ,N(XE<1>, o Xp) ()] >
A

m({lz] < Nv sup [T, (Xpo, - Xew)(@)] > 5~}
1<j<N a
A

+ omu(le] < N [Pyax Ov(e) = Pn(a)llxy > o}

IN

IN

A
mi({lz] < N sup [T, (Xpo, - Xpw ) ()] > o~}
1<j<N o

2cv
+ ol Pyax By = Bl xy

aq q 206

< CmA(E) + TP x Oy — vl xy)
112 ey 20

= O 2 e Bl

PV

Taking liminf,; .., and combining all the previous estimates one gets

my"({la < N ¢ sup [T, (fi, s fi) (@) > A+ 36} < Cwnﬁlﬂ

1<j<N

Finally, since € > 0 is arbitrary one gets (10).
Using that {|z| < N :sup,<;«n [Tk, (f1, -, fe)(x)| > A} is an increasing
sequence, one concludes

k
Hi:l ||fi||L1(R"i)
A

m"({x € R |T*(fu, o, fi)(@)| > A} < C (14)

for all simple functions f; > 0,1 <i < k.

Let us now extend (14) for integrable functions f;. Let f; > 0 be an
arbitrary integrable function in L'(R™) with ||f;]l; =1 fori =1,.., k.

For each N, j € N denote

CinN) = s mi{la] < N T, (g1, 96) ()] > A

lgill L1 mniy=1

Given € > 0 there exists Ao > 0 such that Cjy(n) < ;5 for n > Ao and
1<j<N.
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_On the other hand, for each 1 < i < k, N € N we can find a simple
f](\;) > 0 such that f](\i) < fiand ||f; — f](\?HLl(Rni) <%
Denote

BY(N) = {z € R": [Ti, (fi = £, for s fi)| > €},
and, for 2 <i < N,
BO(N) = {w € R : |Tie, (f 8 fi = £ Fis oo Fi)] > €}

Set BO(N) = UYB(N) and B(N) = UL, BY(N). Note that

N k
mi(B(N)) < >3 my(BY(N))
j=1 i=1
N k 1—1 ' ‘
< SN Ole/ TTIE Nni @il fi = £9 1 @en) < e
j=1 i=1 j=1

Since
Tr,(f1s s f&) = TKj(fl_f](Vl)af27”’7fk>
k—1
+ ZTKJ( ](\71)7--'a J(\?_l)afi_ ](\;)7fi+17'-'7fk)
i=2

k— k
+ TK](f](\/})77f](\[ 1)7fk_ ](V))
1 k
+ TKj(f](V)""7 ](V))a

then, for each = ¢ B(N), one has
sup |Tx, (fi, - fi) @) < sup [T, (F\, .. f)(@)] + ke
I<j<N 1<G<N

< T ) (@) + ke

Therefore

13



my({x € R": sup Trc; (f1y s fr)(@)| > A+ ke}) <

1<j<N

< wa%MN%QgMEAﬁWJm@N>M+mM%M)
< m({z ¢ BIN):T*(fV, . f9)(2) > A} + ¢
k
< G IR g+«
< §5(1+)\0) +e€.

and multilinearity we conclude that

>IQ

Mz e R T (f1, .., fi)(@)] > A}) <

!
H | fill L1 (mnsy

for non negative integrable functions f;. The case of complex-valued functions
in now immediate using the multilinearity of the operators.
O
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