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ON THE DUAL SPACE OF HL®

BY

OSCAR BLASCO {(ZARAGOZA)

1. Iatreduction. When we are dealing with Hardy space HE(D) of B-
valued analytic functions on the disk D for some p (1 < p < o), and we want
to obtain the functions in L4 (7} with (0 =0 for n < 0 as boundary values
of this space, we have to require a certain property on B. This property was
defined by Bukhvalov and Danilevich [4] and it was called the analyric
Radon-Nikodym property.

Throughout the paper we are concerned with Hardy spaces defined on
the boundary of D and some questions about duality will be studied. Some
results about this subject were considered in {3] for 1 <p < oo and we will
study here the case p = 1.

We denote by H} the space of Bochner-integrable functions fin L'{7T)
such that f{m =0 for n < 0. and by HY™ the space defined below in terms
of B-valued atoms. Bourgain has recently proved [2] that every function f in
H}, can be decomposed into B-aioms, i.e, Hj < Hy®. We actually know that
both spaces coincide if and only if B has the UM.D. property ({{], [27).

We are interested in obtaining a representation of (Hy™)*.

First of all we recall what happens in the scalar case. It/is well known
that the space of functions of bounded mean oscillation (BMO), defined by
John and Nirenberg [8], may be viewed as the dual space of Re H'. This last
result was proved by Fefferman [7]. Subsequently, R. Coifman showed that
Re H' could be defined by atoms, i€, H' = H"™, and a direct proof of the
duality (H»*)* = BMO may be found in [5].

On the other hand, let us recall that when we take functions with values
in a Banach space B, and we intend to give a representation of the dual
space of I%(T), the geometry on the space B must be considered. In fact, for
T<p <o,

1.9y (I8 = 15, if and only if B* has the RN.P. ([6))

Both facts suggest the following result which will be proved in this
paper:
(1.2y  {(HE™* = BMOy. if and only if B* has the RN.P.
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2, Definitions and lemma, Let | < p < « and let ¢ €1, We say that ¢ is
a (i, p, By-atom if

{1} suppe =1, I is an interval of T;

(2 flall, < Ym(B'Y A/p+1/g =1 (m is Lebesgue measure}:

K} Q{:{I bt m(}

The function a1} = by, (¢), where |}bljz = 1, is also considered a {1, p, B)-
atom (y, denotes the characteristic function of E). We define (see [5))

Hy? = felyl (1) = 2 A,
i=1
Z l4f <o and the gs are (1, p, B)-atoms?,

and if we put
1l = inf Y 144,
i=1

where the infimum is taken over all the representations of f, then
{(Hy" Al Hlnln) s a Banach space. It is casy to see that

21y If f belongs 10 HY* and

A

f= Z i Gz
i= ]
hi

then 3 Aa; converges to f in Hy? when N — oo,
i=1

Let 1<¢g < x: we define {see {57
i " ' ljg
3MOp = { retsl sup (s |15 fihar | <o,
i

where § denotes an inferval and

5 :Jﬁ gf(r)dz.

m{l}
¥
I we put
ﬁf”amog = 51+ Hj:f(f)df”m
T
where

ty
Ay (f) = mf%(‘ sup(—m ‘Hf{t}—)}”%dt) sc},

since
valug

conti,

1

wher

are ¢l
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then (BMO%, || llenog) is a Banach space for every g (1 € ¢ < ), We have

let aell,. Wesay that a is _
- just defined BMOY for different values of g, but we actually have

s COH ety i’
SgUE MEeasure): (22 For every ¢ (1 <q < %),

BMO§ = BMO; and || I!BMD% ~ ;% ”gMD};-

also considered a {1’513 » B)- The proof of (2.2} is a corollary to John and Nirenberg’s lemma [8]
7). We define (see {5]) ~ since the technique may be reproduced by merely changing the absolute
value by the norm in B. :

LemMa, If 1 <p<co, then L« Hy? < LY and the ea;zbeddings ure

continuous.
as are (1, p, B)-atoms}, | Proof. Given felf, f may be written in the following way:
f= H‘!‘f(f)df”}sﬂl(f)*’z;ifﬁpazms
T
: whers
representations of f, then {f (i SO 1f (s)ds
see that ) = A o) and  a,{f) = —— _
| 0= 2 2171,
T
are clearly (1, p, B)-atoms. Moreover,

. I tege < [ @ dtf|+ 2101, < 31
¥

. For the second embedding, let | < p < oo and let a be a (1, p, B)-atom. Due
7l dr> fa < cc} . to Holder's inequality and the definition of (1, p, Bl-atom we have
~Jilla !

) . A i
@3 (llamiyde = [laollyde < fall, ([l 00" € ——m =1,
T 7 T m{f

(The case p = o¢ is easier.}
By (2.3), if / belongs to Hy? and

f= Z Ai b
i=1

tydt||a,
then

|4;

“MS

tig : ﬁfﬁi 5
:—f,]}%d:) < C}, } f

and 50 111y < 1l

1
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3, Theorem.
Turorem. (a) If | <p< o and Yp+tfg =1, then
BMOY < (Hyn™.

by if t <p <o, Up+ /g =1 and B¥ has the Radon-Nikodym property,
then g

{(H "y < BMO§..
{c) If there exists a number p {1 <p < o) such that (HL?)* = BMOY.,
then B* has the Radon-Nikodym property. K
Proof. {a) Let 1 < p < « and let g be a function in BMO§.. We define
T,0 Hy? =R in the following way: Let @ be a (1, p, Bj-atom such that

fa{ryde = 0;
i

then
(3.1 Ty = § ytt), a(n)di,
T
where ¢, denotes the duality between B and B*
Since o belongs to I and g belongs to BMO% < LL., (3.1) is well
defined.

It is immediate to show that if g belongs to 14+, @ belongs to Lf, and J
is an interval:

(3.2} §<t), @@ - dt = [{g(t)~gs @)1
J J

Using {3.2). Héolder's inequality and

fa(s)ds =0,
i

we oblain

1T, @)l < ([1lg (0 — gl de) ™ flal),
I

Ly 4
S (r_n{_lj Eﬁg {t}ﬁgrif%*)u < lgllsmogs

i

For an atom of the form a = byp we have

P (@) < bl || [ () dt
T

PR HQHBM()gw

Now an argument Hke in [57, p. 632, leads us to considering T, in
(Hy?* and 1) < ligllsaog.-

————

L

(b)

for ever

(3.33

Then T
Radon-7
such tha

We have
{3.4)

let [ be

(l

T

Using this

{c} In
going o |
(3.5)  Fou

We i

where b; b

* that
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(by Let § <p < and let T be an element of (Hy7*. By the Lemma,

1, rhen : _ for cver}’ (,of,:LP we obtam
33, T <ITH @l < 30T lel,.
he Radon-Nikodym property,  ©  Then T may be considered as an element of (L%) * gnd since B¥ has the

Radon-Nikodym property, (1.1) implics that there emsis a function g in L
such that

quch that (Hy?)* = BMO§., T(p) = [ <glt), w(t))dt for every el -
T

We have to prove that g belongs to BMOy.. First of all,
sup |f rzlt), g
ol g=1

sup {T(bye)l < TVl

felig=1

nction in BMO%.. We define
(1. p, Bi-atom such that LG4 “JIQ(IMEHBE:-
: T

Let I be an interval. By (L) and (3.2) we have

i,
Tg @ —gif* |\ L /gt~y \
| B*, ( :, '}'1',';1 f‘ = 3Up l < i )1/;’ )dt ”(PHLE(“ <1
 BMOj. © I, (1) s well i }
-y, @)l i B | o oo
= 2supy T, (ot Elm”t"(r; 1

< 25up TN, Wl 0 < 1) = 2071,
Using this together with (3.4), we get
Hollavog < 31T
: (¢} In order to show that B* has the Radon-Nikodym property we are
v ~ going to prove the following equivalent result (see [6], p. 63):
(3.5)  For every Tin L{L', B¥) there is a function g in Lg: such that

2 -
< ligllsuod. Tie) = [a{)gdt  for every o in L.
; T

We fix an operator Tin L{L}, B¥} and define 7 Ly =R by

i) BMOF : T(Z b; XEE) = Z <T(ZE,-)9 b; >,
: i=1 i=1
jeads us to considering 7, 1n where b, belong to 8 and |E;) are disjoint measurable sets. It is obvious

that
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Y llbdla 71 (B = T E beel -
i i=]

}T( Z bi X.Ei)l "<"
i=1
By density, Tis extended to (LLy*. Using the value p in the hypothesis and
the Lemma, we obtain
(T () <UTH- ol y1.0

and again 7 may be considered as an element of (HL7y*, Therefore, there is a
g in BMO%. such that

Tlo)= [ g, olnydr  for every o in HE?.
T

for every ¢ in Hy?,

We have only to prove that g is bounded almost everywhere. Since ¢ belongs
to LY., putting I,{t) = (t—¢, t+5) we have

| § gsdsllae = sup | | <b, g(9)>ds|
140 felig=1 1.5
= sup [Tlhy ol = sup (&, T
lallg=1 l|Bl =1 _

= T wlle: < N THm{I) = 11Tl 2.

Using Lebesgue’s differentiation theorem, we have

.
g{ty =lim— | gls)ds ae,
-0 &6 15'(;}

and so g (Dile < IT1] a2,
CoroLLAry. (a) If B* has the Radon-Nikodym property and 1 < p <00,

then Hy? = HY™ with equivalent norms.
(b} (Hy )y = BMOL. if and only if B* has the Badon-Nikodym property.

Prool Given | <p <o, let a be a (1, o0, Bj-atom. It is clear that
i
=1t e P
lally = (%iia(r)li”df) < iiaiiw.m.(l)l < w7

Consequently, Hy® < H?, and if f belongs to Hy™, then

Now, using part (b} of the Theorem we have
(3.6} (HL =) = BMO}- (Hy"* = BMO%..
Because of (2.2) and the representation of the dual spaces in (3.6), we obtain

part {a). Now, part (b} is an immediate consequence of the Theorem.

Remark. Since € has the Radon-Nikodym property we have just
proved that HE? = Hy®, which can be found in [5]. But, on the other hand;
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i=1

due p in the hypothesis and

y @ in Hg¥,

(HL?y®. Therefore, there is a

xy o in Hy?.

{ everywhere. Since g belongs

j

ap [<b, Tlmt

=t
I = 1711~ 2.

have

;ae.,

dym property and 1 <p <0,

{ the Radon—Nikodym property.
w0, Bj-atom. It is clear that
( 1)1/;9 < _mﬁE.__,
m{ 1)1:‘@‘

to Hy™, then

(2
LAy = BMO§-.

dual spaces in (3.6), we obtain
sequence of the Theorem.

codym properiy we have just
in [57]. But, on the other hand;
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the condition on B¥ is not n¢cessary in the latter corollary since it may be
proved as in [5].

Acknowledgments. I am very grateful to J. L. Rubio de Francia for

proposing me the problem,

[t
(2]

[3]

[4]
[5]

{6}
[71

(8]
[9]

REFERENCES

O. Blasco, Hardy spaces of vecior-valued functions: duality, preprint. =

1. Bourgain, Vector valued singular integrals and H'-BMO duglity, pp. 1-19 in: Probuabilicy
Theory and Harmonic Analysis, J«A, Chao and W. A, Woyczynski {eds.), M. Dekker, inc,
New York-Basel 1986,

A V. Bukhvalov, Duals of spaces of vector valued analyiic functions and duality of functors
generated by these spaces, Zap. Mauén. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOM]I)
92 (1979}, pp. 30-30.

— and A. A. Danilevich, Boundary properties of apalytic and harmenic functions with
vafiwes in @ Bunach spoce, Math, Notes 31 (1982}, pp. 104-110,

R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their yse in analysis, Buli.
Amer. Math. Soc. 83 (1977), pp. 549-646.

J. Driestel and J. J. Uhl, Vecror Measures, Amer. Math, Sec. Math. Surveys 15 {1977).
C. Fefferman and E. M. Stein, H” spaces of several variables, Acta Math. 129 (1972), pp.
137-193. '

F.John and L. Nirenberg, On functions of bounded mean oscilivtion, Comm. Pure Appl.
Math, 14 {1961}, pp. 415-423.

3. L. Journe, Calderdn-Zygmund operaiors, pseudo-differential operators and the Cauchy
infegral of Calderdn, Lecture Wotes in Math. 994, Springer-Yerlag, Berlin 1983,

DEPARTAMENTO DE MATEMATICAS
UNIVERSIDAD DE ZARAGOZA (BPAIN;

Regu par la Rédaction le 10. 5. 1985

3 ~ Collognium Mathematicum LV.2




