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Boundary values of vector-valued functions in Orlicz-Hardy
classes

By

OsCAR BLasco

Introduction. The aim of this paper is to give a characterization of the “boundary
values” of functions belonging to Orlicz-Hardy classes of harmonic and. holomorphic
functions on the disc, Har® (X} and Hol® {X) respectively, in terms of X -valued measures,
being X a Banach space. We shall find the above spaces to be isometric to the spaces VP
and V¥ ; respectively (sce definitions below).

Some questions related to this problem have been considered in [6] when the Banach
space X is a Hilbert space H or % (H). Several results for the case @ (1) = tF when p > 1
have been obtained in [1] and [2].

On the other hand, the classical theorems about boundary values remain valid in the
vector-valued setting depending on the geometry of the Banach space X. In fact the
Radon-Nikedym property and analytic Radon-Nikodym property [2] are the corre-
sponding ones to guarantee the existence of boundary limits almost everywhere for
functions in Har® (X) and Hol® (X) respectively.

- Through this paper ¢ will denote a Young function with 4,-condition and ¥ its
- complementary function (see [5] for definitions), X will be a complex Banach space and
(T, #, m) the Lebesgue measure space on the circle with m () = 1.

Definitions and previous lemmas. Let us recall the definition of Orlicz-spaces of func-
tions .
1) I =< T - X measurable functions such that

‘m n , )

B, #) =5~ ol fnnd < 4w

T o
. Due to the assumptions on @, I% is a vector space and becomes a Banach space with
- the following norm (see [5])
(19

- In Eww. J. Uhl studied a certain generalization of this space in terms of vector-valued
- measures. He did that for a general measure space and with more general assumptions

Ve =1inf ik >0 5 (ffk, @) =1},
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on @. Here let us give the following definition more adequate for our purposes.
(2 VE = AQ” # — X finitely additive measures with

o e d = o (16B]
p(G.0) = sup ) = i —rel

Eem

m{E}r < + o0

(where the supremum is taken over all finite partitions = of T in measurable sets of
positive measure).
1? becomes a Banach space endowed with the norm

{27 [Glp = inf {k > 0: B{G/k, &) £ 1},

Remark 1. I G belongs to ¥y then G is m-continuous, that is wE o G{E) = 0, and
it has bounded variation. i

Both facts [ollow easily from writing | G(E}| = § HGLEN vp and using the scalar-
valued result [ Ju(0o (9| dr < {ulp |vly. m(E)

Remark 2 (see [T U felIf then G(E}={f(t)dt is a measure in V;® and
[Gle = | f s g
Let us modify a litile bit the definition in {2} and consider

BG. 9 =sup ¥ i m(E)

Eew " va
where [G| (E) represents the variation of E.

Ivis clear that (G, @} < F(G, ¢), but actually we have the following
Lemma 1. 5{G, &) = £{G, ¢

Proof Letustake a partition n, of sets of positive measure and consider E to be one
of these sets.
[G|(E) 1 m{A) [|G(A)}
= sup—— 3 [G(A)] =sup 3 ‘
i3 A»_L.v Ty R_@T«L}W \»Wﬂ.ﬁ TE Aemp wwmﬁmu §m\mv
where 7, denotes a finite partition of £ in sets with positive measure.
By convexity and continuity of @ we can write

|GI{E) o om{d) (G Ay
)22 E o)
Therefore
L (IG1EY (1G]
nWS vﬁ m{E} miE) = .nWS v%rﬁ ;mn @ﬂ m{A) vmix:
< sup % ehmaﬁl m(B) = B(G, ).

Taking supremum over all partitions we get the result.
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Lemma 2. If G helongs to V¥ then there exists a function g = 0 in I® such that

3) _951? (ydt forall Ec®

4 [Gle = lgle-

Proof By Remark 1 we can sdy that ]G] is a positive finite measure which is
mecontinuous and therefore by using the Radon-Nikodym theorem we find a positive
function ¢ in L' verifying (3. Now (4) follows from Lemma 1 and Remark 2. [

The main theorems. Let us recall the following definitions for Orlicz-Hardy classes:

(5) Har®(X)= {F: ) =+ X harmonic such that

M an
sup o [ POIEO) df < +

Dar<t 270 B

‘where F.(t) = F (ré"), and D is the unit disc.
We give the following norm in it

(5 |Flo = sup |Eip.

Q=p<l

We shall denote Hol®(X) the subspace of it formed only by holomorphic functions.
As usual if we are given a X-valued measure & with bounded variation we can consider
the Poisson integral of it as follows:

(6) Fire®) = P(G)(re) = ! Mm PO — £ dG (D)

where P, stands for the Poisson kernel on the circle T.

Theorem 1. V¥ is isometric (via Poisson integral) to Har® (X).

Proof If Gis a measure with bounded variation the F = P{G} is a harmonic func-
tion and it verifies

. I 2n
! wm%;a%& B0 —1d|Gl).
0

MHO

7
A = W

Hence, according to Lemma 2, we can wrile

(7) IE@)] =P,

r

«g(0) for some gin I7
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.m NH
Since 53 § P{0 ~ 1) dr = 1 for all & then Jensen’s inequality and (9} allow us to do the

following computation:

-

BUFE @mwef 26 Dy v%

0 2x
\mu £ 2n ) 40
=1 {Tro-oeq nglﬁg
i dr
= :aé .g@ﬁu?u@.

Therefore |Flg £ |gle = |Gle-

Conversely, fet us take F in Har®(X) and let us consider {£} as a net uniformly
bounded in I%,. Zoi we look at I%, as a subspace of a dual space in the following way:
% = Do & VA = (I50* (See [7] for duality).

Therefore there exist a sequence r, and a measure G in Vi such that F, converges to
G in the w*-topology.

Nowletus take & in X* with [ £l = 1,0 < s < 1 and 8 in T, and consider the element
EPAH — 1) = 5 () belonging to hﬁ ~, W& can write

mmu

W\‘ “““ _ PA —0dG (), &

X ) \m 2z
G(E) = lim =— | 7, B()dG ()
1LHN§ a
r df 16
=fim [{{R@ 05 160~ lim | :al 4G (1) | =,
ol relE in

All these limits are a priori in X**, and to justify the use of Fubini’s theorem we can
applyboth members to elements in X'* and use the scalar-valued version. Now notice that
the last term is “lim | F,(6) d6” and therefore G(F) is a limit in X** but of elements in X,

E

so G{E)e X. Finally it is easy to see that |Gl < sup|E|p = |[Flg. 0

Dienoting by

={Ge V2 G{n)=0for n <0},
A 2w

where G (1) stands for oy e~ 4G (1), we can establish the following
)

Corellary 1. Hol®(X) = V2 4 (Viz Poisson integral).
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So far we have found a space to identify the “boundary values™ of functions in Har® (X}
and Hol®(X) without any property on the Banach space X. A different point of view
would be to look for conditions on X to make the classical result remains valid, that is
any function F from the disc into X has limits at ihe boundary a.e.

This was studied by Bukhvalov and Danilevich {2} in the particular case @ (¢ == 17,
Here we shall extend their resuits and we shall use a different approach.

Theovem 2. X has the xn%:-zﬁ.:no%ﬁ property if and only if the Poisson integral is an
isometry between Har® (X) and 2.

Proof By Theorem 1 we shall prove that the RNP is equivalent to the fact that any
measure in ¥ is representable by a function in 1% . Let us suppose X has the RNP and
take G in ¥, then from Remark 1 there exists a function [ such that G(E)={ f(1)dr

E

Mareover the function g in Lemma 2 is actually || f(z)] what implics that f e I%.

Conversely let us take an operator Tt I} — X, and according to the formulation of
RNP in terms of operators (see [3]) we have to show that T is representable by a fanction
in I%,. Consider now G(E) = T(yg). Ttis immediate that G belongs to V¥ and then G is
representable and so T is also representable. O

Due to a result like this, the following property was introduced in [2] for helomorphic
functions:

Definition. A complex Banach space X is said to have the analytic Radon-
Nikodym property (ARNP) if every bounded holomorphic function from the disc D into
X has limits at the boundary a.e.

They proved that this is equivalent to saying that the Poisson integral is an isometry
between Hol? (X) and {f € I#y: f (r) = 0 for n < 0} forany 1 = p = oo,
Obviously this can be extended to Orlicz spaces.

Corollary 2. X has the ARNP if and only if Hol®(X) = {f e [%:f(n) =0, n < 0}
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