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Let 0 < p< oo and ket %)) denote the space of X-valued harmonic functions on
the hail-space with boundary values almost everywhere and Poisson maximal func-
tion in L,(R"), and ?IP(X) the closure of the Y-valued analytic polynomials on the
disc under the narm given by supy ., [/, It is shown that it 0< py, p, < o,
Gf<t, and Up =i —6)py+8ip,, then (H) (X5}, H? (X))o = HE(X,). With the
restriction p > [ we prove {F[f,;n(X(,)! ﬁ;l(Xl)}ﬂ‘ﬂ=ﬁﬁ(X(,,p). A counterexample for
the case p=1 is given for the cass of real interpolation. It is also proved that
(A (X, I?’,,!(XE))O is, in general, smailer than H,{X,). Finally BMO(X) is also
considered as the end peini for inlerpolation.  © 1991 Academic Press, ine.

0. INTRODUCTION

The first results om interpolation ofha-:fdf spaces ol analytic functions
on the disc go back to the 1950s. In [87] R. Salem and A. Zygmund
showed, using interpolation methods, the boundedness of certain bilinear
forms acting on Hardy spaces, and in [CZ7 A P Calderén and
A. Zygmund obtained some results on interpolation of H7(D), 0« p< oo,
based on result for L7 {i < p«< oo}, using factorization and the bounded-
ness of the Riesz projection for 1 < p< co. Later real variable technigues
were applied m the study of Hardy spaces (see [F8, CW 1), Then thools
like maximal functions and atomic decompositions turned out to be
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332 BLASCO AND XU

decisive in solving questions on real and complex interpolation of Hardy
spaces.. The final. solution..was..not. attained until the 1980s. This was
achieved combining the efforts of severai people. Let us mention, among
others, C. Fefferman, N. M. Riviere, and Y. Sagher for results concerning
real interpolation (cf. [RS, FRS]) and also names such as C. Fefferman
and E. Stein, A. P. Calderon and A. Torchinsky, 8. Janson and P. Jones for
maost results on complex interpolation {cf. [FS, CT, J1, 111

Let us denoie by Hij: Hjj([}%“), { < p < oo, the space of harmonic func-
tions on R""' whose Poisson maximal functicns belong to L{R"). We
shall use the notation H,= H (D) for the space of analytic functions f on
the disc D such that

= sup £, <o,

O=p=i

the usual space of functions with bounded mean osciliation. If (X, X}
stands for the space obtained by the complex method of interpolation, we
can summarize the results on complex interpolation as follows.

For 0< py, pos o, 0<B<t, and Vp=(1—0}/p,+8/p,

(H, Hi)y=H)  (see [CT. 1) (0.1)
(H,, H, a=H, {see [CZ,J17). {0.2)

Also BMO was considered as an end point and the complete answer was
given in [JJ7 (sec also [FS] for t < py< @)
11—
(H! | BMO),=H), — —=—. {0.3)

o f P
For real interpolation we refer the reader to [RS FR5]

(H”, H o, =Hy. (0.4}

The notation {X,, X}, , stands for the space obtuined for the real
method of interpolation and it should be mentioned that also results for
(HY, H! Yy, with g # p can be found in those previous papers.

It is weil known that complex and real methods are very much
connected. We refer the reader to [M, CMS] to get approaches to the
complex interpoiation results from the real interpolation ones, which allow
us to get (0.1} from (0.4).

While interpolation theory f[or vector-valued IL7-spaces has been
developed and lots of applications can be found in classical books of
interpelation (for instance [BL, T}, not much is known for vector-valued
H7-spaces. The purpose of this paper is to deal with real and complex
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interpolation for vector-vatued Hardy spaces. We shall try to extend (0.1}
to (0.4) when functions are allowed to take values in two different-Banach
spaces.

Contrary to the classical case, different definitions of Hardy spaces lead
to essentiaily different spaces when we allow our functions to take values
in a general Banach space {see [B21). Therefore we must set very precisely
the Hardy space we shall be considering. We shall be working with 87"
when dealing with harmonic functions and the unit disc D for the case of
analytic ones. Given a complex Banach space X we denote by H 2(},’ }=
H i;(X, ") and HP(X}:HP{X,D) the natural extemsions to the corre-
sponding ones we have already mentioned in this introduction where we
simply replace the absolute value by the norm in the space. 1t is known
that in the vector-valued setiing, fanctions in these spaces need not have
b~oundary values almost everywhere. Hence we use the notation & fj{X } and
H (X} for the closed subspaces of the previous ones where the functions
have boundary limits (see Section 3 for concrete definitions of such gpaces).

The paper is divided into six sections. The first two are devoted to
recalling definitions and basic results on interpolation theory and vector-
valued Hardy spaces, respectively. In Section 3 we deal with complex
interpolation. The main result that we achieve there can be stated as
tollows: For 0< py, p1 < oo, 0< <1, and Vp={1-8)po+8pe

(ﬁﬁu(xf})’ a; (Xl}}fl = ?Z(Xe)w

Pl

where X, denotes {Xg, XJe-

The proof uses atomic decompositions for functions in vector-valued
I P-spaces together with arguments in [W]. A similar approach was used
in [B1] for the simpler case 1< po, 715 90

The case BMO{Y) as end point is considered in Section 4, proving the
following results; For 0 < pg <20, 0« f<t, and I/p={1--8)po

(Lpn{XG)a BMO(Xl)}g = Lp(Xg)
(A% (Xo), BMO(X)1s= H (X0

Section 5 is concerned with spaces of analytic functions on the disc. In
this case the inclusion {(H,{(Xoh (¥ })e= H,(X,} remains valid in the
yector-valued case but we show with an example due to G. Pisier that it
is not equality in general. However, there are cases where the extension of
{0.2} holds for functions with values in Banach spaces, namely when either
both spaces have the UMD property or both spaces coincide. The last sec-
Gon is devoted to real interpolation. We prove that the apalogous equation
to (0.4) holds only when p>1 and give a counterexample for p=1. We
also consider BMO as an end point and the case of analytic functions
obtaining similar resuits to those for complex interpolation.
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Let us finaliy remark that we do not consider Hardy spaces of vector-
valued martingales in this paper, but simiiar results for these spaces can
also be obtained. If (€2, #, P) is a probability space and %, is a sequence
of o-fields with o(l) #,)=%, we consider the space of X-valued mar-

tingales = (f,,} adecuated to (2, #. Z,, P} satisfying

[ ME X T fisupl j‘u{(ﬁ-) il PRTPRSA e

L

We denote by MH (X} the completion of Lo{X, €2y under this norm.
MBMO(X) will be the set of functions in L,{X, )such that

EFN srmaon = sSup IE(LS — B #00 FMl e

"

Similar ideas to the ones used in this paper for harmonic functions, but
simpler, give the following results.

If (#,) is “regular” in the sense of [G] and f 0 < po<oc, U< p €00,
OO, Yp={(1—0)po+8ip, and jg=(1—0)/ps then

(MH,, (X))o = MH X}

(MH (X BMOUX )= MH(Xy)

(Xuh MH

m

| et us finish the introduction by mentioning some conventions that will
be used throughout the paper. (X,, X} denotes always an interpolation
couple of complex or real Banach spaces and C stands for a positive
constant which may depend on #, pg, . -» DUt never on the functions
considered and which may be different at sach occurrence.

1. Basic FACTS ON INTERPOLATION

Fere we simply tecall some basic facts on interpolation that will be used
in the sequel. Some general references for interpolation theory are [c, Lp,
BL, T7. Since our main interest consists of interpolating f{'g(X) for 0 <
p< o by the complex method then we have to deal with some extension
of Calderén’s method to the context of quasi-Banach spaces. The difficulty
arises from the failure of the maximum principle when functions are
allowed to take values in a quasi-Banach space. We refer the reader to
[CMBS, JI7 for such extension to the quasi-Banach setting. Throughout this
section {4y, 4,) denotes an interpolation couple of complex or real quasi-
Banach spaces.

Denote by S={zeC:0<Rez<1} and A(S) the space of complex-
valued functions which are analytic on 5 and bounded and continuous on
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5. Given an interpolation couple of complex guasi-Banach spaces {4, 4,)
we defline

{ m

5’?(140:/;1):{ 2 apfilage dgn Ay, fire A(S), meN}.

k=1
We set on this space the norm

1/ =max{sup | f{io)] 4. sup | F(1 +i0)] 4}

g celR
and for each ae 4, 4, we define for 6 <8<

lallg=inf{} /] 5 : fe F(Aq, A) and f(8)=a},

We denote by (4y, 4,3, = 4, the completion of 4, 4, with respect io
this quasi-norm.

It is well known that this space coincides with the one defined by
Calderon [C] when 4, and 4, are Banach spaces. A very useful fact
shown by Calderon and which remains true for quasi-Banach spaces (cf.
[CMS]) is the following: For fin #{4d,, 4,)and 0 <f <1

i

Log /)< ¥ | Log |fU+ic)i, 26 c)ds,  (L1)

j=0" -

where P8, o} and F,(6, o) stand for the Powsson kernel associated to S,
Let us now recall the K-method for real interpolation. For each 1> 8 and
xin 4,4+ A, we define the functional

K([a X):K(i, X, AO: Al}
=inf{lxgl o+ Xl x=x+ %, 0,64, j=0,1}.

For each O< g~ oo, 0<f <1 we consider

- e
o= ([0 o ) <o)

{A{)) Al)f.‘,cc ;AG‘L = {'IEAD+A1: }r!-(.ﬂtx ZSU«I& t GK(I‘: x)< @}
[ .

{‘405 ‘41)9,([ = A(f'.q = {x & AO + Al: ”X

We refer the reader to [LP, 87 for the following equivalent formulation,
[F0< pg, py<o0 and 1g=(1-0)p,+8/p,

o {1 —po
sxzie,qmnf{( T e w)

e}

el i3/py
( 5 ze“*”'*xmaz) } (12)

-

where the infimum is taken over all decompositions x = xg, + X4,
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The next theorem sununarizes the basic results on interpolation of
vector-valued Lf-spaces. Let (£, i) be a measure space and for 0 < pE o
Swe write L{X)=17L,(X, 2} for the space of measurable functions with
values in a real or complex quasi-Banach space ¥ such that ilf (3l belongs
to L,(Q).

THEOREM A, Let O< py<oo, 0<p, <0, 0<f< L Yp={1-0)p,+
gf/pi’ '

(Ll Aol Ly (A4 o= LyfAa) ", (1.3)
(Lpn(AO}a I‘m(/! i ))i}.q = -L;J(A f?.r;)' ! ( 14}

The reader is referred to [BL] or [T] for a proof it the case of Banach
spaces and 1 < pg, 2, < o0 and to [X1, 87 for proofs of (1.3} and (1.4} in
the quasi-Banach context, respectively. Let us finally mention that no
reasonabie generalization of {1.4) for different vatues of 7 can be expected
{see [ CwT1}

2. Basic Facis oN VECTOR-YaLUED HARDY Spacres

Let X be a real or complex Banach space and denote by B the st
{(x, 1) :xeR", 1>0). To each measurable function SR S X we can
associate the maximal function

SHxy=sup I fix 0l (xeR?),

I

For 0 < p<ov we denote by H4X)= HY(X, R") the space of harmonic
functions from R into X with /* belonging to L {R"}. The norm in this
space is given by

17 Hi = (A La{ By

For complex Banach X spaces and O< ps o we define H (X)=
H (X, D) the space of analytic functions / from the disc C into X such that

y gy
(/1 sp0y= sup (Ja !i.f(?'eg)’zjg

D=ral

{with the obvious modification for p= o).
These spaces become Banach spaces for 1 < £ % o0 and quasi-Banach for
C<p<l.
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Omne of the main differences when working with vector-vatued Hardy
spaces comes from the fact that functions in H;;{X) and /1,{X) need not
represent each function in those spaces in terms of a vector-valued distribu-
tion. Lat ¥ =%(R") be the Schwartz class and denote by &' (X)=
S X, R7) the class of linear continuous maps from % into X. The clements
in &(X) are called A-valued tempered distributions. The follewing known
result for the classical case (cf. [FS, GR]) goes over the vector-valued case.

Provosriion 21 Ler O< p<oo and fe HUX). There exists the limit
i, ., f{-, 1} in the sense of distributions in %X},

Sketch of Proof. The case O < p< ! can be done similarly to the scalar-
valued case (see [FS, p. 1747). For p> 1 we look at

"

Tigy=| flxgx)dx  (1>0)

g

as a uniformly bounded family of operators from L ,(R"} inte X (where
Ijp -+ Lip"=1). Since &L AR}, ¥**} is a dual space (namely it is iden-
tified to the dual of L {R") & X*) we can find a subnet converging to 0
and an operator T in Z(L,(R"), X**) such that (7,{¢), £> converges to
{Tig), &) for alt ¢ in L,{R") and ¢ in X*. Composing with functionals
and using the scalar-valued result, it is sasy to realize that T,(g)=
I(¢ = P}, where P, stands for the Poisson Kernel in R”", which shows
that in fact the range of T is in X, and then 7T, converges to T, as -+ 0,
in the strong topology of #(L,(R"), X} and therefore in &'(X). §

Remark 2.1, A similar result can be obtained for the unit disc by means
of the conformal transformation of R? inte D.

Some distributions in Proposition 2.1 can came from functions. For
instance, assume [ < p<co and take /in Z,(X, R"), if we consider the
Poisson integral of f, that is, Pf(x, =P, = f{x) where P, is the Poisson
kernel in R""!, then we get a harmonic function in H;(X } whose
associated distribution is represented by the function £

It is well known that for harmonic functions g and for 1< p<w we
have

te*li, < Cpsup gl il (2.1)

[

Therefore {2.1) allows us to identify L (X), I <p<co, with a closed
subspace of (X} given by Poisson integrals of functions in LX) Let
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us denote by ﬁ;ﬁ{X} such a subspace. identifying the functions f with its
_Poisson integral P/ we can wnite

A LAY © |:f||Hj,’(J] < Cp (¥4 L-"(X); {2.2)

For O0<p<l define f—?"{X} as the closed %ubspdce generaled by
H"(X}n LX) (where we are identifying therfunction in L,(X) with the
distribution in H’{X) which defines).

The situation for the disc is very similar. We assume now that X is a
complex Banach space. Let 1€ p< oo and let f be afunction in L,(X, T)
with f(n) =0 for n <0, we define the analytic function .,

Pfrey =P, « f(0),

where P, denotes the Poisson Kemel on the disc.
Denoting by

F?,»(X) =[Pl fel (X, T} Flay=0forn =0}
we now have that for 1€ p
e IFER S 271 Hat X}

For 0 < p< 1 we use the notation ﬁ‘p(X} for the closure of the polyno-
mials in H,(X}.

The comcadenm of H”(X} with H"(X} and Hﬁ,(X) with M (X} depends
on some geometric properties of ihf, Banach space X. It is known that
Hij(X) = H;;(X) for some 0 < p< oo (and equivalently for al 0 < p o0} if
and only if X has the Radon-Nikodym property, and that the coincidence
H,(X)= H,(X) is equivalent to the analytic Radon-Nikodym property on
the space X.

Let us now characterize & L{X}in a very useful way in lerms of special
“building blocks” called atoms. The reader 1s referred to [CW] or [GR]
for general theory on atomic decompeositions in the scalar-valued case. We
say that a function ¢ R"— X is a p-atom {(O0<p<1} if '

(i} suppa=(, ¢ being a cube in R,
(i) jlall,, < Q)" {where || stands for the Lebesgue measure)
(i) fpnx"a{x)dx=0 for aeN", fo| =%} 0, <[a{lfp—1}], and
xP =3 X

Let us define

HEX) = {Z hply A= {h e nn €87, gy are X-valued p-atoms, k)()}

k=0

{where the series converges tn %'{X}).




INTERPOLATION OF VECTOR-VALUED SPACES 339

For cach f'in #(X) we define

?f”ifg"(}r_}:inr{k Z, V-Hp) = Z '{kak}:

k=0 k=0

where the infimum is taken over all possible representations of fin terms
of p-atoms. {(H(X), || | ng(X)) is a Banach space for p=1 and a quasi-
Banach for 0 < p< L,

It is very easy o show that ail X-valued p-atoms belong to a fixed closed
bail in ﬁg(X'), which allows us to write that H;’(X)c:ﬁjj(X) {with con-
tinuityl, The reverse inclusion is also true and it follows with the obvious
modifications to the scalar-valued case {(see [Co, L, LU]J for a proof).
Hence we can state the following theorem which implies that FI;(X 1=
H (X)) with equivalent norms.

Tueowem B, Let 0<p<1 and fe BYX). There exists a sequence of
X-valued p-atoms (a.},., and a sequence A= (), ..8!% such that
F =2 huo Avtty. Moreover (3., 4 JA PP C, E|f}f,,£(m,

3. CoMpLEX INTERPOLATION BETWEEN A% (X,) AND }?';jl(X;}

since we shall be dealing with complex interpolation in this and the next
two sections, we consider complex Banach spaces X, and X,, (X,, X}
stands for an interpolation couple, X, = (X, X, and | o, | 1, and | 4
denote the norms in X, X, and X, respectively. The main result of this
section is the following

Tueorem 3.3, Let O<py, gy, 0<8<], and Up=(1—8ip,+
8/p,, then

(gﬁg{Xo}, ﬁﬁ,(z‘m)nmﬁ,ﬁ{%}. (3.0

Remark 3.1, This is clearly true for 1 < py, p; < oo because of (2.2} and
{1.3). The case py=1 and 1< p< oo was proved in [B1]. The proof wiil
be based on the atomic decomposition provided by Theorem B and some
ideas in [J3].

Proof of Theorem 3.1. Let us show first the easy part
2 (Xo), B X Yee BUX,),

From density arguments it suflices to see that if fbelongs to & ﬁO(X o) and
) (Xy) with norm in (H7 (X}, H)(X ), [ /o<1, then f belongs to
H:;{Xe) and | f] Hj,‘(}:g)\(u L
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Given f under the above assumptions and >0 we can find F in
ﬁ’{Hij(XO}, Hfjl{Xl)) such that F{(8) = f and ||F| > <1 +& Now for each

(x, 1y R%7we have F((E1),0V="7(¥, 1) and Fl{x, 0), ye #F(X,, X,), and
therefore from (1.1) we get
Logsup fif{x. )ll§
=0

A
<2 | Logsup [Fl(x, 1), j+ i)l P8, o) do.

je=0 T =0

Using Hoider and Jensen's inequalities and denoting by #,= 1 — ¢ and
g, =8 we can write

o< [ { T exo [ Logsup 1 0+ i1

i=0 =0

iip
X P8, o) a’ff} a’x)

I * X
<1l { ( I, (ﬁ‘w | Logsup [F(x, 1), j+i0))
} g - - O

,,( =0

. \ s,
x 071 P {0, 6) dch a’x)}

<[] {{ [[ sup JF((x, r;,f+m~}!|_5‘fdx] 0720, a)dﬁ}

j=o LY Ry

iipy

S (SUP 1 Fi0) )’ 7 (58D 1F(L 4 i) gt )

agel? oelt

Shffssti+e

The second inclusion is much more delicate. From Remark 3.1 we may
assume that O< p<1. We shall see that there i3 a constant such that
for any f in ANX,) and ||f], a1 there s a [unction F in
,@(i{ﬁU(XO], HﬁE(X,)) with |F)l < C and ﬂfmF(G)ing(mg 1/2. Then a
usual reiteration argument finishes the prool by showing that f belongs 1o
(E’ﬁa()(o}, ?121{}(1)}0 and its norm [fll,< C

since X, X, is dense in X, and simple functions with valaes in Xy are
dense in ﬁjj(Xn}, we can assume that fis a simple function with values in
Ko A, From Theorem B we would have an atomic decomposition for £
but we are going to be more explicit and to recall a procedure to get one.
Denoting by G(f} the Fefferman-Stein’s grand maximal function, and
considering R, = {G(f)>2*} (keZ), we find a Whitney decomposition
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of Ry, say {07}, such that QF are cubes verifying 8, = {Q%: = 1} and
0 = 9/8Q"CR,\ Moreover |3, ¥gtl 1 mn < C.
Ademated to this dccomposmon into cubes we can find A farrily el
. X y-valued functions 1.:1;‘} having the properties

f=3 X a (3.2)

keZ jzi
suppay ¢ @F,  OF being a cube in R {(3.3)
2 laitx)iie < C2%%g(x), xelRe (3.4)

Fz0
n

xaf{xydx =0 for weN" jal= 3 a,<N=Npg p) (3.5

R . ket

where N=max([a{l/po 1)1, [#{1/p,—1}]1}.
In fact f are obtained from the function f as

=(f=PO#E= X LU - PET) G5 - P PEYL (36)
iz
where Pf and P} are polynomials with coefficients in X, and 45 are C*
Eunctmns with values in R and supported in Q" {We refer the reader to
{L] or [LU]J for a proof in the scalar-valued case that goes over the vec-
tor-valued setting with the obvious modifications.} By construction, singe f
is Xy X -valued, so P} and P} are. According to (3.2} and (3.6) there
exist ky, &, in Z with ky <k, and for each &, <k <k, there exists J, in N
suich that for each ko <k <k, and 1 €< J, we can find N" e N verifying
that il we take
Y

b ={(f~P;) o} - Z[U‘ PEXTygit - PETIIPETE (3T)

Ji
S b (3.8)

&;
Ji= Z
kg o=

.

then
I/ = fil ki) < /4.

Mote that .bj’" still have properties {3.3) 1o 3.5 for kysk <k, and 1 g
, J€J, and they are defined by finite sums. Observing that £ is a
Xon X, -valued simple function, P§, P} are poiynomlals and g%, ¢¥ are
compactly supported C* functions, one can easily find simple functions c
with values in X X, and supported in QA such that

ko ks -
Hb] Y | Lalxgr xp, w2y & ij2.
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For such functions we can get HieF(L.(X,, O0F), L.(X,, 0%))
ver'ifying that for all xe@f, Hi{x, O)=c} and |H{(x, e <
Consider now G; =H + (b —c¥).

Obviously G e { (XO, Q ) L X1, 0F)) and for all xe §,

G (x, 0)=h% and IGE0x, ) 5y, 7S HOKH] o + 32,
According to {3.4) one has
NG M sz S C2Amlx) xR (3.9)

The next step consists of modifying a bit G* to get a right order of
vanishing moments, To do so we need the following procedure. Given a
Banach space X, an integer m e N, a bounded measurable set ¥ in R” with
positive measure, and a measurable function g defined on £ with values in

X, we shall denote Q(gi= Qlg, E, m) the unique polynomial with values in
X satisfving

J x*O{gix) dx:f xg(x) dx for wedN" |a<m
o &

Let us state the following lemma whose prool depends only on an
argument on finite dimensional Hilbert spaces and can be adapted to the
vector-valued setting (cof. [FRST, LT

Lemma 3.1 Let xoed, [ being the wnit cube in R If
M;(-‘C”xo) gix)dx!| <1 for af <m, then iQ(g)i\i((Xi) £

For each ze8 we consider Pi, 2)= QG z), 0% N Now
Lemma 3.1, together with elementary arguments of dlianom and transla-
tions and {U ), gives us the estimates

HP’?{',ig)[;‘ﬂ,){k_J(A,ﬁ.QﬁSC'T‘ (veR) (310
[ PE 1+fa)n[w(,fhg¢}<<?2‘( {oeR). (3.11)

j\‘}

Drefine now the functions

Fi(z)=GFHzy— Py{- V) K

Note that we still have Ffe (L, (X, 0)) Lo(X,, 7)) and from
(3.10}, {3.11}, and (3.9} we have

IS Mgy S C2mlx), xe R (3.12)
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Finally observe that P}(-, 0) =0 and then from the definition of PJ(-, z)
we can also write

Fr(8)=bF (3.13)

K

LE" xﬁ(};‘_?(xnz}dl;:(} for aeN" ja|<N zel (3.14)
Denoting by o{z) = {1 — p/pa)(z/8 — 1), we build up the function

ki gy

Flzy=3 ¥ 290Fkz),

ko j=1

Note that Fe F(H%(X,), B4 (X,)) and F(8)= f,. Let us finally estimate
the norm || F| . Consider

Sy = Ok | gK e FE(z)

then (3.12) and (3.14} show that”f'}‘.'{ia) are py-atoms with values in X, and
therefore Theorem B gives that

rkio Jy _ 1po
120} ot oy S € (Z 3, 2kl pieo) !Qj‘-’l)

kn j=t

ks i .
sC (Z 24p iRkI) < CUGU I )™
ke /
< CU Barrosen)™™

{The reader is referred to [GR] to see how the space H ;j can alsc be
defined in terms of G{f) instead of /*.}
Therefore we have shown that

sup | Flig]]| 1}, (X} s

e i

If 0= p, <1, a similar argument would give

sup | (1 + fﬁ)’)EHf s C
"1

FeH

Assume now that p, > 1. According to (3.12) we have

ki K
#ln T +io), < CY, 3 290y < C ) 29y (x),

ko f=1 keZ
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For p, < oc we can now compute the norm in L, {X,) and get

1+ io){ ey < C X 27 RIS T Ny

kel

which implies SUP, e (1 +ecr)|m! gee -
Hence the proof is completed since 1F| < C and | FG) — 1 iy =
17— Al ) & <l/4

The case p, = cc was obtained in {B17 using Wolff’s"reiteration theorem
[W 1. Now in the quasi-Banach case we do not have it at our disposal, and
we shall use the argument in the previous and ideas in {JJ} to get this
gxtreme case.

TraronreM 3.2, Let O< po<oo, O, and 1/p={1-—8)/p,. Then
(ﬁﬁu(xo}a ﬁﬁc(Xﬁ}u:ﬁz(Xﬂ) (3.15)
Sketch of Proof. The easy part is very similar and we omit it. To do the
harder inclusion, we follow the same steps as before and get /| =
Z,"U ;_1 b where b" arg defined by (3.7}, Now we use Lemma 5.1 in [11]
to select a subfamﬂy [Q} e, of {QF1<j<d kosk<k,} and certain

fanctions 4, obtained as sums of functions in [»F:1<j<J,, koshk<k,}
which take values in Xon X, and are supported in @, and satisfy

=Y b, (3.16)

je s
For cach feJ there is »2{/)e N such that
Z_jf—,fzpm(jj g =0, (3.17)
O, @ and k£ then miky>m(j), O, # ¢, and

Yo lo<210,0 (3.18)
Qp e Oy
10,1 4 o0 <02, (3.19})
Ed b (xydx=0 for weN", jaf SNy=[n(i/p, - 1)]. (3.20)

o
if 4 < J then for every x there exists {x}& A4 such that

5 by 0l < C 2y () (3.21)

jed
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As in [J1J] we consider

HO)={0,=50,10.<10,|} and E,:{xeé,-: B '25?(5%}'#'?!};"

Cre ()

where 4 will be chosen later. It is not hard (o see that 2] < (C/2) ]Q},
Hence |E,| <(1/2) || for 4 large enough.
Now consider P; being the X, n X -valued polynomial satisfying

xX*PAx)dx = i

" J o X"b{xydx for we N, Jaj < N,.
-8 g5

It can be shown that

21)!(}]

(3.22)

‘| Loty m Xy, 8- 5y 5= s C

Write now b= (b, — P} 44 gljedyand f,=3_ 5,

Taking A large enough one gei’s ifi— janh(Ya)\ 1/4 {cf [31]) Now we
can repeat the arguments used in Theorem 3.1 by replacing b"" by 5; and f,
by fz Finally properties (3.16) te {321} allow us to fmd F in

FAE (X)), B (X)) and F(B) = £, and [[F] » < C.

Therefore the proof is completed since

“f F(G)\‘H”(XH)\ f\f fx H(Xg) hf1 - fﬁﬁi;}f(x@;g 1/2-

and the iteration argument can still be applied. §

4. VECTOR-VALUED BMO as an FND POINT FOR INTERPOLATION

We denote by BMO(X}= BMO(X, B") the set of locally integrable
A-valued functions satisfving

.lffsﬁ,\mfxa = sup T@j‘f [ f'(x)"‘“fg §dx < co,
where the supremurm is taken over all cubes O in R” and S stands for the
average j Flxydx/1ol.

BMO(X) (modulo constant functions) is a Banach space and it has an
equivalent norm given as

i a0 xy=sup inf — i I /{xt— all dx.

o] aeYFQ
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it is quite casy to notice that
12, ‘Hszwc)(.r;'gs' Hf'};:smo(n < S BMO(X) (4.1)
Following Fefferman and Stein {FS] we consider the “sharp function”
f7 defined by

SP=swp inf [ If(p—aldr  (ceR)
xeld {li,YIQ! [&] .

Hence {4.1) says that fe BMO(X) it and only if /# el . (R"). We shall
need in the sequel the following generalizations of the “sharp function” and
the Hardy-Littlewood maximal function MY

For0<r< oo and fe L) (X, R") let us defing

. . I r o . Lir 7
J7{x)=sup inf (@ jQ WAy —al’ cf)’) (x e 1),

XEQ as X

lr

, A ‘ :
M =5 ([ ) e
xe(d iQi tQ
It is elementary to show that for 0 <7 < oo one has
) ) } } . Eir "
crzmss (gl i s a) sorrm e
xed iQI Q

The following easy observations allow us to get results for values of
0<r< oo from the case r=1, Given Jand writing g(x) for | /{x)|" then

Mg(x)= (M, f(x)y  and  g*(x)<(f*(x)). (4.3)

The next result is an extension of the Hardy-Littlewood maximal theorem
and Theorem 5 in [FS] te any value 0 < r < oo,

LevMma 4.1, Ler B<y< oo,

r<psoo then |M, [, <CHfli - {44}
Hr<p<oand r< py< p then IM < ClfE I, for fe L, (X).

(43}

Progf. Condition (4.4) is obvious from {4.3) and the classical resuit.

Condition (4.5) was proved in [H] for ¥=0C by modifying the original

proof in [FS8], but we shall show here that it certainly follows from the
case r=1. Note that if » > | then using (4.4) and the case 7= 1 we get

WM, SO Lo S CIMALL<CH ML < CLFF L
g 7 7 U (

y
i
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Forr <1 put g{x)= | flx)|" and use {4.3} together with the case r=1 to
get

84, /e, < IMgly, < Cllg™ll,,, <CI 7L, §

Now we are ready to state the analogue to {G.2} in the vector-valued
case,

Taeorem 4.1, fer G<8<i,0< py<<oo, and Yp={1—8)/p,. Then

(Lp{Xo) BMO(X, )}y = L,(Xe) {46)
(17 Xo). BMO(X) 1)y = HJ(X,). (4.7)

Remark 4.3, This was shown in {B1 ] for | € py < 0 under some addi-
tional assumptions coming from the use of duality in the proof Here we
present a different approach and extend the resuit to all values 0 < py < 0.

Froof of Theoren: 4.1, Using (1.3) and the fact L_ (X, ) BMO(X ) we
have LX) (L, (X)), BMO(X )},

For the other inclusion take ry and ry verifying 7o < pp and G<ry< i<
ry<< oo, Write {/r=(1—8)/r,+8/r;, which obviously gives r< p. Let us
take fe L, (Xo) n BMO(X,) with norm in (L, (X,), BMO(X )}y, 1<,
and choose Fin F(L,{(X,), BMO(X )} with F{#}=f and ||Flz<2 For
each cube ¢ and z in & we define

|
Golz)= Flz) =1 L Fx, z) dx.

Since Fix,-)e F(X,, X,) and Flx, 8)= f(x), then Gylx, - je F(Xe, X1}
and Golx, 8} = f(x)— fg. To simplify the notation we write f 7. to denote
the function £ when taking values in X, for k=0,1, 6.

From {1.1) we can write

Ll

1
Log | flx)~fola< . | Log|Gylx j+io)ll) P(6, o) do.
j=0

Vo

The analogous argument 1o the one used in Theorem 3.1 in its easy part
shows that il we denote f,=1—8 and 8, =0

1 » ] Lir
(‘ """ n JQ ﬁf(};}“‘"fglir dy)

%_ . o . ‘ e ) dx iy
ST 6ot siony o7 0. ) doe ok
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From {4.3} and using r, < p, we have

por

ffﬂ(){)gcﬂ {j (F(j+1o)(x))7 0,71 P,(0, G)a’a} B

< Csup (F{1 +i0)7 {x))*
celR
{1 E)pa

® (f‘c (F(io'jfﬂ" sy {1 — gyt P8, o) {Ja)

From this inequality we get

CoP NS Tl 5 < {sup sup (F(1 + i) (x)))*

X T

X (Jﬁ [ (F(fg)iu(ff)}m (18"t Py(0, &) do dx)
Ldmr Y
<sup [ )E N o S0P IF(L+i0)2 17

aelt ge i
Omn the other hand it 1s well known that for r; > 1

83 -+ ig}f;,iij Lty S CHFL +io)f BAOXp) (4.8)

o

Using now that g*{x}<< M, g{x) and (4.4} then
|F{w):; ol Ly (87 <C ‘EMmF{fU” Lo 3 < C | Fig)l £yl Ko} {4.9)
Therefore using {4.8), (4.9), and {4.5) in Lemma 4.1, we get

LA Lol Xo) « Csup || Flic )} Lyt gy SHP 1#( + o BMO{ XY

vel celX

Consequently | /il Lx, € CllFls<2C
Now a density argument finishes the proof of {4.6)
Let us now prove {4.7). From Theorem 3.1,

ﬁﬁ{X{}} = (ﬁﬁ(}{X'ﬂ), Lo (X} {ﬁ,ﬁa(xo)s BMO(X })e.
For the reverse inclusion et us take />0 and consider T,: f— /2P,

This is a bounded operator with norm <1 from fi;’ju{XQ) into L, (X,) and
from BMO(X,} into itsell, Hence (4.6) and Theorem 2 in [CMS] give

L Pl iy S CUE L oo asoves:

Hence (2.1} implies for 1 < p

Il A xg) SCLf (ﬁﬁuu'u),ﬁ.wawlnn-
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To prove the case 0 < p < 1 we may use the reileration theorem for com-
plex interpolation {¢f. [BL, Theorem 4.6.1]) {in fact the inclusion we need
is the easy onc and it is true also for quasi-Banach spaces). Choose <
8, <1 with g=pg{l —6,)7'>1, and write f=06".

() 4X0), BMO(X )y < (H)(Xo), (i (Xo) BMO(X ))s)g.  (4.10)

F2 0

Combining this with (4.6) for ¢ 1, (3.1}, and reileration again we get

(A1 Xo), BMO(X ) (H}{Xo), X))y
= gﬁ((X'm Xodpl= xf;z(Xg} E

5, COMPLEX INTERPOLATION FOR VECTOR-VALUED ANALYTIC H7-8PACES

In this section we shall work with the unit disc D instead of R " and
we shall study the analogous results to Theorems 3.1, 3.2, and 4.1 for
B (X). We shall denote by BMO(X)= BMO,{X, T} the space of functions
in L{X, TY with f{n}=0 for a<0 and

7

1
i|f§EﬂM0{X) = SUPT}I J , i flx)— Fil dx < o0,

where J stands for intervals in T and |-} will be the normalized lebesgue
measurs on 7.

We refer the reader to [J1, J27 for interpolation results for the complex
method in the scalar-valued case. We shali see that the situation differs very
much from the setting of harmonic fungtions when the functions are allowed
to take values in Banach spaces. First of all let us state the inclusions which
always remain valid.

ProposiTiION 5.1, Ler O<@ <, 0<py<on, O<p, <o, lp=
(1—8)po+8/p,, and Vg =(1—0)/p,.

(ﬁpG{XO}7 ﬁpl(‘Xi))UCﬁp(XHJ' (5.1}
(H ,(Xo), BMO(X 1))y < i (Xy). {5.2)

Proof. For fe ﬁm(XOJ s ﬁpi(Xl}, consider f{t)= fi{re™) for B<r<1
and re [0, 2n). 8ince f, € L, (Xo) n L, (X}, then from (1.3) we have
1 ey ST g on 000 S W 1 i, 2, 0000

This gives that fe f?p(XG'} and {| £ g0 € Hfli[gpotxo),gp (X1
We leave the proof of (5.2) to the reader. It uses similar arguments to
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those in Theorem 4.1 where we replace the use of (2.1) for the following
maximal inequality

2n
| s O <G 1 e O<p<o0)

Jwr=1

which follows easily from the subharmoniciéj of g{zy=§f(z}{* when fis
analytic. §

The following result exhibits the difference with the case of harmonic
functions. :

PROPOSITION 5.2, There exists an interpolation couple (X, X () of com-
plex Banach spaces verifying that for any values G<8<1, §<<py<co,
O< p,stoo, writing 1/ps (1 —8)Ypg+ 0/py and 1jg = (1 —8}p, we have

(A, (Xo) H L (X ) # H,(Xa) {5.3)
(Ho(Xo), BMO (X))o # H(Xp). {54)

Proof. We shall use the following example constructed by G. Pisier to
show that the finite cotype does nol pass o interpolation spaces by the
complex method. Let Xy;=7L,(T) and X, = ¢o{Z). (The injection given by
the sequence of Fourier coefficients makes them an interpolation couple.)

Lemma 5.1 (G. Pisier). For 0<8<1, &, contains c,.

in fact £, (7} =cos 3%, for ke N and re [0, 2n), defines a sequence in X,
equivalent to the canonical basis of ¢ (see [ D] for a proof).

We use this example to verify (3.3) Fix 0<f <1, O<py<oo, and 0 <
71 % oo, Due to a certain factorization property that L) enjoys we have the
following fact whose proof can be found in [HPT:

{(*} There exists C=C, >0 such that for any sequence {r, },., with
Ogry<ry< -+ <1 and any function fe i1, {X,)

’

ifs
(zhﬂ~&gmﬂ@ <C 1 mgrnr (5.5)

kz=0

where s =max{2, po) and f,_ =G

This means that for any sequence r, increasing to 1 the operator 77 f —
(fr.—Fu_Ji=o is bounded from HEG(XQ} into [{L,{X,)}. On the other
hand 7 is cbviously bounded from &, (X,) into 7 (L, (X, }}). Assume for a
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moment that {5.3) is an equality, then an interpolation argument would
give

( Z ‘jﬂ mfn.:”?_,,(x,;)) SCB Hf“ Ay xe) (56)

=)

where 1/s;={l —6}/s and C, is a constant independent of {#,) and /. But
note that {5.6) implies that X, has cotype s, with 2< 5, < co which would
contradict Lemma 5.1,

Very little modification is needed to show (5.4), Simply mention that
John—Nirenberg’s Lemma assures that T is also bounded from BMO (X )
into 7, (L, (X)) if p; =1, and therefore equality in (5.4} would give

Ysp
(Z 1= fuditin) < Collf g (57)
k=0

where s, ={1—8)s, Vp={(1—8)p,+8/p,, and Yg={(1 —8)/p,, which
is still enough to imply that X, would have cotype < co.

{learly Proposition 5.2 depends very heavily on the special propertics of
the interpolation couple (L, ¢y}, and one shouid expect that there are
cases where the natural extensions remain valid. In fact Jones’ proof [J1]
can be adapted to the case where ¥, =X, =X to get a vector-valued ver-
sion of {G.2). Here we present a different approach which shows that the
vector-valued case follows from the scalar one. We would like 1o thank
Gilies Pisier who kindly communicated this argument to us.

ProposiTioN 5.3, Let O<f<l, O<py<owe, O<p<€aw, lp=
(1 —-0)py+0/py, and {jg={1—8)p, and X a complex Banach space.
(H

o (X). {5.8)
(H,(X), BMO (X))o =H (X {(5.9)

(X), A, (0= A

s i py p

FProgf. Let us first notice that (5.9) follows from {52) and the case
po= o0 In (5.8} Therefore according to {5.1) it suffices to show

X < (B (X, H, (XD

F(!(

Take an X-valued polynomial / with || /1 ma S and consider the outer
function ¢ satisfying |f{e”} = | f{e”)| + 1 for ali &[0, 2r}. Denoting by
g=¢ '/, we have f =gg with ge H_(X) and ¢e H, nH, and verifying
1glanst and §ély < C From the scalar-valued case there exists
PeF(H,, H,) with ®(8)=¢ and ||P] » <20 Define now F=gd and
observe that Fe Z(H,(X), I, (X)), F(6)=f, and |F|><2C. A density
argument completes the proof. §
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There are also conditions on X, and X, which ailow us to have the
vector-valued extension for couples of different Banach spaces, namely the
UMD property. BT

Let us recall that one of the most useful characterizations of the UMD
property refers to the boundedness of the vector-valued Hilbert transform
{cf. [Bo, Bul), namely

{(**) Xisa UMD space if and only if th:a,:_Riesz projection is bounded
on L,(X, T) for some (and equivalently for all) values 1 < P << o,

In fact it can be also formulated in terms of the bouridedness of the Riesz
projection from FIS{X) nto fi’p(X) for all values of p, 0< p=<oc {cf.
[BuZ B2]). Using these observations together with the analogous results
for the disc in Theorem 3.1 one can get a proof of the next resuit, but we
present here an elementary argument which does not nse the very technical
and delicate result in (3.1}

PROPOSITION 5.4, Let X, and X| be UMD complex Banach spaces and
let 0<0<1, 0< py, py <00, and 1/p=(1—0)p,+ 8/p,. Then

(H(Xo), B (X)) =H (X, (5.10)

Proof.  We simply have to show H,(X,)c (8, (X,), H, (X )

From UMD assumption and L -resulis, this is clear for 1 < p,, p, < 0.
We shall use factorization to decrease the index 1. Let us take an infeger
k such that kpy, kp; > 1, and assume that fis a polynomial with values in
Ay and || /1 oy S L Given £ 0, let us consider now the outer function &
satisfying {g(e”™) = | /(e”)|,+¢ for all te [0, 2n). As above we consider
g=¢"'f which implies ge&_(X} and lgle <1 We write then
S=J0fo i where fi= g8 and f,= - = f, = ¢"* Obviously we get
fie ﬁkﬂ(i&’g) and f,e H, for 2< <k Using that kp,, kp, > 1 we can find
FreF(Hy, (X)), H,, (X)) and Fre #F{H,,, Hy, ) for 2<j<k, verifying

o=/ and  |F < C(

Sl el 1<j<k

Finally take F=F, F, .- F,.. This gives a function Fe ?ﬁ"(ﬁm()(o}, ﬁm{Xi))
with J(8) = fand [ Fl» <TT/_, I1Fl - <CT (116, + 50
We finish the proof by letting & go to zero and using Hj._,_,} I f3hap=

U i B

Remark 5.1, Standard techniques involving singuiar integrals show
that the UMD property for X also implies the boundedness of the Riesz
projection from BMO(X, T) into BMO (X, T). Unfortunately the previous
argument does not work for BMO since the product of BMO functions
need not be a BMO-function, but using (4.7) in Theorem 4.1 (its version
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for the disc) we can also establish that if X, and X, are UMD complex
Banach spaces, 0 < <1, 0< py,< o0, and U/p={1—8}/p, then

(F1,(X o) BMO(X,)),= 1,(X,). TG

Remark 52. ln the particular case of L -spaces one can also extend
(0.2) quite easily. Assume Xy=L (@, p) and X, =L (Q, u) for some
measure space (2, 1)

Fort=ygy, g <o b, < py, py<oo, Yp={(1=0)ps+8/p,, and
I/g={1—8)q,+ 8/gq, we have

(H;Jﬁ(ng)i Hpi(I‘ql)}H:}‘{p(Lq)’ (512)

First of all let us mention that H (L }= ﬁp(jiq} for § < p, ¢ < o0, which
aliows us to write (5.12) withoui “™” (this is a well known result and says
that L, has the analytic Radon-Nikodym property). Secondly let us point
out that {5.12) is not a simple consequence of Proposition 5.4 since we are
including the case g,=1, and £L,{£, 4} fails UMD property. The proof of
{5.12) is done in two steps. First one shows

{HQQ{L'QD}a H{ji('z“q])}{B:H.q(L{;} (513)

which follows from Fubini’s theorem, (0.3}, and (1.3), and then one uses a
factorization argument like that in Proposition 54 to extend to the other
values of py and p,.

Remark 5.3, In fact (5.12) can be extended to all values 0 < g, 4, <0
and even for the non-commutative L, -spaces. The general result can be
stated as follows {we refer to [X1] for a proof}.

H LM, 1} denotes a non-commutative L -space associated to a
semi-finite  von Meumann  algebra (M, 1) and we take O<8<«i,
0 < pos P15 Go» gy <L o0, Yp=(1—0)py+0/p,. and Vg=(1-8)q,+0/g,,
then

(H

Po

(L (M, 1)), H (L, (M, 1)))y=H, (LM, t}) {5.14)

6. BEAL INTERPOLATION OF VECTOR-YALUED HP-SPACES

Throughout this section (X, X,) will stand for an interpolation couple
of real or complex Banach spaces and we shall write Xy , for (X, X\), ,
when O<f<l, and O0<p< . Since X, is not a Banach space for
O < p<1, and we shall deal with X, , valued harmonic functions then it is
natural to work only with 1< p <.
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We shall show that surprisingly we can not even extend (0.4) for vector-
valued harmonic functions unless we restrict ourselves to values p> 1. Let
us begin with the following elementary [act.

ProvosiTiION 6.1, Let O<f<1, O<py, Py <o, and Ip={1-8)ps+
Op, such that p= 1. Then .

(ﬁ:;,(Xo}, ﬁgJ(Xi)}UDCF[;‘;{Xbp‘] (6.1)

Proof.  Given fin (B! (X)), H! (X)), , with norm <1, and using (1.2)

we find g, e A% (X,) and &, A% {X,) such that f = g,"+ h, (ne 7} and

Fal £l

s (L 0¥pa 7 o0 3ipy
TR oy S | et O Il &0 < '.2
( 2. lemg,ll Hjiofﬁfni) ( o e it H,';)(Xx}) sCo (62)

B —_— 4

Since flx, ti=g.(x, )+ h,(x, 11X+ X, for {x,5)eR""" and nel,
then

= 5 (1= 0¥pe
i< ¢ 3 e e 1)

P /

o G/ps
X(Z et =", x, f)!if') :

-

Using Holder's inequality and (6.2), we get ||/} gix, < C, which proves
(6.1). §

Obviously {6.1) becomes equality when 1< p,, py< . It was aiso
shown in [B1] that this also happens for py=1 and 1 < g, < cv. We shall
prove that the result can be extended to other values of pg, p, but only if
the value p given by 1/p= (1~ 0)/p;+ /p, happens to be bigger than L.

ProrosiTion 6.2, Let O<B<t, O<py, pison, and Vp={1-—0/p,+
0/py such that p> 1. Then

(), B (X)) = HH X, ). {6.3)

Proof. Let us first state the following lemma which, in principle, is
weaker than (6.3) but that will imply it

Lemma 6.1, Under the conditions of Proposition 6.2, we have
ﬁﬁ(Xa,p}C(ﬁﬁo(XnL ﬁﬁﬁXﬁ}om« {6.4)

Belore proving the lemma, let us use it to finish the proof of Proposi-
tion 6.2. Since p>1, we can find 0«0, <8 <8 such that l/g, =
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0,)/pe+0,/p, with g, 1 (j=0, 1}. Take § such that &= (1) 0, +
B4,. Using the reiteration theorem (see [BL, p. 67]) and (6.4}, we get

(I Xo) By (X )s,
:((ﬁh (Xn) gh (X ))90 -m(gh{ ) (Xl))ﬂl,cc}ﬁ,p
D(Hh Xﬁ‘o q()} H fJL q]})ﬁ P f‘? ((Xﬂg.qgiXb’g,qJﬁ,p):ﬁg(Xﬂ,p)
i

which together with (6.1} shows {6.3}.

Proof of Lemma 6.1, We need only to consider the case O0< py<€ L
In this case we would have p,>1. Let f belong to ﬁ:j(ngp} with
\,fIJH(,lJ ys= 1. Without lost of generality we assume f is a simpie
function with values in Xorm X, We shall use an argument like that one
used in Theorem 2.1 to show that therc exists a function g in
(A (Xo), H(X1))s.o0 such that

P

§|g§|(ﬁjj0(XU),ﬁ:ji(X1)J3‘x sC and i g\iﬁg(;rﬂ‘,,; < /2.

for some absolute constant €. An lteration argument will then complete the
proof. We shall do only the case p, < oo, The proof of the case p, =0
needs simply some modifications.

Keeping all the notations in the proof of Theorem 3.1, we consider the
function f, associated to f defined by {38} Let 7>0 and o=
(1/8)(p/po— 1}). By clementary properties of X, , and the special form of
the functions b defined by (3.7), we find edsiiy functions ¢, df with values

J -
in X, and X7, respectwelv, supported in Q such that for all x¢ Qj’.‘

by (x) = ef(x) + dix),

J

E{Cf(x)ue < C(r27ky* Hb,{-t(x}i!ap

and
(o) < CLe2™)y U b x )l .
Hence
‘\c (P Q)\ (12“‘) 2% e C¥pkrie (6.5)
I ﬁzf_ﬁxi,@;}s(,(rzﬂ*) 1=k = ¢y Ok, (6.6)

Let Ofc} }”Q( 08 V) and Q(df)=Q(d%, O, N} be the polynomials
associated wnh c and d" respectwely, by Lemm’l 3.1. Then we have

bf =t — Q) +di — Q)

7 7
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and by (6.5}, (6.0}, and Lemma 3.1,

QN iy, gy € CLO2H (6.7)
|O(d M, X Q V& =Cy Ok, (6.8)
Writing now
ke A R
2oy b0y and k=) Y di—0Ud})
heky j=1 P
then g, & A2 (Xo), HI(X,)and /=g, + 4.

Using (6.5)-(6.8) dnd some estimates in the proof of Theorem 3. I, we
easily get

H i el . ; 0o, SPET
if\gi!%ﬁgo(xu;i::(-f and j\hl}}ﬁgl(z,l)g(/f

which proves that K(7, f,, A2 {(Xy), H2 (X)) Cr*, or in other words that

0

Jie (,’f}'{; (X}, Hp;( i1)e, and Hf”(ﬁ’f,’o(x’o)‘{H,’,'ﬁxl))u_.k$~: C §

The restriction p > | might look due 10 the method of proof but the aext
remark shows that this is not the case.

Remark 6.1, Let G<fl<1, G<py, pr<os, and {1 —8)p, +/p, =1,
Let Xo=L,(0, 1}, X, =L,(0, 1) Then

(A X o) X Doy # (X0, (6.9}

1] 21

The proof of (6.9) is based on the foliowing characterization of super-
reflexivity.

Tasorem C {cl [X2]) Let X be a Bunach space. X is superveflexive if
and only if for some O < p<<co {and equivalently for all O < p <o) there
exist twe constaits Q< C,g<cc such that for every function fe
WX, R and every sequence i3>, > -+ >0, 1, -0, we have

Ve
(Z !if“(—j',x___lii‘,{ﬁ(,ﬂw]} SIS Aty
k=0 /
where fix)=f{x, 1, xeR and f | =

Theorem C was proved in [X2] oniy for the case of the dise, but with
some maedifications the argument is aiso valid for the above situation.

Let us now fix a decreasing sequence {f,) converging to zero. It follows
from Theorem C that

g
( z E.frk mjnr,g,,g H g_m(_,!{(}! [gn)) é (,’Y H\f!\ f:’l':;o()(o) {6.10)
K

=0

for some G < ¢, g < o (in fact g can be shown to be max{p,, 2)).
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Clearly, we also have

sup {175~ S D3 SCW Ry o - {61
k=0

If {6.9) were equality, an interpolation argumeni and Theorem C would
imply that X, would be superreflexive, but X, ={(L,, L), =1, for
i/r="{(1--0)2+08/1, which is not even reflexive. §

Remark 6.2. Propositions 6.1 and 6.2 have analogous formulations
when taking BMO(X ) as an end point.
For 0< <!, 0< py<aon, and 1/p=(} —0}p, then
(A (Xo), BMOX ))g,, = HHX, ). {6.12)
with equality for 7> 1 and, in general, strict inclusion for p= 1.
However, when we replace H;EO{XO) by L, (X,) in (6.12) we get eqguality
for all values of p.

ProrosimioN 6.3, Let U< <1, U< py< oo, and Vp={1~8¥p,. Then

{-Lpo(XO}i BMO(XI})U,;?:I";J(XG,;:}' (613)

Proof. The inclusion L (X, Yo (L, (X}, BMO(X,}), , is trivial. The
other one can be done using Lemma 4.1 and some arguments in the proofs
of Theorem 4.1 and Proposition 6.1, and the details are left to the
reader., §

Remark 6.3. For the case of analytic functions (the Banpach spaces
considered being now assumed over the complex field}, we only have
the analogue to Proposition 6.1, that is, f O0< pg, py o0, O0< @<, and
Hp={1—98)p,+8/p;. then

(}?po(XO)ﬂ ﬁm{XI)}H,pCﬁp(Xﬁ,p}' (614)

The example presented in Proposition 5.2 works also in this real inter-
polation case since we also have that for any value of 8, 0 < # < |, and any
value of p, 0 < p<oc, C, is contained in X, , when Xy=L,(T) and cy(Z}.
(This fact follows from the relation between the real and complex methods
of interpolation and Lemma 5.1.} Therefore we can state that the equality
in (6.14) does not hold for general spaces and for any value 0 < p < o0,

A Final Remarke: The Case (HI (X}, H) (X)),

In a recent paper by Do 1. H. Garling and S, J. Montgomery-Smith (see
P GM ) the following result is obtained.
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TaeoreM D, Ler O<p<oc and O<8< 1. There exists a couple o
? P
Banach spaces {Xy, X ) such thai-Xy and X, are isometric to -1, and
4 0s A 0 1 1
(Xo, X1}o and (X, X))y, contains a complemented subspace Iscmorphic
10 ¢4

As a consequence the RNP does not pass to.intermediate spaces by the
complex or the real method of interpolation.

Using the known fact that X having RNPis equivalent to H:;(X):
HX)y for any value 0< p< oo, together with the. results obtained for
spaces H(X), one can easily conclude the following: Bor 0< p,, p, < o0,
O<f<i1, and 1/p={1 —0)/p,+8/p;, there exists a couple of Banach
spaces {X,, X, such that

(HE(Xo) HE (X g # HolX o)

1
and

(H (X o), H (X Do, # H (X )

REFERENCES

[BL] 1. Bewou anp I Lorstros, “interpolation Spaces, an Introduction,” Springer-
VYerlag, Berlin, 1976,

[Bi] ©. Brasco, Interpolation between M and L§. Swmdic Math 92, No. 3 (1989),
295-210.

[B21 O, Brasco, Boundary values ol functions in vector-valued Hardy spaces and
geometry of Banach spaces, J. Funei. Anal. 78 (1988), 346-3064.

[Bol J. Bourcan, Some remarks on Banach spaces in which martingale differences are
unconditional, Ark. Mar. 21 {1983), 163-168,

[Bul] D. L. BurkroLDEr, A geomelric condition that implies the existence of cerlain
singular integrals of Banach-space-valued functions, in “Conl. Harmonic Analysis in
Honor of A. Zygmund,” pp. 270-286, Wadsworth, Belmont, CA, 1982

[Bu2] D. L. Burkuoiber, Martingales and Fourier analysis in Banach spaces, in “CIL.M.E.
Leclures, Yarenna, ftaly, 1985,” Lecture Notes in Math,, Vol 1206, Springer-Verlag,
Berlin, 1986,

€1 A. P, Catperow, Intermediate spaces and interpoiation: The complex method,
Studia Marh. 24 {1964}, 113-19G, .

[CT] A. P. CarDeron AND A. Torcuinsky, Parabolic maximal functions associated with
a distribution, B, Ade. in Marh, 24 (1877}, 101-171.

[CZ1 A, P. Caineron anp A, ZyGMUND, On the theorem of Hausdorfi-Young and its
extension, /m “Ann. of Math, Stud,” Vol 25, pp. 166-188. Princeton Univ. Press,
Princeton, Ni, 1950

[Co] R.R. Comsaxn, A real characterization of H7, Studio Math. 51 {1974}, 269-274,

TCWT R, R. CorMman ant (3, Werss, Extension of Hardy spaces and their use in analysis,
Bull. Amer. Marh. Soc. 83 {1977), 569-645.

[Cwl M. Cwiger, On (L™(Ag), LA Vg, Proc Amer. Math Soc. 44 (1974), 286-292.

[CMST M. Cwixer, M. Mizsan, avn Y. Saguir, Comples interpolation of somse quasi-
Banach spaces, J. Funcr. Anal. 65 {1986}, 339347




(D]
LES]
{FRS]
LGR]
eI

[G]
[Hr]

{H]
R
AN
{521

R
(LU}
[LP]
[M]
[RS]

[5]
(2]

[T}
[Wi
LX1]

{x2]

INTERPOLATION OF VECTOR-VALUED SPACES 355

8. Dicwortd, Complex convexity and geometry of Banach spaces, Math Proc.
Cambridee Philos. Sac. 99 (1986), 495-506.

(. FEFFERMAN AND E. M. StEmM, H7 spaces of several variables, dcia Math 138 -

{19723, 137-193.

C. FerrerMan, N. M. RiviEre, anD Y. SaGHER, Interpolation between A7 spaces:
The real method, Trans. Amer. Math. Soc, 193 {1974), 75-81.

1. Garcia-Cusaya anp I L. Rusio pe Francia, “Weighted Norm [negualities and
Related Topics,” Nerth-Holland, Amsterdam, 1985

D. 1. H. GarunG anp 8. ] MontaoMery-Smit., Complemented subspaces of
spaces obtained by interpolation, preprint.

A. M. Garsia, “Martingale Inequalities,” Benjamin, New York, 1973

U, Haagerur anp G. Pisier, Factorization of analytic functions with valaes in non-
conmulative £ -spaces, Canad. J. Muath. 41 (1989}, 882-906.

R. Hawnks, Interpolation by real method beiween BMO, LY <x<oo} and
HYO <o < o), diena Unis. Math. J. 26 (1877}, 679-650.

8. Janson anp P W. Jonrs, Interpolation between A 7-spaces: The complex method,
. Funct. Anal. 48 (1982), 58-80

P. W. Jowgs, L™ estimates for the & problem in a half-plane, dcta Math. 150 (1983),
137-152.

P W Jonigs, Interpolation between Hardy spaces, in “Proceedings, Conference on
Harmonic Analysis in Honor of Antoni Zygmund, 1981,” Wadsworth, Belmont, CA,
1983,

R. H. Lattez, A characterization of HA{E"} in terms of atoms, Studic Math, 62
(1978}, 93101,

R. H. LATreR anp A, Ucwivama, The alomic decomposition for parabolic
Hispaces, Trans. Amer. Math. Soc. 253 {1979}, 391-398.

I L. Lioxs anp J. Peetre, Sur une classe d'espaces dlinterpolation, fast. Hautes
Eteles Sei. Publ, Math, 19 {1964), 5-68.

M. MiLMmaN, Fourier type and complex interpolation, Froc. Amer. Math. Soc. 89
(19833, 246-248.

M. M. RiviEre anp Y. SAGHER, Interpolation between L™ and H', the real method,
J. Funct, Anal. 14 {1973}, 401-409.

Y. SaGHer, lnterpolation of r-Banach spaces, Studia Math. 41 {1972}, 45-70,

R. SaLEM AND A. ZYGMUND, A convexity theorem, Proc. Nat. Acod. Sci. U.S.A. 34
(1948), 443-447.

H. TrEBEL, “Tnterpolation Theory, Function Spaces, Different Operators,” North-
Holland, Amsterdam, {978,

T. H. WoLrr, A note on interpolation spaces, in “Lecture Notes in Math.” Vol. 808,
pp. 199-204, Springer-Verlag, New York/Berlin, 1982

(. Xu, Appiications du théoréme de factorization pour des fonctions 4 valeurs
operateurs, Studia Marh, 93, No. 3 (1990), 273-292.

Q. Xu. Convexités uniformes et inégalitds de martingales, Marh. Ann. 287 (1990},
193211

Printed by Catherine Press, Lid., Tempelhof 41, B-8000 Brugge, Belgium




