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Abstract

A sequence () in a Banach space X is (p, ¢)-summing if for any weakly g-summable
sequence (z7) in the dual space we get a p-summable sequence of scalars (z}(x;)).
We consider the spaces formed by these sequences, relating them to the theory of
(p, q)-summing operators. We give a characterization of the case p = 1 in terms of
integral operators, and show how these spaces are relevant for a general question
on Banach spaces and their duals, in connection with Grothendieck theorem.
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1 Definitions and basic results

In all that follows X is a Banach space over the field K = C or R. We shall use
the usual terms X* for the dual space of X, £(X,Y) for the space of bounded
linear operators between two Banach spaces, and Bx and Sx for the unit ball
and sphere in X; X ~ Y means that X and Y are isometrically isomorphic.
We write the action of an operator or functional on x merely as ux and z*zx,
though we prefer to use z*(z) or (z*, x) if we think it helps, and we use the
tensor form for expressing finite rank operators: (z* ® y)z = x*(x)y. Finally,
(ej) is the canonical basis of the sequence spaces £, and cy, p’ denotes the
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conjugate exponent of p, at = max{«, 0} for any real «, and || - ||, stands for
the usual p-norm of a sequence or function.

Definition 1 Let p,q € [1,00). A sequence (x;) in X is called a (p,q)-
summing sequence if there exists a constant C > 0 for which

n 1/p n 1/q
<Z|x’;x]~|p) SC’sup{<Z|x;x|q) ; ZEEBX}

j=1 j=1

for any finite collection of vectors z7,...,x) in X*.

The least such C'is the (p, q¢)-summing norm of (x;), denoted by m, ,[z;] or (in
case of ambiguity) m,4x;; X], and £, (X) is the space of all (p,q)-summing
sequences in X. If p = q we simply write m,[x;] and (-, (X), the space of
p-summing sequences in X .

We believe our notations are justified as long as these sequences in X C
X are multiplier sequences from ¢;’(X*) to {,, special instances of the more
general class of (p, ¢)-summing sequences of operators (u;) in £(X,Y") for two
Banach spaces X and Y those such that [[(u;x;)|ls,v) < C|[(2;)]ew(x) for a
constant C. Note that a constant sequence (u; = u) satisfies this if and only
if w eI, ,(X,Y), ie. uis a (p,¢)-summing operator, and the least C' equals
Tpq(w), the (p, ¢)-summing norm of u (the p-summing norm 7,(u) if p = ¢).

We refer the reader to the forthcoming paper [1] for further results on this
more general setting; see also [2] for the particular case p = ¢, X =Y and
u; = a;idx. A quite recent and very good source book on p-summing norms
and related topics is [3]. Some other good references are [4], [5] and [6].

Remark 1 ((,, (X),mp,) is a Banach space. This follows readily once we
note that it is closed as a subset of L(7(X™),4p).

Remark 2 The obvious modifications in the definition for p = oo or ¢ = o0
make sense, but then clearly l; (X)) =£,(X) and lr (X) = l(X).

Remark 3 A standard use of the weak Principle of Local Reflexivity (see [6],
p. 78) shows that (x3) C X* is (p, q)-summing if and only if

n 1/p n 1/q
<Z|x;xj|p) SCsup{<Z|x*xj|q> : :L‘*EBX*},
j=1 j=1
where C' s a constant independent from n and x1,...,x, € X.

In particular lr, (X) = €, (X™) Nlo(X).

Let us omit as well the simple proofs of the following facts:



Lemma 1 Let 1 <p,q < oo, (o) CK and x € X: Then
m.qlga] = [[(e)l- =]l
where 1/r = ((1/p) — (1/q))".
Proposition 1 Given 1 < p,q, let r such that (1/r) = ((1/p)—(1/q))". Then
p(X) C b, ,(X) € £(X),
with continuous inclusions of norm 1.
Actually, if X is finite dimensional then (;, (X) = (.(X).

To verify the last claim, recall that X is finite dimensional if and only if
l2(X) = £,(X) for any q € [1,00).

Remark 4 Note that (-, (X) C co(X) if and only if p < q.

Furthermore, any non trivial constant sequence is in {r, (X) if and only if
p > q; this corresponds to the fact that the notion of (p, q)-summing operator
only makes sense for p > q, since otherwise m,,(u) < oo only if u = 0; in
contrast with that, any finite sequence is obviously a (p, q)-summing sequence
for any p and q.

Lemma 2 Given 1 <t < s < oo, let r such that 1/r = (1/t) — (1/s). Then
we have, for any x3,x5,...,x; € X*,

O N5 11" = sup{ (3 I 1)+ (@) e,y = 13-
i=1 j=1

PROOF. For t = 1 this is just the duality £,(X*) = (¢g(X))*.

The general case follows from
> ]:c;-xj|t)1/t = sup{) _ |y : > oyt =1}
=1 =1 j=1
Note that £y (X) = £y0,.(X), and then
sup{y_ aaia;] = Y Joyl" = L |[(z;)le.x) = 1}
j=1 j=1
= sup{Y_ |5yl = D Nyl =13 = (O [l 11*)"7*.
=1 j=1 =1

Theorem 1 If1 <p < q < o0, the following are equivalent:



(a) X is finite dimensional.

(b) lr, ,(X) = £:(X) for 1/r = (1/p) = (1/q).

PROOF. We only have to show that (b) implies (a). By the previous lemma
(3 )/ = sup{(3- sl 7 + 3 laull = 13
k=1 k=1 =1

Therefore £,.(X) C £, (X) implies £;(X*) = £,(X*).

We’ll see later on that there are infinite dimensional spaces X such that
lr, (X) =l (X) for certain p > q.

Let us remark now another difference between the cases p < g and p > ¢: note
first that, in general, the 7, ,-norm of any sequence is independent from any
reordering of its terms:

Proposition 2 Let (x;) a bounded sequence in X, and let 1 < p,q. Then

TpalTo()] = Tpalz;]
for any bijection o: N — N.

The proof follows from the definition and the fact that the p-norm and the
weak g-norm are reordering invariant.

When p > ¢ we can say more:

Proposition 3 Let (z;) a bounded sequence in X, and let 1 < g < p < 0.
Then

Tp,q [370(3')] < TpqlT]

for any map o: N — N.



PROOF. Given z7, x5, ...,x; € X* we have

(Sszan)” = (SO legnd) " < (SO wgmpy)™

J o(4)= ko o(i)=k

= (ZICX ampaf)"™ (where (a)oioe € B,)

a(4)=k
* 1/ . * * *
= (X lyimel) " (withyp = Y ajz) € X¥)
k a(§)=k
< Mgl 1@ llgp x) = mpglas]  sup | zﬁkyku
1(Br)ll g <1
= Tpglz;] sup H > aiBgx
Bl <1"
< mpalw;] suwp | >y H T al] 1) g (30-) -
II(WJ)II /<1

The result does not hold if 1 < p < ¢: take o a constant map.

Proposition 3 implies that all (p, q)-sequences satisfy something apparently
stronger than the condition in Definition 1:

Corollary 1 For any p > q > 1, a sequence (x;) C X is (p,q)-summing if
and only if there exists a constant C' such that

(zn: Sup |$Z$jlp)1/p < C sup (En: |m2x|q)1/‘7

k=1 J z€Bx " p—1

for any =7, ... x} € X*, and the least such C is m,4[x;].

2 (1, q)-summing sequences as integral operators

Recall that u € L(X, Y) is p- mtegra] if the composition X =% Y 25 y»*

equals X 2 L. (1) -2 Ly(p) 2 Y** for some positive measure y and
bounded operators o and [ (i, and jy are the respective inclusions).

The p-integral norm of w is the infimum of all the possible values of ||«a||||5]|
in the previous expression. The set of p-integral operators (a Banach operator
ideal) is denoted by I,(X,Y"). For p = 1 it is denoted simply by /(X,Y’), the
space of integral operators.

Any p-integral operator u is also p-summing, and m,(u) is not greater than
the p-integral norm, but the converse is not true in general. Basic results on
p-integral operators can be seen in [3].



We’ll make use of the following fact: u: X — Y is integral if and only if there
exists a constant C' > 0 such that

| tr(uv)] < Cllo]]

for any finite rank linear operator v: ¥ — X, and the least such C is the
integral norm of w.

This makes easy to characterize the (1, ¢)-sequences in terms of integral oper-
ators:

Theorem 2 For any 1 < g < 0o, a sequence (z;) C X is (1,q)-summing if
and only if 1t defines an integral operator w: ¢, — X by ue; = x;, and the
integral norm of u is then m 4]x;|.

PROOF. Let u an integral operator ¢, — X with ue; = x] for all j, and
let C' its integral norm. Given z7,...z; € X* let v = ® Aje;, where
Aj = sgn(zjz;). Then

Jla

n

n
Yolaa| = Nate; = tr(uw),
j=1

=1
so Y0y |zjr;| < Cllvl], and ||ol| is just [[(2})]ew x+)- Then m 4[z;] < C.

Conversely, let (z;) € £r, ,(X). Then (x;) € £y(X), so u: e; — x; defines a
bounded operator in L({,, X). Now, if v = 37, 7 ® & with §; = ({n)r €
ly then, for vy = >, &ra; € X*, it turns out that |tr(uv)| = Xy [viz] <
T glzk] || (Vi)llew (x+) and [|(vi)|lew(x+) = ||v||, giving that the integral norm of u
is bounded by m 4[z;].

As an application of Theorem 2, we can identify the sequences in £, (L1 (1)),
for any o-finite space u:

For any Banach lattice X, an operator u: X — Lq(u) is integral if and only

if / sup |ux| du < o0, its value being the integral norm of u (see Th. 5.19

JJEBX

). If applied to X = ¢,, Theorem 2 gives the following:

Theorem 3 Let 1 < ¢ < oo, and let u a o-finite measure. Then (f;) €
lry ,(L1(p)) if and only if

S @)l dpw) < oo,

and then the integral equals my 4[f;].



PROOF. Just note that sup ‘ > )\jfj(w)’ = ||(fj(w))|| for any w in the
I)Me=1"" 5
measure space. ’ ’

When 1 < ¢ < oo it results that ¢, (L1(p)) ~ Li(p, £y ). This is true for
q = 00, since €, (L1(u)) = 1(Li(p)) = La(p, br).

As for ¢ = 1, recall that we can have /sup |fi(w)|dpu(w) < oo with w +—
J

(fj(w)) not being a measurable function. For example, for the Rademacher
functions r; in ([O, 1],dt) we have that {(r;(t)) : ¢ € [0,1]} = {-1,1}N is
not esentially separable and then the sequence does not define a function in
Ly(dt, l). Anyway (1;) € lr, (Ll[O, 1]), as Theorem 3 gives the following for
q=1:

Corollary 2 Let 1 a o-finite measure. Then (f;) € €y, (L1(p)) if and only if
there exists another function f € Ly(u) such that, for every j, |fi| < f pn-a.e.

Another consequence of the interpretation of m-sequences as integral opera-
tors is the following:

Corollary 3 Let (x;) be a bounded sequence in X. Then (z;) € lx
and only if there erist a Banach space Y, a sequence (y;) € loof
u € I (X*,Y) such that x; = yj ou € X** for each j.

(X)) i
*) and

PROOF. Let us assume that such u and (y;) do exist. The constant sequence
(uj = u) is a multiplier from ¢(X*) to £,(Y’), and so it is (yj) from £,(Y) to
{1, so the composition (z;) = (y; o u) belongs to £, (X*).

Conversely, if (z;) € €, (X) then Theorem 2 says that v: ¢; — X given by
ve; = x; is an integral operator, and in particular v* is absolutely summing
(v* is integral if v is so, and integral operators with values in /., are absolutely
summing). Then we can take Y = (o, u = v* and (y;) = (¢;) in €1 C (o).
Since e;(v'x*) = x*(ve;) = x*x; for any x* € X* and each j, the result follows.

3 Inclusions among the spaces /

(X)

Tp,q

Let us point out first some elementary embeddings among these spaces.

Proposition 4 Let 1 <r,s<oo, 1 <p; <po, 1 <1 < g and1 < p <q.



Then

gﬂpl»s <X) = 7Tp2 s( )
gﬂr,qQ (X) C mq (X) and
EWP<X) g f?T (X) 9

with continuous inclusions of norm 1.
In particular, for 1 < p,q < o0

£y (X) € € (X) € £ (X) € £, (X).

We can actually show the following more general result:

Theorem 4 Letp,q,r and s such that 1 <p <r,1<gq,s and (1/q)+(1/r) <
(1/p)+(1/s). Then €, (X) C Ly, (X), with continuous inclusion of norm 1.

PROOF. The case s < ¢ follows from the norm 1 inclusions £ (X*) C £’(X™)
and £,(X) C (.(X). If ¢ < s, then for r = 0o or s = oo the result is true
by Remark 2 and Proposition 1. So we assume that ¢ < s and r,s < .
Then 1 < r/p,s/q < o0; let a and b their conjugate numbers, that is 1 =

(1/a) + (p/r) = (1/b) + (a/s).

If 7, 4[2;] < C, for any finite set of vectors 27 in X* we have, for appropriate
scalars a; > 0 such that > a? =1, that

(Slejnl)”" = (Sheje}e))"" <€ o (Lol )
7 J

[[*]|<1

4
From our assumptions we have that ap < bq, so that Z aj <1, and for any

J
1 1/s
x* Holder inequality gives (Zj Oég/p|$*:[;j|q) i < (Zj |:B*93j|s) ’*  This shows
that m, 4[z;] < C.

3.1  The role of type and cotype

Recall that Rad,(X) is the closure in L,([0, 1], X) of the set of functions of
the form 3°%_, rjx;, where z; € X and (r;)jen are the Rademacher functions
on [0, 1]. By Kahane-Khintchine inequalities (see [3], page 211) it follows that
Rad, (X)) coincide up to equivalent norms for all p < co. The space is denoted
then Rad(X). Given 1 < p < 2 (respect. ¢ > 2), a Banach space X is said



to have (Rademacher) type p (respect. (Rademacher) cotype q) if £,(X) C
Rad(X) (respect. Rad(X) C ¢,(X)).

We know by Proposition 1 that, for finite dimensional X, if (1/p) — (1/q) =
(1/r) = (1/s) then £, (X) = £, ,(X). In order to find conditions that ensure
U, (X) = Lo (X)) if (1/q) + (1/r) = (1/p) + (1/s) we give the following

lemma:

Lemma 3 Let 1 <r < oo. Then {(X) = £,05(X) if and only if L(co, X) =
HT(Co,X).

PROOF. Assume ({(X) = (,.04(X) and take u € L(co, X). If z; = u(e;)
then (z;) € ({(X), so we write x; = u(e;) = ajz); where (a;) € (, and
(z) € £7(X). This allows to factorize u = wv, where v € L(co, () is given
by v(e;) = aje; and w € L(¢,, X) is given by w(e;) = x. It is not difficult to
show (see [3], page 41) that v € II,(co, ¢,), and then u € II,(co, X).

Conversely, assume L(co, X) = I, (¢, X) and let us take (z;) € ¢7(X). Con-
sider now the operator u : ¢g — X defined by u(e;) = x;. From the assumption
u € II,(co, X). Now, since (e;) € £1'(co) and u € I1,(co, X), then (see [3], page
53) u(e;) = a;a’; with (ay) € £, and (2}) € £5(X).

Proposition 5 Assume that L(co, X*) = g (co, X*) for some 1 < s < oo .
Then by, (X) C Ly, (X) for any 1 < p,q,7 < oo such that (1/p) — (1/q) =

(1/r) = (1/s).

PROOF. Let us take (z;) € {r, . (X) and (zj) € £(X*). To show that
(z575) € Ly, it suffices to see that for any (a;) € £y we get (ajziz;) € £,
where (1/p) + (1/¢') = 1/u. Given now a sequence (a;) € ¢, we have that
(ajr}) € £Y(X*). Using Lemma 3 we have that there exist (8;) € fy and
(yj) € €Y (X*) such that oz} = Bjy;. Therefore (a;x}) = (Bjy;7;) € boly = Ly
since 1/u = (1/p) + (1/¢') = (1)) + (1/7).

Combining Theorem 4 and Proposition 5 we get the following:

Theorem 5 Let X such that L(co, X*) = Iy (co, X*) for some 1 < s < 0.
Then Uy, (X) = {r, (X) whenever 1 < p,q,r,5 < 0o are such that 1 <p <r

and (1/p) — (1/q) = (1/r) = (1/s).
Proposition 6

(a) If X has cotype 2 then (7 (X) = 05 (X).



(b) If X has cotype q > 2 then ¢ (X) = (,£5(X) for any r > q.

PROOF. Use Lemma 3 and the fact that £(cy,Y) = Ia(co,Y) for any Y of
cotype 2 and L(cy,Y) = Il,(cp, Y) for any Y of cotype ¢ > 2 and r > ¢ (see
Theorem 11.14 in [3]).

Remark 5 Let X be any space with G L-property (see Page 350, [3] for def-
inition and results). Then X has cotype 2 if and only if (¥ (X) = 05 (X).
Actually it holds that L(co, X) = a(co, X) if an only if X is of cotype 2, (see
page 352, [3]).

Remark 6 Recall that X is a G.T. space if L(X,ls) = I1;(X,¢3) (the term
comes after Grothendieck theorem, that asserts that this is the case for X =
Li(p)). Then 0P (X) = 09 (X).

Indeed, if uw € L(cy, X) then u* € L(X* {1). Now GT property on X gives
that u* € Tly(X*, ¢1) (see [4], page 71 ) which implies that u* factors through
a Hilbert space, and so u does. Therefore u € Ily(co, X).

Corollary 4 If X* has cotype 2 then lr, (X) = lr, ,(X) for any p < r and
1/q=(1/p) — (1/r) + (1/2).

In particular U (X) = £, (X) and Uy, (X) = by, ,(X) for1/r = (1/¢')+(1/2).

Corollary 5 If X* has cotype qo > 2 then ¢
s <qp and (1/p) = (1/q) = (1/r) — (1/s).

In particular (,(X) = € (X) for any 1 <p < qy and Uy, (X) = Ly, (X) for
s<qyandl/r=(1/q)+ (1/s).

(X) = gﬂ—r,s (X) fOT a’ny p S T,

Tp,q

Proposition 7 Let 1 < g < p < oo and r > p'. Then the following are
equivalent:

(a) idx+ is (p, q)-summing.
(b) £.(X) C ly, (X) for any 1 < s <r such that 1/s = (1/r) + (1/p).
Moreover, mp q(idx-) = sup{msqlz;] - [|(25)]le.x) = 1}

PROOF. Assume first that the identity in X* is (p, ¢)-summing. If r and s
are as stated, (v;) € By, (x) and 27,..., 2 € X* we see that

(S lgasl)” < (S lglP) " < mpglidre)
J

| (@)l o)

10



Conversely, we assume now that /,(X) C ¢, (X) and take x7,..., 2} in X*.
From Lemma 2 we have

n

(Sl ) —sup{émm e Sl =1}

Then (z;) is of norm 1 in ¢, (X)), and if C' is the norm of the inclusion of £,(X) in
w15\ 1/s " . wnp) 1/P
lr, ,(X) we have (Z 252 ) < O[(2})lew(x+)- This yields (Z H:Bij)
J J
Cll(@) lew (x)-

Some particularly interesting cases are given in the following corollaries.
Corollary 6 For any X and 1 < p the following are equivalent:

(a) idx+ is (p,1)-summing.

(b) loo(X) = . (X).

(¢) £y (X) S lx, (X).

Moreover, if p > 2 they hold if and only if X* has cotype p.

PROOF. Only the last claim deserves a proof. It is due to the deep result,
due to M. Talagrand (see [7]), that asserts that for 2 < ¢ < oo the identity in
any Banach space Y is (¢, 1)-summing if and only if Y has cotype g.

Remark 7 As for p =2, we get that lo(X) C €, (X) if and only if loo(X) =
lry (X)), if and only if X* has the so-caled Orlicz property, i. e. idx~ is (2,1)-
summing. However, although cotype 2 is a sufficient condition to have the
Orlicz property it is not necessary (see [8]).

These inclusions are the best possible when dealing with infinite dimensional
spaces:

Corollary 7 For any Banach space X the following are equivalent:
(a) X is finite dimensional.
(b) L, ,(X) = £ (X) for some p> g with (1/q) — (1/p) < 1/2.

(c) £s(X) C lr, (X) for some 1 < p < qandp <s <r with (1/s) — (1/r) <
1/2.

(d) £, (X) = loo(X) for some (or for all) 1 <p < 2.

11



(€) by (X) Clr (X) for some (or for all) 1 <p < 2.

PROOF. To see that (b) implies (a) use the fact that idy- € IL, ,(X*, X*)
for (1/q) — (1/p) < 1/2. This gives that X* is finite dimensional (see [3], page
199).

If (c¢) is true then Proposition 7 says that idx« € Il ,(X*, X*) for (1/s) +
(1/q1) = (1/p), what again gives (a) because (1/q) — (1/q1) < 1/2.

(d) is the particular case of (b) for ¢ = 1.

(e) is equivalent to (d) by Corollary 6.

Remark 8 Forp>1 and 1 < q < oo, in general {r, (X) # I,({q, X).

Indeed, recalling that I,(X,Y) = TIy(X,Y) for every couple of spaces X andY
(see Corollary 5.9 in [3]), we conclude that Uy, ({s) # I2({1, ls): By Corollary
6 we have that Ur, | ({so) = loo(los) ~ L({1,{s), but L({1, ) does not coincide
with Mo (b1, ) because ly(l1,ly) = 111(¢1,0) (for €1 is of cotype 2, and
Corollary 11.16 in [3] applies), and on the other hand 111 ({1, ) # L({1,0):
the operator given by x € {1 — (Z}‘:l Tj)n € loo is ot absolutely summing
(see [5], exercise III.F.3).

Proposition 8 Let I a Banach subspace of X. Then we have that (., (E) C
loo(E) N Ly (X)), but equality does not hold in general.

Tp,q

PROOF. The embedding is straightforward.

Let us show that for p = ¢ = 1 there exists F such that (;, (E) # ((E) N
Cr (X):

Take E such that (5(E) € ¢, (F) (for instance E = ¢;). Since E is a subspace
of X = l(T) for T' = B« and ({(T"))* = (¢1(T"))** is of cotype 2 , then
U5(E) C loo(E) N Ly (X). Therefore (o (E) N €y, (X) does not coincide with
lr (E).

3.2 The (p,q)-summing norm of the canonical basis in £,

Theorem 6 Letp > q and 1/s' = (1/q) — (1/p). Then {¥(X) C ¢
incluston of norm 1.

(X) with

Tp,q

12



PROOF. For any finite family of vectors (z;)i<j<, in X and (z})i<j<n in
X*, since 1/p' > 1/¢ and 1/p’ = (1/s') + (1/¢’) we can write
(Z |x;7xj|p)1/” = sup |Zocjx;-xj|
j (@)l =1
= sup sup | BNzl
1=t 1o)l=t 57

— sup  sup | /01(er(t))\j:c;‘-,Zfrk(t)ﬁkxk)dﬂ

B llsr=1 (M)l =1 k
< swp o swp sup | SN el ) Al

B =1 I(A)lly=1t€[0,1] 5 k

()

Corollary 8 For any p > 1, {)(X) C Lr,,(X) with inclusion of norm 1.

< [[(@)llew () e (X)-

As an application, we see next whether the sequence given by the canonical
basis (e;) belongs to ¢, (¢.), depending on the values of p, ¢ and r.

Proposition 9 For any p > 1 we have (e;) € {x, ,({y), with m,1[e;; {y] = 1.
PROOF. Note that for p > 2 this follows from Corollary 6, because ({,)* =
¢, has cotype p.

For 1 < p < 2, apply Corollary 8 to (e;) € £, (£y).

Theorem 7 (¢;) € (r, ,({y) if and only if it holds that p = oo or 1/r <

(1/q) — (1/p). Moreover, in these cases m,4[e;] = 1.

PROOF. For p < ¢ we have that ¢, (£,) C £i1_1)-1(¢). Hence (e;) €
lr,,(£r) is only possible for ¢ < p. As the norm of the inclusion £y, — £} is

n(%féﬁ, we see that

which leads to p =00 or ¢ < r with 0 <1/¢—1/p—1/r.

Conversely, if p = oo then (e;) € loo(ly) = lr. ,(6;). Andif 1/¢—1/p—1/r >0
then, by Proposition 9 and Theorem 4, we obtain

(ej) € L, , (£r) C L, (6r).

The inclusion above is of norm 1, so 7, ,[e;] = 1 when bounded.

13



This gives a new proof of the well-known fact that id: ¢, — ¢, is integral if
and only if p =1 and ¢ = oo, according to Theorem 2.

4 (p, q)-summing sequences and Grothendieck theorem

Theorem 8 Let X be a Banach space. Then

lr ,(X) C Rad(X) C £y, (X).

1,2

PROOF. Let us take a finite family of vectors (z;)1<j<, in X. Using that
Ly([0,1], X) isometrically embedds into the dual of L. ([0, 1], X*), we have

/01 H i mkrk(t)Hdt = sup ’ i xk/ r(t )dt)’

lgll oo ([0,1],5x*)=1

n 1
< 0[] sup sup H Z ozk/ g(t)rk(t)dtH
||9||L°°([0 1],X*) =1|(ar)ll2=1 " k=1 0

= T12[x;] sup H/o Zakrk dtH

llgll oo [0,1],x*)=1 [ (e ||2 1

—7r12:1:] sup /’Zakrk ’dt

S 7T172[Ij].

On the other hand, for any finite family of vectors (z;)1<j<, in X and (z )1<;<n
in X* we can write

Z|x x| ~ sup ’Z T, E5T; ‘

ak_
= sup ‘/ <Z€jx;-‘rj(t),2xjrj(t)>dt’
ep==x1"'70 j=1 j=1

<| jilxjerRad(X)||<x;>||e;~<x

This gives the other inclusion.

By Khintchine inequalities one sees that L;(u, ¢2) = Rad(L1(u)), and Theorem
3 gives that (, ,(L1(1)) = Rad(Li(p)). Actually, combining Theorem 8 with
Pisier’s results on G.T. spaces (see Theorem 6.6 and Corollary 6.7 in [4]) it is
easy to prove the following:
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Theorem 9 Rad(X) = (;,,(X) if and only if X is a G.T. space of cotype 2.

Grothendieck theorem has been stated in a lot of equivalent ways. We shall
give yet another formulation of it in terms of the £, spaces. It gives a partial
answer to a general question about the way that bounded sequences in X*
interact with bounded sequences in X.

For any Banach space X, let us consider the bilinear map
Vit loo(X™) X o (X) = Lo (lo)

given by VX(( ), (xk)) = ((x;‘xk)k)j It is obvious that Vy is bounded.

Note that, for the restricted map V,, x: €2 (X*) x {2 (X) — M,(K) (defined
in the same way), it always holds that the linear span of the image is M,,(K).
Actually, for X =K,

n n
(k) = D2 Valayej,er).

j=1k=1

It is also easy to observe that Vi, (oo (foo) X Eoo(él)) = l(ls): for any uni-
formly bounded infinite matrix (a;), if we set 25 = (a;x)r € loo then

(i) = Vi ((5);, (ex)i) -

However, for other Banach spaces the bilinear map is actually bounded not
only into {4 (¢ ), but into a smaller space. This is the case for £, if 1 < p < oo:

Theorem 10 Given 1 < q < p, II,,(¢1,X) = L(¢1,X) if and only if Vx
defines a bounded bilinear map Vx : loo(X™) X Loo(X) — L, ({o).

PROOF. Let (7;) C X and (z}) C X* be such that ||z, [|}]| < 1 for all j.
Let u: ¢{; — X the continuous operator such that ue; = x; for all j; clearly
lull < 1.

By hypothesis we can take C' (independently of (x;)) such that m,,(u) <
Cllul] < C. That is,

1Cwyi)llepxy < ClIY) e )
for any finite family (y;) C ¢,. Therefore if {; = 27 o u for each j then

({6 en)r); = (@G (uer))r); = ((Gaw)r); = Vi ((25), ().

Consequently

(¢ yi)le, = 11T, wyi))lle, < I1(uyi)lle,x),
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and then

1C&5 w3, < Tl )lep ey
showing that 7, ,[¢;; (] < C.

Let us assume now that Vx: oo(X*) X log(X) — £y, ,(ls) is bounded with
norm C. Given u € L(¢y, X), for every finite family (y;) € ¢; we have that

1(wyi)lle, ) = sup{l|((z5, wy;)le, : (25) C Bx-}
< sup{my o[V ((23), (ue;)); boo] + (27) C Bu= }{1(y5)lley er)
< Cllull1[(y)lleg e

and then 7, ,(u) < Clul|.

In view of this, Grothendieck theorem is equivalent to the following result:
Corollary 9 If H is a Hilbert space, the bilinear form

Vi loo(H) X boo(H) — £r, (Uso)
1s bounded, and its norm is Grothendieck constant K.

Taking H = /¢y (with no loss of generality), this is a particular case of the
following result:

Corollary 10 If1 <p<oc and 1/r =1—|(1/p) — (1/2)|, then the bilinear
form

V€p3 goowp/) X goowp) - &rm(&,o)
is bounded, with ||V, || < 28 K&, where a = |1 —2/p|.

PROOF. Equivalently
() < 28Kl

for every operator u € L(¢1,¢,), which is an extension, due to Kwapien, of
Grothendieck theorem (see [9], and also 34.11 in [6]).

Remark 9 Note in the previous result that 1 < r < 2. The case r = 2 is for
p=1 (orp=00). By Corollary 6 we know that {r, (o) = lo(lss), s0 the
statement s trivial in this case. However, Corollary 6 tells us that for r < 2
the inclusion r,  ({x) C ls(ls) is proper.
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