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VECTOR-VALUED HARMONIC FUNCTIONS AND CONE
ABSOLUTELY SUMMING OPERATORS

BY

(Oscar BLASCO

i. Introduction

Throughout this paper R',"* denotes the half space
{{x,y):xeR", y >0}

and (B,]] |l p) denotes a real Banach space.

The objective of this paper is to extend to a vector-valued setting the
problem of characterizing the boundary values of certain spaces of harmonic
functions in the upper half space. In the scalar-valued case the result may be

stated as follows [8}:

(1.1) pP(REY) = LA(RY) (1< p < o),

(12) PR = M(RY)

where these isomeiries are given by the Poisson integral. Let us define the
space k? for B-valued functions. A£(R""!) denotes the space of B-valued
harmonic functions u: "™ — B such that

r
(1.3} |, = su%(f{lu(x, y)ﬂgdx) < 400 {1<p<w),
y>

lulo = sup  {ulx, y)

{x, yrerih?

In [1] the author solved the same problem for the unit disc D, by using certain
classes of operators. In that case h§{ D) may be interpreted, for 1 < p < o0, as
the Dinculeanu class of operators. In addition a class of operators from a
Banach latiice into a Banach space was defined in {1], the so-called positive
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VECTOR-YALUED HARMONIC FUNCTIONS 293

p-summing operators, which turns out 10 be the Dinculeanu ¢lass in the special
case of L -spaces. Later on in {2] the author discovered that, for £ -spaces,
these classes also coincide with a class defined by Schaefer [7] and which are
called cone absolutely summing operators {c.a.s.}.

Here we shall present a proof in the case of the half-space which uses the
¢.a.s. operators and which is quite different from the original one [1]. Now we
shall use the w*-compactness of the unit ball in a dual space.

Let us introduce some notation here to establish the main result of the
paper.

Denoting by X a Banach lattice, 2(X, B), A(X, B) and #'(X, B) will be
the spaces of all bounded operators, the cone absolutely summing ones and
the absolutely summing operators respectively {see definitions below),

With all this the main theorem states the following identifications:

g (RYY) =2 (LY(R"), B)

hp(RY) = A(LP(R),B), l<p<w,=+ =1,

1,1
p P
Ky (R} = rH(C(R), B)

We shail finally prove that (1.1} remains valid m the veclor-valued setting if
and only if 2 has the Radon-Nikodym property.

2, Preliminary results and definitions

Let us begin with the properties which still hold for functions with values
in B.
Recsall that F(x, y) denotes the Poisson Kernel on the hali-space; that is,

_ ¥
P(x,y) =c, - TR
(2 + 1xf*)—5—

if f belongs to LE(R™) we still can define the B-valued harmenic function

@1 uly) = PC ) f(x) = [HO PG -1 y)

ProrosiTioN 1. Ler 1 <p < oo If f€ LER™) then u € hE(RYYY and
W, = lal,

i
P(, y)= f~ f as y goes to zero, Fatou’s lemma implies the converse inequal-

ity. B

Proof. From Minkowski’s ineguality follows |u], < [fii, and since
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So the Poisson integral embeds LE(R™) into LR,

Remark 1. The Poisson integral is not sugjective in general, The reader can
easily check that if B = LYR") and u(x, y}¢)= P(x — 1, y) then y €
AZ(R"TY but u is not the Poisson integral of any function in LE(®R"). So in
order to find the corresponding space of boundary values for AS(R%Y) we
should look for a larger space than LZ{R") but which contain it. The key point
is to look at functions as operators. In order to unify results let X, = L#(R")
for 1 £ p < oo and let X = C,(R"} {continuous funciions which converge to
zero at infinite), and with this notation we can write

LE(RYy c #{X,, B), + = =1

L
pi

e

The identification is given as follows: f in LJ(R") defines the operator T,

(2.2) T, (e) = jqo(z)f(z)dz for all g in X,

From Holder’s inequality |7} < |iffi,- Notice that for p = oo we have an
sometry (||fll, = §7). To embed LE(R") isometrically in £(X,, B} we
shall use the Banach lattice structure of X,

DPerivyrion 1. [71 Let X be a Banach lattice. An operator T i #( X, B)
is called a cone absolutely operator (c.a.s.) if there exists a constant € = 0
such that for every positive finite family x,, x,,..., x, = 0 in X we have

k
1%l = C sup Z i<$s~ x;‘)l*
i=1 [iEllp st i=1

(g B

(2.3)

We denote by A( X, B) the space of c.a.s. operators and the norm in it is given
by the infimum of the constants verifying (2.3).

Let us recall that the space of absolutely summing operators, #'{ X, B) has
the same definmition without requiring that the family x,,..., x, be positive
{see [8]).

We shall use an equivalent norm in AN X, B) (see [7]):

< 1}.
X

The following vseful charactenzation may be found in [7] (or in [1] in the
particular case of X' = L7,

k
X X
=1

(2.4) T = sup _>;1 I7(x)iz: %20
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PrROPOSITION 2. Let T€ P{X, B). Tisc.a.s. if and only if there exists a
positive functional £ in X* such that

(2.5) [ Tx|ig < (& |x]) forallx e X.

Moreover § can be chosen with ||} x» = T

The only cases we are interested in are X = L?(R") or X = Cy(R") and for
these we have the following resuit.

ProrosiTION 3.

(2.6) A{LYR™), B) = Z(L4R"), B),
(2.7} A{C,(R"), B) = 7 {C,(R"), B).

Proof (a) Take T in F(LYR"), B) and 9,,..., ¢, = 0 in L(R"). Then

k& k i
2T < 178 Lol = 1TH 29
i=1 i=1 i=1

i

Therefore |74 < || T) which proves (2.6} since the reverse inequality is true
in general.

To show (2.7), since w'{( X, B) C AH X, B), we take T in N'(C,{(R™), B) and
P Pos---» @y 11 Co(R") not necessarily positive. Then

'gl ”T(‘Pi) “B = E:: “ T(‘?)f+) “B + _§1 ”T((P:ﬁ) ”B

k K
izl S| +) Eor )
i=1 o0 =1 ©
&
< 20T 2 e
i=1 -
On the other hand (see [4], page 162)
£ k
2 ol = sup 3 AL
i=1 ) ﬁ!*”M(nn}Sl jl

Therefore T is absolutely summing and ||[T) . < 2|T). =2

Remark 2. AN{Cy(R™), B) = My(R"). (This is essentially proved in [4],
page 163.)
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The following step is to verify that the spaces L(R") are isometrically
embedded into AY( X, B).

From (2.2) we have IT;(9)llp < (lifll, lol) for all ¢ in X, which implies,
by (2.5), that LR ¢ AE(XP,, B) and |IT]| < §/}l,- But we also have the
following:

PROPOSITION 4. For 1 < p < oo, if f & LER®) then [T/ = |1,
Proof. The cases p=1 and p = oo are clear from Remark 2 and (2.6)

respectively.
Take a simple function s = LY ja,x,, a, € B. Then

k » i/p
[Eomter L)

s, =
k . .
= sup{ Z I!a,-ﬂBM(E,.} /ptkiii Z af = l)
i=1 i=1
k 2’
= sup{ Z Ts(afm(E,.)’"‘/PxEj) IIB: Z o = 1}
i=1 i=1 ]
k ) i , \
< 7 sup (| 2 a,-m(E,-)_w’xE‘_ Y af = 1f
i=1 5 i=1
= [ Ii-
Therefore [|7,fil = ||s]l, and now the density of simple functions compietes the

proof. @
The following property says that when the Banach space is 2 dual space
then the space of c.a.s. operators is also a dual. The proof can be found in {7],

page 277, for 1 < p < oo and the other part is a reformulation of Singer’s
theorem.

PROPOSITION 5.
(2.8) {LER))* = A{LP(R"), B*), 1<p< o,
(2.9) (G, z(R*))* = AN (R), B).
3. Proof of the main theorem

Let us recali the notation X, = L7(R") for 1 < p < oc and X, = G(R")
and p'such thati/p + 1/p = 1.
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TuroreMm 1. For 1 < p < oo, hE(RYY) is isometric 10 (X, B).

Proof. The isometry will be achieved by consideration of the following
extension of the Poisson integral: Given an operator T in #(X,, B} we can
define the harmonic function v = #(7') by the formula

(3.1) w(x,y) = T(P{x~ -, »)

where P{x, ) is the Poisson kernel on the half-space.

We shall prove that 2 maps A'(X,, B) onio A5(R""). To-do that let us
take 7 in Ai( , B}, Then according to (2.5) there exists a positive function g
n (X,)* = L?(R”) for 1 < p < o0 or a positive measure p in { X )* = M(R")
such that

(3.2) o, )llp = (- y)r g} fori <p < oo,

or

(32) luCx 2 ls < [PGx = ) dult) forp=1.

From (3.2}, Minkowski’s inequality implies |u|, < |igll, = |IT']]} and by Fu-
bini’s theorem and (3.27) we get |u], < ;]Ju 1= ]}§T||§
On the other hand, assume @, g;,..., 9, 2 0in X,. Since
Pyl > o

in X, foralll £ p" < o0 and 7 is continuous we have

g 1o ll, = fom Z!if(P{ 7)* 9,

S| fe- oy ) 0)|

Now use Hille's theorem {4, page 47] to put 7 inside the integral and use the
fact that ¢, > 0 to get

L 7o)l = sop L 17 6 ) )

y>0i=1

i

sp [0, )| £ o0

¥=0

k
ol 2@
j=1

A

|

ra
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Therefore if 7€ AY X, By then u = P(T) & AE(R"F 1) and ful, = 7]} To
finish the proof we must show that & 1s surjective.

Let us take u in AH(R™"). This means that u(-, y) is a family of B-valued
functions uniformly bounded in L{(R*). Since LE(R") € LL.(R™), then
Propositions 4 and 5 allow us to look at «{:, y) as a family contained in a ball
of the dual space AY X,.s B**). Therefore there exists an operator T' and a’
sequence y, such that u(-, y,) coverges to 7 in w*-topology.

Due to the identification of these duals, we may write that for every @ in
XP,, and £ in B¥,

63 (& futt 200 dt) = €T(o), &)

The harmonicity of # implies that

64 (e funr)rt- s a) = @ute v ).

By taking @(¢) = P{x ~ 1, y) for fixed x € R and y > O then (3.3) and (3.4)
imply #(T) = u.

Finally, if we show that the range of 7 is actually in B the proof will be
complete. To sec that, it suffices to use the continuity of 7 and the fact that

P(-,yl*¢—g

m X, as y goes to zero, Then

i

T(9) = Im7(PC, )+ 9) = m7{ [P(-~ 1, 1o (0)

tiy [7( (= 1, 3)9(0) e = i ful 2o 0

and since (¢, v) belongs to B there, so does T(g).

Let me finish by showing that the Radon-Nikodym property of B is the
necessary and sufficient condition for the Poisson integral to be an isometry
between AH(R"1) and LE(R™). For the disc D this was proved by Bukhvalov
and Daniievich [3] and the author gave a different approach in 1], This result
will follow from the next theorem which was proved in [2] for a finite measure
space.

TueoreM 2. Let 1 < p = oo. The folfowing statements are equivalent,

(a) Every operator T in N(LF(R"), B) is representable by a function f in
LE(RY)

(b} B has the Radon-Nikodym property,
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Proof.  Let us assume (a). By Theorem 5 on page 63 of [4] we have to show
that any operator

T L) » B

can be represented by a function f in I%(R,), where {; = {xe R jx} =1L
Let us consider the projection o : L7(R") — L?({,) given by 7(p) = ¢ - Xao,
It is simple to verify that Tw € AYLP (B, B) if T e2L(INK), B). By
assumption we get f in LE(R") and now take fxg to represent T.
Conversely, suppose B has the RNP and take 7 in AY{L7(R"), B). Let

Q= {x & R"; |x| < k)

and define i,: L7(Q,) - LP(R") by L, (p) = ¢, where ¢, = ¢ on £, and
v, =0 on (. Then we can easily show that Tkmlk T belongs to
AL (R, B) Now by using Theorem 2 in [2] we get f, in LE(§,) such that

T o) = j;a:p(:)fk(!} dr forall gin LP(Q,}.

Consider f = f, on £,. This function is measurabie and it is well defined since
fis1 = fr on 8. Now Fatou’s lemma implies that

fWrngdr < tim [ (g < 1T < 1T
14 k00 7Qy,

Therefore f belongs to LL(R"} and the proof is completed. =8

Notice that due to the representation u(x, y) = T(P{x ~ -, y)) we can say
that 7 is representable if and only if u(x, y) = P(-, y)}* f(x) for some f in
LEERY.

In other words, Theorems 1 and 2 imply the foliowing result.

CoROLLARY 1. Zet 1 < p < oo, Then hj(R"Y) = LE(R") (by the Poisson
integraly if and only if B has the RNP.

Let us mention that from (2.8) and taking inte account Theorem 2 we get
the following result due to Lai [5].

CorOLLARY 2. Let 1 < p < oo, Then (LER™)* = LLR®) if and only if
B* has the RNP,
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