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Abstract

A sequence (xj) in a Banach space X is (p, q)-summing if for any weakly q-summable
sequence (x∗

j ) in the dual space we get a p-summable sequence of scalars (x∗
j (xj)).

We consider the spaces formed by these sequences, relating them to the theory of
(p, q)-summing operators. We give a characterization of the case p = 1 in terms of
integral operators, and show how these spaces are relevant for a general question
on Banach spaces and their duals, in connection with Grothendieck theorem.

Key words: Sequences in Banach spaces, bounded, integral and (p, q)-summing
operators, type and cotype, Grothendieck theorem.

1 Definitions and basic results

In all that follows X is a Banach space over the field K = C or R. We shall use
the usual terms X∗ for the dual space of X, L(X, Y ) for the space of bounded
linear operators between two Banach spaces, and BX and SX for the unit ball
and sphere in X; X � Y means that X and Y are isometrically isomorphic.
We write the action of an operator or functional on x merely as ux and x∗x,
though we prefer to use x∗(x) or 〈x∗, x〉 if we think it helps, and we use the
tensor form for expressing finite rank operators: (x∗ ⊗ y)x = x∗(x)y. Finally,
(ej) is the canonical basis of the sequence spaces �p and c0, p′ denotes the
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conjugate exponent of p, α+ = max{α, 0} for any real α, and ‖ · ‖p stands for
the usual p-norm of a sequence or function.

Definition 1 Let p, q ∈ [1,∞). A sequence (xj) in X is called a (p, q)-
summing sequence if there exists a constant C ≥ 0 for which

( n∑
j=1

|x∗
jxj|p

)1/p

≤ C sup
{( n∑

j=1

|x∗
jx|q

)1/q

: x ∈ BX

}

for any finite collection of vectors x∗
1, . . . , x

∗
n in X∗.

The least such C is the (p, q)-summing norm of (xj), denoted by πp,q[xj] or (in
case of ambiguity) πp,q[xj;X], and �πp,q(X) is the space of all (p, q)-summing
sequences in X. If p = q we simply write πp[xj] and �πp(X), the space of
p-summing sequences in X.

We believe our notations are justified as long as these sequences in X ⊆
X∗∗ are multiplier sequences from �w

q (X∗) to �p, special instances of the more
general class of (p, q)-summing sequences of operators (uj) in L(X, Y ) for two
Banach spaces X and Y : those such that ‖(ujxj)‖
p(Y ) ≤ C‖(xj)‖
w

p (X) for a
constant C. Note that a constant sequence (uj = u) satisfies this if and only
if u ∈ Πp,q(X, Y ), i.e. u is a (p, q)-summing operator, and the least C equals
πp,q(u), the (p, q)-summing norm of u (the p-summing norm πp(u) if p = q).

We refer the reader to the forthcoming paper [1] for further results on this
more general setting; see also [2] for the particular case p = q, X = Y and
uj = αj idX . A quite recent and very good source book on p-summing norms
and related topics is [3]. Some other good references are [4], [5] and [6].

Remark 1 (�πp,q(X), πp,q) is a Banach space. This follows readily once we
note that it is closed as a subset of L(�w

q (X∗), �p).

Remark 2 The obvious modifications in the definition for p = ∞ or q = ∞
make sense, but then clearly �πp,∞(X) = �p(X) and �π∞,q(X) = �∞(X).

Remark 3 A standard use of the weak Principle of Local Reflexivity (see [6],
p. 73) shows that (x∗

j) ⊂ X∗ is (p, q)-summing if and only if

( n∑
j=1

|x∗
jxj|p

)1/p

≤ C sup
{( n∑

j=1

|x∗xj|q
)1/q

: x∗ ∈ BX∗

}
,

where C is a constant independent from n and x1, . . . , xn ∈ X.

In particular �πp,q(X) = �πp,q(X
∗∗) ∩ �∞(X).

Let us omit as well the simple proofs of the following facts:
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Lemma 1 Let 1 ≤ p, q < ∞, (αj) ⊆ K and x ∈ X: Then

πp,q[αjx] = ‖(αj)‖r‖x‖ ,

where 1/r = ((1/p) − (1/q))+.

Proposition 1 Given 1 ≤ p, q, let r such that (1/r) = ((1/p)−(1/q))+. Then

�p(X) ⊆ �πp,q(X) ⊆ �r(X),

with continuous inclusions of norm 1.

Actually, if X is finite dimensional then �πp,q(X) = �r(X).

To verify the last claim, recall that X is finite dimensional if and only if
�w
q (X) = �q(X) for any q ∈ [1,∞).

Remark 4 Note that �πp,q(X) ⊂ c0(X) if and only if p < q.

Furthermore, any non trivial constant sequence is in �πp,q(X) if and only if
p ≥ q; this corresponds to the fact that the notion of (p, q)-summing operator
only makes sense for p ≥ q, since otherwise πp,q(u) < ∞ only if u = 0; in
contrast with that, any finite sequence is obviously a (p, q)-summing sequence
for any p and q.

Lemma 2 Given 1 ≤ t ≤ s < ∞, let r such that 1/r = (1/t) − (1/s). Then
we have, for any x∗

1, x
∗
2, . . . , x

∗
n ∈ X∗,

(
n∑

j=1

‖x∗
j‖s)1/s = sup{(

n∑
j=1

|x∗
jxj|t)1/t : ‖(xj)‖
r(X) = 1}.

PROOF. For t = 1 this is just the duality �s(X
∗) = (�s′(X))∗.

The general case follows from

(
n∑

j=1

|x∗
jxj|t)1/t = sup{

n∑
j=1

|αjx
∗
jxj| :

n∑
j=1

|αj|t
′
= 1}.

Note that �s′(X) = �t′�r(X), and then

sup{
n∑

j=1

|αjx
∗
jxj| :

n∑
j=1

|αj|t
′
= 1, ‖(xj)‖
r(X) = 1}

= sup{
n∑

j=1

|x∗
jyj| :

n∑
j=1

‖yj‖s′ = 1} = (
n∑

j=1

‖x∗
j‖s)1/s.

Theorem 1 If 1 ≤ p ≤ q < ∞, the following are equivalent:
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(a) X is finite dimensional.

(b) �πp,q(X) = �r(X) for 1/r = (1/p) − (1/q).

PROOF. We only have to show that (b) implies (a). By the previous lemma

(
n∑

k=1

‖x∗
k‖q)1/q = sup{(

n∑
k=1

|x∗
kxk|p)1/p :

n∑
k=1

‖xk‖r = 1}.

Therefore �r(X) ⊆ �πp,q(X) implies �w
q (X∗) = �q(X

∗).

We’ll see later on that there are infinite dimensional spaces X such that
�πp,q(X) = �∞(X) for certain p > q.

Let us remark now another difference between the cases p < q and p ≥ q: note
first that, in general, the πp,q-norm of any sequence is independent from any
reordering of its terms:

Proposition 2 Let (xj) a bounded sequence in X, and let 1 ≤ p, q. Then

πp,q[xσ(j)] = πp,q[xj]

for any bijection σ : N → N.

The proof follows from the definition and the fact that the p-norm and the
weak q-norm are reordering invariant.

When p ≥ q we can say more:

Proposition 3 Let (xj) a bounded sequence in X, and let 1 ≤ q ≤ p < ∞.
Then

πp,q[xσ(j)] ≤ πp,q[xj]

for any map σ : N → N.
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PROOF. Given x∗
1, x

∗
2, . . . , x

∗
n ∈ X∗ we have

( ∑
j

|x∗
jxσ(j)|p

)1/p
=

( ∑
k

(
∑

σ(j)=k

|x∗
jxk|p)

)1/p ≤
( ∑

k

(
∑

σ(j)=k

|x∗
jxk|q)p/q

)1/p

=
( ∑

k

∣∣∣( ∑
σ(j)=k

αjx
∗
j)xk

∣∣∣p))1/p
(where (αj)σ(j)=k ∈ B
q′ )

=
( ∑

k

|y∗kxk|p
)1/p

(with y∗k =
∑

σ(j)=k

αjx
∗
j ∈ X∗)

≤ πp,q[xj] ‖(y∗k)‖
w
q (X∗) = πp,q[xj] sup

‖(βk)‖q′≤1

∥∥∥ ∑
k

βky
∗
k

∥∥∥
= πp,q[xj] sup

‖(βk)‖q′≤1

∥∥∥ ∑
j

αjβσ(j)x
∗
j

∥∥∥
≤ πp,q[xj] sup

‖(γj)‖q′≤1

∥∥∥ ∑
k

γjx
∗
j

∥∥∥ = πp,q[xj] ‖(x∗
j)‖
w

q (X∗) .

The result does not hold if 1 ≤ p < q: take σ a constant map.

Proposition 3 implies that all (p, q)-sequences satisfy something apparently
stronger than the condition in Definition 1:

Corollary 1 For any p ≥ q ≥ 1, a sequence (xj) ⊂ X is (p, q)-summing if
and only if there exists a constant C such that

( n∑
k=1

sup
j

|x∗
kxj|p

)1/p ≤ C sup
x∈BX

( n∑
k=1

|x∗
kx|q

)1/q

for any x∗
1, . . . , x

∗
n ∈ X∗, and the least such C is πp,q[xj].

2 (1, q)-summing sequences as integral operators

Recall that u ∈ L(X, Y ) is p-integral if the composition X
u→ Y

jY−→ Y ∗∗

equals X
β→ L∞(µ)

ip−→ Lp(µ)
α→ Y ∗∗ for some positive measure µ and

bounded operators α and β (ip and jY are the respective inclusions).

The p-integral norm of u is the infimum of all the possible values of ‖α‖‖β‖
in the previous expression. The set of p-integral operators (a Banach operator
ideal) is denoted by Ip(X, Y ). For p = 1 it is denoted simply by I(X, Y ), the
space of integral operators.

Any p-integral operator u is also p-summing, and πp(u) is not greater than
the p-integral norm, but the converse is not true in general. Basic results on
p-integral operators can be seen in [3].
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We’ll make use of the following fact: u : X → Y is integral if and only if there
exists a constant C > 0 such that

| tr(uv)| ≤ C‖v‖

for any finite rank linear operator v : Y → X, and the least such C is the
integral norm of u.

This makes easy to characterize the (1, q)-sequences in terms of integral oper-
ators:

Theorem 2 For any 1 ≤ q < ∞, a sequence (xj) ⊂ X is (1, q)-summing if
and only if it defines an integral operator u : �q → X by uej = xj, and the
integral norm of u is then π1,q[xj].

PROOF. Let u an integral operator �q → X with uej = xj for all j, and
let C its integral norm. Given x∗

1, . . . x
∗
n ∈ X∗, let v =

∑n
j=1 x

∗
j ⊗ λjej, where

λj = sgn(x∗
jxj). Then

n∑
j=1

|x∗
jxj| =

n∑
j=1

λjx
∗
jxj = tr(uv) ,

so
∑n

j=1 |x∗
jxj| ≤ C‖v‖, and ‖v‖ is just ‖(x∗

j)‖
w
q (X∗). Then π1,q[xj] ≤ C.

Conversely, let (xj) ∈ �π1,q(X). Then (xj) ∈ �q′(X), so u : ej �→ xj defines a
bounded operator in L(�q, X). Now, if v =

∑n
j=1 x

∗
j ⊗ ξj with ξj = (ξjk)k ∈

�q then, for v∗k =
∑

j ξjkx
∗
j ∈ X∗, it turns out that | tr(uv)| =

∑
k |v∗kxk| ≤

π1,q[xk]‖(v∗k)‖
w
q (X∗) and ‖(v∗k)‖
w

q (X∗) = ‖v‖, giving that the integral norm of u
is bounded by π1,q[xj].

As an application of Theorem 2, we can identify the sequences in �π1,q(L1(µ)),
for any σ-finite space µ:

For any Banach lattice X, an operator u : X → L1(µ) is integral if and only

if
∫ (

sup
x∈BX

|ux|
)
dµ < ∞, its value being the integral norm of u (see Th. 5.19

in [3]). If applied to X = �q, Theorem 2 gives the following:

Theorem 3 Let 1 ≤ q < ∞, and let µ a σ-finite measure. Then (fj) ∈
�π1,q(L1(µ)) if and only if

∫
‖(fj(w))‖
q′dµ(w) < ∞ ,

and then the integral equals π1,q[fj].
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PROOF. Just note that sup
‖(λj)‖q=1

∣∣∣ ∑
j

λjfj(w)
∣∣∣ = ‖(fj(w))‖q′ for any w in the

measure space.

When 1 < q < ∞ it results that �π1,q(L1(µ)) � L1(µ, �q′). This is true for
q = ∞, since �π1,∞(L1(µ)) = �1(L1(µ)) � L1(µ, �1).

As for q = 1, recall that we can have
∫

sup
j

|fj(w)|dµ(w) < ∞ with w �→
(fj(w)) not being a measurable function. For example, for the Rademacher

functions rj in
(
[0, 1], dt

)
we have that {(rj(t)) : t ∈ [0, 1]} = {−1, 1}N is

not esentially separable and then the sequence does not define a function in
L1(dt, �∞). Anyway (rj) ∈ �π1

(
L1[0, 1]

)
, as Theorem 3 gives the following for

q = 1:

Corollary 2 Let µ a σ-finite measure. Then (fj) ∈ �π1(L1(µ)) if and only if
there exists another function f ∈ L1(µ) such that, for every j, |fj| ≤ f µ-a.e.

Another consequence of the interpretation of π1-sequences as integral opera-
tors is the following:

Corollary 3 Let (xj) be a bounded sequence in X. Then (xj) ∈ �π1(X) if
and only if there exist a Banach space Y , a sequence (y∗j ) ∈ �∞(Y ∗) and
u ∈ Π1(X

∗, Y ) such that xj = y∗j ◦ u ∈ X∗∗ for each j.

PROOF. Let us assume that such u and (y∗j ) do exist. The constant sequence
(uj = u) is a multiplier from �w

1 (X∗) to �1(Y ), and so it is (y∗j ) from �1(Y ) to
�1, so the composition (xj) = (y∗j ◦ u) belongs to �π1(X

∗∗).

Conversely, if (xj) ∈ �π1(X) then Theorem 2 says that v : �1 → X given by
vej = xj is an integral operator, and in particular v∗ is absolutely summing
(v∗ is integral if v is so, and integral operators with values in �∞ are absolutely
summing). Then we can take Y = �∞, u = v∗ and (y∗j ) = (ej) in �1 ⊂ (�∞)∗.
Since ej(v

∗x∗) = x∗(vej) = x∗xj for any x∗ ∈ X∗ and each j, the result follows.

3 Inclusions among the spaces �πp,q
(X)

Let us point out first some elementary embeddings among these spaces.

Proposition 4 Let 1 ≤ r, s < ∞, 1 ≤ p1 ≤ p2, 1 ≤ q1 ≤ q2 and 1 ≤ p ≤ q.
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Then

�πp1,s(X) ⊆ �πp2,s(X) ,

�πr,q2
(X) ⊆ �πr,q1

(X) and

�πp(X) ⊆ �πq(X) ,

with continuous inclusions of norm 1.

In particular, for 1 ≤ p, q < ∞

�π1,q(X) ⊆ �π1(X) ⊆ �πp(X) ⊆ �πp,1(X).

We can actually show the following more general result:

Theorem 4 Let p, q, r and s such that 1 ≤ p ≤ r, 1 ≤ q, s and (1/q)+(1/r) ≤
(1/p) + (1/s). Then �πp,q(X) ⊆ �πr,s(X), with continuous inclusion of norm 1.

PROOF. The case s ≤ q follows from the norm 1 inclusions �w
s (X∗) ⊆ �w

q (X∗)
and �p(X) ⊆ �r(X). If q < s, then for r = ∞ or s = ∞ the result is true
by Remark 2 and Proposition 1. So we assume that q < s and r, s < ∞.
Then 1 < r/p, s/q < ∞; let a and b their conjugate numbers, that is 1 =
(1/a) + (p/r) = (1/b) + (q/s).

If πp,q[xj] ≤ C, for any finite set of vectors x∗
j in X∗ we have, for appropriate

scalars αj ≥ 0 such that
∑

αa
j = 1, that

(∑
j

|x∗
jxj|r

)1/r
=

( ∑
j

|x∗
j(α

1/p
j xj)|p

)1/p ≤ C sup
‖x∗‖≤1

( ∑
j

α
q/p
j |x∗xj|q

)1/q
.

From our assumptions we have that ap ≤ bq, so that
∑
j

α
q
p
b

j ≤ 1, and for any

x∗ Hölder inequality gives
( ∑

j α
q/p
j |x∗xj|q

)1/q ≤
( ∑

j |x∗xj|s
)1/s

. This shows

that πr,s[xj] ≤ C.

3.1 The role of type and cotype

Recall that Radp(X) is the closure in Lp([0, 1], X) of the set of functions of
the form

∑n
j=1 rjxj, where xj ∈ X and (rj)j∈N are the Rademacher functions

on [0, 1]. By Kahane–Khintchine inequalities (see [3], page 211) it follows that
Radp(X) coincide up to equivalent norms for all p < ∞. The space is denoted
then Rad(X). Given 1 ≤ p ≤ 2 (respect. q ≥ 2), a Banach space X is said
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to have (Rademacher) type p (respect. (Rademacher) cotype q) if �p(X) ⊆
Rad(X) (respect. Rad(X) ⊆ �q(X)).

We know by Proposition 1 that, for finite dimensional X, if (1/p) − (1/q) =
(1/r)− (1/s) then �πp,q(X) = �πr,s(X). In order to find conditions that ensure
�πp,q(X) = �πr,s(X) if (1/q) + (1/r) = (1/p) + (1/s) we give the following
lemma:

Lemma 3 Let 1 < r < ∞. Then �w
1 (X) = �r�

w
r′(X) if and only if L(c0, X) =

Πr(c0, X).

PROOF. Assume �w
1 (X) = �r�

w
r′(X) and take u ∈ L(c0, X). If xj = u(ej)

then (xj) ∈ �w
1 (X), so we write xj = u(ej) = αjx

′
j where (αj) ∈ �r and

(x′
j) ∈ �w

r′(X). This allows to factorize u = wv, where v ∈ L(c0, �r) is given
by v(ej) = αjej and w ∈ L(�r, X) is given by w(ej) = x′

j. It is not difficult to
show (see [3], page 41) that v ∈ Πr(c0, �r), and then u ∈ Πr(c0, X).

Conversely, assume L(c0, X) = Πr(c0, X) and let us take (xj) ∈ �w
1 (X). Con-

sider now the operator u : c0 → X defined by u(ej) = xj. From the assumption
u ∈ Πr(c0, X). Now, since (ej) ∈ �w

1 (c0) and u ∈ Πr(c0, X), then (see [3], page
53) u(ej) = αjx

′
j with (αj) ∈ �r and (x′

j) ∈ �w
r′(X).

Proposition 5 Assume that L(c0, X
∗) = Πs′(c0, X

∗) for some 1 < s < ∞ .
Then �πr,s(X) ⊆ �πp,q(X) for any 1 ≤ p, q, r < ∞ such that (1/p) − (1/q) =
(1/r) − (1/s).

PROOF. Let us take (xj) ∈ �πr,s(X) and (x∗
j) ∈ �w

q (X∗). To show that
(x∗

jxj) ∈ �p, it suffices to see that for any (αj) ∈ �q′ we get (αjx
∗
jxj) ∈ �u

where (1/p) + (1/q′) = 1/u. Given now a sequence (αj) ∈ �q′ we have that
(αjx

∗
j) ∈ �w

1 (X∗). Using Lemma 3 we have that there exist (βj) ∈ �s′ and
(y∗j ) ∈ �w

s (X∗) such that αjx
∗
j = βjy

∗
j . Therefore (αjx

∗
j) = (βjy

∗
jxj) ∈ �s′�r = �u

since 1/u = (1/p) + (1/q′) = (1/s′) + (1/r).

Combining Theorem 4 and Proposition 5 we get the following:

Theorem 5 Let X such that L(c0, X
∗) = Πs′(c0, X

∗) for some 1 < s < ∞.
Then �πr,s(X) = �πp,q(X) whenever 1 ≤ p, q, r, s < ∞ are such that 1 ≤ p ≤ r
and (1/p) − (1/q) = (1/r) − (1/s).

Proposition 6

(a) If X has cotype 2 then �w
1 (X) = �2�

w
2 (X).
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(b) If X has cotype q > 2 then �w
1 (X) = �r�

w
r′(X) for any r > q.

PROOF. Use Lemma 3 and the fact that L(c0, Y ) = Π2(c0, Y ) for any Y of
cotype 2 and L(c0, Y ) = Πr(c0, Y ) for any Y of cotype q > 2 and r > q (see
Theorem 11.14 in [3]).

Remark 5 Let X be any space with GL-property (see Page 350, [3] for def-
inition and results). Then X has cotype 2 if and only if �w

1 (X) = �2�
w
2 (X).

Actually it holds that L(c0, X) = Π2(c0, X) if an only if X is of cotype 2, (see
page 352, [3]).

Remark 6 Recall that X is a G.T. space if L(X, �2) = Π1(X, �2) (the term
comes after Grothendieck theorem, that asserts that this is the case for X =
L1(µ)). Then �w

1 (X) = �2�
w
2 (X).

Indeed, if u ∈ L(c0, X) then u∗ ∈ L(X∗, �1). Now GT property on X gives
that u∗ ∈ Π2(X

∗, �1) (see [4], page 71 ) which implies that u∗ factors through
a Hilbert space, and so u does. Therefore u ∈ Π2(c0, X).

Corollary 4 If X∗ has cotype 2 then �πp,q(X) = �πr,2(X) for any p ≤ r and
1/q = (1/p) − (1/r) + (1/2).

In particular �π1(X) = �π2(X) and �π1,q(X) = �πr,2(X) for 1/r = (1/q′)+(1/2).

Corollary 5 If X∗ has cotype q0 > 2 then �πp,q(X) = �πr,s(X) for any p ≤ r,
s < q′0 and (1/p) − (1/q) = (1/r) − (1/s).

In particular �πp(X) = �π1(X) for any 1 ≤ p < q′0 and �π1,q(X) = �πr,s(X) for
s < q′0 and 1/r = (1/q′) + (1/s).

Proposition 7 Let 1 ≤ q ≤ p < ∞ and r ≥ p′. Then the following are
equivalent:

(a) idX∗ is (p, q)-summing.

(b) �r(X) ⊆ �πs,q(X) for any 1 ≤ s ≤ r such that 1/s = (1/r) + (1/p).

Moreover, πp,q(idX∗) = sup{πs,q[xj] : ‖(xj)‖
r(X) = 1}.

PROOF. Assume first that the identity in X∗ is (p, q)-summing. If r and s
are as stated, (xj) ∈ B
r(X) and x∗

1, . . . , x
∗
n ∈ X∗ we see that

( ∑
j

|x∗
jxj|s

)1/s ≤
( ∑

j

‖x∗
j‖p

)1/p ≤ πp,q(idX∗) ‖(x∗
j)‖
w

q (X∗).
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Conversely, we assume now that �r(X) ⊆ �πs,q(X) and take x∗
1, . . . , x

∗
n in X∗.

From Lemma 2 we have

( ∑
j

‖x∗
j‖p

)1/p
= sup{(

n∑
k=1

|x∗
kxk|s)1/s :

n∑
k=1

‖xk‖r = 1}.

Then (xj) is of norm 1 in �r(X), and if C is the norm of the inclusion of �r(X) in

�πs,q(X) we have
( ∑

j

|x∗
jxj|s

)1/s ≤ C‖(x∗
j)‖
w

q (X∗). This yields
( ∑

j

‖x∗
j‖p

)1/p ≤

C‖(x∗
j)‖
w

q (X∗).

Some particularly interesting cases are given in the following corollaries.

Corollary 6 For any X and 1 ≤ p the following are equivalent:

(a) idX∗ is (p, 1)-summing.

(b) �∞(X) = �πp,1(X).

(c) �p′(X) ⊆ �π1(X).

Moreover, if p ≥ 2 they hold if and only if X∗ has cotype p.

PROOF. Only the last claim deserves a proof. It is due to the deep result,
due to M. Talagrand (see [7]), that asserts that for 2 < q < ∞ the identity in
any Banach space Y is (q, 1)-summing if and only if Y has cotype q.

Remark 7 As for p = 2, we get that �2(X) ⊆ �π1(X) if and only if �∞(X) =
�π2,1(X), if and only if X∗ has the so-caled Orlicz property, i. e. idX∗ is (2, 1)-
summing. However, although cotype 2 is a sufficient condition to have the
Orlicz property it is not necessary (see [8]).

These inclusions are the best possible when dealing with infinite dimensional
spaces:

Corollary 7 For any Banach space X the following are equivalent:

(a) X is finite dimensional.

(b) �πp,q(X) = �∞(X) for some p ≥ q with (1/q) − (1/p) < 1/2.

(c) �s(X) ⊆ �πp,q(X) for some 1 ≤ p ≤ q and p < s < r with (1/s) − (1/r) <
1/2.

(d) �πp,1(X) = �∞(X) for some (or for all) 1 ≤ p < 2.

11



(e) �p′(X) ⊆ �π1(X) for some (or for all) 1 ≤ p < 2.

PROOF. To see that (b) implies (a) use the fact that idX∗ ∈ Πp,q(X
∗, X∗)

for (1/q)− (1/p) < 1/2. This gives that X∗ is finite dimensional (see [3], page
199).

If (c) is true then Proposition 7 says that idX∗ ∈ Πq1,q(X
∗, X∗) for (1/s) +

(1/q1) = (1/p), what again gives (a) because (1/q) − (1/q1) < 1/2.

(d) is the particular case of (b) for q = 1.

(e) is equivalent to (d) by Corollary 6.

Remark 8 For p > 1 and 1 ≤ q < ∞, in general �πp,q(X) �= Ip(�q, X).

Indeed, recalling that I2(X, Y ) = Π2(X, Y ) for every couple of spaces X and Y
(see Corollary 5.9 in [3]), we conclude that �π2,1(�∞) �= I2(�1, �∞): By Corollary
6 we have that �π2,1(�∞) = �∞(�∞) � L(�1, �∞), but L(�1, �∞) does not coincide
with Π2(�1, �∞) because Π2(�1, �∞) = Π1(�1, �∞) (for �1 is of cotype 2, and
Corollary 11.16 in [3] applies), and on the other hand Π1(�1, �∞) �= L(�1, �∞):
the operator given by x ∈ �1 �→ (

∑n
j=1 xj)n ∈ �∞ is not absolutely summing

(see [5], exercise III.F.3).

Proposition 8 Let E a Banach subspace of X. Then we have that �πp,q(E) ⊆
�∞(E) ∩ �πp,q(X), but equality does not hold in general.

PROOF. The embedding is straightforward.

Let us show that for p = q = 1 there exists E such that �π1(E) �= �∞(E) ∩
�π1(X):

Take E such that �2(E) �⊆ �π1(E) (for instance E = �1). Since E is a subspace
of X = �∞(Γ) for Γ = BE∗ and (�∞(Γ))∗ = (�1(Γ))∗∗ is of cotype 2 , then
�2(E) ⊆ �∞(E) ∩ �π1(X). Therefore �∞(E) ∩ �π1(X) does not coincide with
�π1(E).

3.2 The (p, q)-summing norm of the canonical basis in �r

Theorem 6 Let p > q and 1/s′ = (1/q)− (1/p). Then �w
s (X) ⊆ �πp,q(X) with

inclusion of norm 1.
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PROOF. For any finite family of vectors (xj)1≤j≤n in X and (x∗
j)1≤j≤n in

X∗, since 1/p′ > 1/q′ and 1/p′ = (1/s′) + (1/q′) we can write

(
∑
j

|x∗
jxj|p)1/p = sup

‖(αj)‖p′=1
|
∑
j

αjx
∗
jxj|

= sup
‖(βj)‖s′=1

sup
‖(λj)‖q′=1

|
∑
j

βjλjx
∗
jxj|

= sup
‖(βj)‖s′=1

sup
‖(λj)‖q′=1

|
∫ 1

0
〈

∑
j

rj(t)λjx
∗
j ,

∑
k

rk(t)βkxk〉dt|

≤ sup
‖(βj)‖s′=1

sup
‖(λj)‖q′=1

sup
t∈[0,1]

‖
∑
j

rj(t)λjx
∗
j‖X∗‖

∑
k

rk(t)βkxk‖X

≤ ‖(x∗
j)‖
w

q (X∗)‖(xj)‖
w
s (X).

Corollary 8 For any p ≥ 1, �w
p (X) ⊂ �πp,1(X) with inclusion of norm 1.

As an application, we see next whether the sequence given by the canonical
basis (ej) belongs to �πp,q(�r), depending on the values of p, q and r.

Proposition 9 For any p ≥ 1 we have (ej) ∈ �πp,1(�p′), with πp,1[ej; �p′ ] = 1.

PROOF. Note that for p ≥ 2 this follows from Corollary 6, because (�p′)
∗ =

�p has cotype p.

For 1 ≤ p < 2, apply Corollary 8 to (ej) ∈ �w
p (�p′).

Theorem 7 (ej) ∈ �πp,q(�r) if and only if it holds that p = ∞ or 1/r ≤
(1/q) − (1/p). Moreover, in these cases πp,q[ej] = 1.

PROOF. For p < q we have that �πp,q(�r) ⊂ �( 1
p
− 1

q
)−1(�r). Hence (ej) ∈

�πp,q(�r) is only possible for q ≤ p. As the norm of the inclusion �n
q′ → �n

r′ is

n( 1
q
− 1

r
)+ , we see that

( n∑
j=1

|〈ej, ej〉|p
)1/p

= n
1
p ≤ πp,q[ej]n

( 1
q
− 1

r
)+ ,

which leads to p = ∞ or q < r with 0 ≤ 1/q − 1/p− 1/r.

Conversely, if p = ∞ then (ej) ∈ �∞(�r) = �π∞,q(�r). And if 1/q−1/p−1/r ≥ 0
then, by Proposition 9 and Theorem 4, we obtain

(ej) ∈ �πr′,1(�r) ⊆ �πp,q(�r).

The inclusion above is of norm 1, so πp,q[ej] = 1 when bounded.

13



This gives a new proof of the well-known fact that id : �p ↪→ �q is integral if
and only if p = 1 and q = ∞, according to Theorem 2.

4 (p, q)-summing sequences and Grothendieck theorem

Theorem 8 Let X be a Banach space. Then

�π1,2(X) ⊆ Rad(X) ⊆ �π1(X).

PROOF. Let us take a finite family of vectors (xj)1≤j≤n in X. Using that
L1([0, 1], X) isometrically embedds into the dual of L∞([0, 1], X∗), we have

∫ 1

0

∥∥∥
n∑

k=1

xkrk(t)
∥∥∥dt = sup

‖g‖L∞([0,1],X∗)=1

∣∣∣
n∑

k=1

〈xk

∫ 1

0
g(t)rk(t)dt〉

∣∣∣

≤ π1,2[xj] sup
‖g‖L∞([0,1],X∗)=1

sup
‖(αk)‖2=1

∥∥∥
n∑

k=1

αk

∫ 1

0
g(t)rk(t)dt

∥∥∥

= π1,2[xj] sup
‖g‖L∞([0,1],X∗)=1

sup
‖(αk)‖2=1

∥∥∥
∫ 1

0
(

n∑
k=1

αkrk(t))g(t)dt
∥∥∥

= π1,2[xj] sup
‖(αk)‖2=1

∫ 1

0

∣∣∣
n∑

k=1

αkrk(t)
∣∣∣dt

≤ π1,2[xj].

On the other hand, for any finite family of vectors (xj)1≤j≤n in X and (x∗
j)1≤j≤n

in X∗ we can write

n∑
j=1

|x∗
jxj| ∼ sup

εk=±1

∣∣∣
n∑

j=1

〈x∗
j , εjxj〉

∣∣∣

= sup
εk=±1

∣∣∣
∫ 1

0
〈

n∑
j=1

εjx
∗
jrj(t),

n∑
j=1

xjrj(t)〉dt
∣∣∣

≤
∥∥∥

n∑
j=1

xjrj

∥∥∥
Rad(X)

‖(x∗
j)‖
w

1 (X∗)

This gives the other inclusion.

By Khintchine inequalities one sees that L1(µ, �2) = Rad(L1(µ)), and Theorem
3 gives that �π1,2(L1(µ)) = Rad(L1(µ)). Actually, combining Theorem 8 with
Pisier’s results on G.T. spaces (see Theorem 6.6 and Corollary 6.7 in [4]) it is
easy to prove the following:
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Theorem 9 Rad(X) = �π1,2(X) if and only if X is a G.T. space of cotype 2.

Grothendieck theorem has been stated in a lot of equivalent ways. We shall
give yet another formulation of it in terms of the �πp,q spaces. It gives a partial
answer to a general question about the way that bounded sequences in X∗

interact with bounded sequences in X.

For any Banach space X, let us consider the bilinear map

VX : �∞(X∗) × �∞(X) → �∞(�∞)

given by VX

(
(x∗

j), (xk)
)

=
(
(x∗

jxk)k

)
j
. It is obvious that VX is bounded.

Note that, for the restricted map Vn,X : �n
∞(X∗) × �n

∞(X) → Mn(K) (defined
in the same way), it always holds that the linear span of the image is Mn(K).
Actually, for X = K,

(αj,k) =
n∑

j=1

n∑
k=1

Vn(αj,kej, ek).

It is also easy to observe that V
1(�∞(�∞) × �∞(�1)
)

= �∞(�∞): for any uni-

formly bounded infinite matrix (αj,k), if we set x∗
j = (αj,k)k ∈ �∞ then

(αj,k) = V
1

(
(x∗

j)j, (ek)k

)
.

However, for other Banach spaces the bilinear map is actually bounded not
only into �∞(�∞), but into a smaller space. This is the case for �p if 1 < p < ∞:

Theorem 10 Given 1 ≤ q ≤ p, Πp,q(�1, X) = L(�1, X) if and only if VX

defines a bounded bilinear map VX : �∞(X∗) × �∞(X) → �πp,q(�∞).

PROOF. Let (xj) ⊂ X and (x∗
j) ⊂ X∗ be such that ‖xj‖, ‖x∗

j‖ ≤ 1 for all j.
Let u : �1 → X the continuous operator such that uej = xj for all j; clearly
‖u‖ ≤ 1.

By hypothesis we can take C (independently of (xj)) such that πp,q(u) ≤
C‖u‖ ≤ C. That is,

‖(uyj)‖
p(X) ≤ C‖(yj)‖
w
q (
1)

for any finite family (yj) ⊂ �1. Therefore if ξj = x∗
j ◦ u for each j then

((〈ξj, ek〉)k)j = ((x∗
j(uek))k)j = ((x∗

jxk)k)j = VX((x∗
j), (xj)).

Consequently

‖(〈ξj, yj〉)‖
p = ‖(〈x∗
j , uyj〉)‖
p ≤ ‖(uyj)‖
p(X),
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and then

‖(〈ξj, yj〉)‖
p ≤ C‖(yj)‖
w
q (
1),

showing that πp,q[ξj; �∞] ≤ C.

Let us assume now that VX : �∞(X∗) × �∞(X) → �πp,q(�∞) is bounded with
norm C. Given u ∈ L(�1, X), for every finite family (yj) ∈ �1 we have that

‖(uyj)‖
p(X) = sup{‖(〈x∗
j , uyj〉)‖
p : (x∗

j) ⊂ BX∗}
≤ sup{πp,q[VX((x∗

j), (uej)); �∞] : (x∗
j) ⊂ BX∗} ‖(yj)‖
w

q (
1)

≤ C‖u‖ ‖(yj)‖
w
q (
1),

and then πp,q(u) ≤ C‖u‖.

In view of this, Grothendieck theorem is equivalent to the following result:

Corollary 9 If H is a Hilbert space, the bilinear form

VH : �∞(H) × �∞(H) → �π1(�∞)

is bounded, and its norm is Grothendieck constant KG.

Taking H = �2 (with no loss of generality), this is a particular case of the
following result:

Corollary 10 If 1 ≤ p ≤ ∞ and 1/r = 1 − |(1/p) − (1/2)|, then the bilinear
form

V
p : �∞(�p′) × �∞(�p) → �πr,1(�∞)

is bounded, with ‖V
p‖ ≤ 2
a
2K1−a

G , where a = |1 − 2/p|.

PROOF. Equivalently

πr,1(u) ≤ 2
a
2K1−a

G ‖u‖

for every operator u ∈ L(�1, �p), which is an extension, due to Kwapień, of
Grothendieck theorem (see [9], and also 34.11 in [6]).

Remark 9 Note in the previous result that 1 ≤ r ≤ 2. The case r = 2 is for
p = 1 (or p = ∞). By Corollary 6 we know that �π2,1(�∞) = �∞(�∞), so the
statement is trivial in this case. However, Corollary 6 tells us that for r < 2
the inclusion �πr,1(�∞) ⊆ �∞(�∞) is proper.
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