Cup esmeg vrespuo gy oM RAUL wlt bea e,

Q0'ES 82/9£7 17700
e

"BEEQ-CEEd URLD IOPUN ATV 241 Aq penioddng

UIBIHDL J[NSOI [RIISSBES 34 B 0] UOIPUOs 1431 21 58 Anradord wiApoyin
—uopey 2] Mou puy opy (oo d > 1) ,7 01 sfuojsq uonounj [RUIIYEWI
2SOUM SUOIIDUNY DIUCHUIIRY panjea~g 10} ing uonssnb swes syl Sus[os o3
pa10oaap St U0T0Rs puodes w4, ‘Atadord siyl Jjo wonie[nuIo] 19yi0UE SA1E 01
SN SMO[[E upIym ‘Aem 1usfeamnbo ue w Alraderd wApoyin-uopey oudEue
oY) pJedal UBD oM NS Sl YU UOnEBUEA-d PIPUNOG JO SOINSBI
Pafea-0s 5y ‘saInsea ponjeAsy jo oovds weweo o3 ([Rid9)ml wossiog
®B1A) omjewost st ()% suonouny smydicwojoy panjes-g Jo 2owds Apiep
BUY 1By MOTS I SUO 1SIT] 2Y) U 'SUCHO9S 923yl 030! papialp st Jaded oy
souds yorury oy UO UONIpUO) Lum asmbol 10U Op oM Boym 520Bds ADIEL
JUSIGYIP 95U UL SUOGTIOUN] JO sanfeA Ayepunog o) Io] suonwiueserder
puij 01 pue “souds yorury syy jo Lirowoesd sy uo Fuipuadop sdiysuone(al
CIpyy Apmis 01 ‘Bunias penfea-101004 23 o3 sa0uds 283yl jo  SUOIIUYLD
[BISADS DUDIXG OF 03B S0AN0S{Qo U Ing CYSIP eyl U0 sUCIoUn)
m Panea-101934 Jo seoeds ApIEl yiw poursomod oie om Iaded sigy oy

NOILDNJIOMIN]

“auY ‘ssaid
Shwepoy #861 () SPIOUINR Iy uvossiog meSnfuos Aq pue wonouny [RUIXRW
Aq pauyop saseds ay) oW 07 UOHIPUGD UDINYNS pur Aryessacou oyy s Auadoxd;
QN #Y: puy o [ 34 >( 9583 943 Uf 7 Ul UOUDUNJ [PUIXEW 1M suonouny’
SIUOWLIRY JOf AIBPUNOG A1} 1B SHUN JO 30uUisixs o) uo paseq Auadord wmApoxN.:
—uopey 24} JO HORBZNOTIRYD B [ =d 0580 3G} 0 PUAIYS A UCHEUERA- popUnOq;
JO S3INSEIW PONfeEA-IOI3A JO SULI9) U1 POZIIOIORILHD OI® 7 Ui UONOUn] Eﬁwxwﬁ..
Ylm SUONOUN] DHIOWLIRY 10 ¥SIP 2Y) vo szopouny owmdiowiojoy Iyl £q poUNo]
soopds ADIBH Ul SUOHOUT] Pan(BA-I0100A JO sanjes Arepunog Jo saveds o.a.

£861 TT A1BInga pasiast f9g61 17 1udy paaesey
sIOnpg M1 Ag parprumumo )

w0608 PI0S0IDZ DIRDITE op pUpISIsE}

SPIIUMY AP PUININLY SSPUCIZUN AP DLIOAT AP cxuamnlindadf

OISVTIE YVOSO

«S20Bdg yoeueyg uC AOWOSD pue mmo._m S
panjeA-I0108A Ul SUOIoUNA JO SSnjEA Al

W Bpagr g pogiLig UOPLOT PUT NIOL M)
BBGT SUR{ T ON 8L TOA SISKTYNY 1T¥N




B-vALUED HARDY SPACES AND GEOMETRY ON B 347

valid in thé B-valued setting. This formulation allows us to extend a
Bukhvalov-Danilevich result to the case p=1. In the last section we deal
with the case 0 < p< 1, Several definitions for the space H{ as space of
B-valued distributions are considered. The main result in this section con-
sists of characterizing the class of Banach spaces B such that the B-valued
Hardy spaces defined in terms of maximal functions and by means of the
conjugate Poisson kernel coincide. They are the called UMD spaces.
Throughout this paper {1, #,.m) denotes the Lebesgue measure space
on the circle T with m(T)=1, D will be the unit disk, and we shall write
“either | f(1)dmi{t) or (1/2m) [37 fle*) dr.

1. SpAcCES oF HOLOMORPHIC FUNCTIONS

.- Through this section {B. | |} denotes a complex Banach space. Given
 0< p< oo we shall denote by H4({D} the space of holomorphic functions
. F: D -» B such that

|F|, = sup A:Hlﬁa Tm‘?m...\;m&v_.ﬁA +o0. {1.1)

»
G=rai ,Nqﬂ a

H#=(D) will be the space of B-valued bounded hoiomorphic functions and
ils norm is given by

o = sup [z (1.2)

e

Recall that for | € p< s we have a simple way to builld functions in
HE(D). This consists of taking a function / in L4(1) whose negative
Fourier coefficient vanishes and censidering its Poisson integral

Fre™) = _ﬁ P8—1) flt)dmlt)=P, = f(0). (1.3}
where P, stands for the Poisson kernel on T, For | < p< oo, let us consider
the space

HyT={fe LT} f(n)=0¥n<0}, (1.4}

where f(r)={ f(1) e =" dm(t) is a Bochner integral. It is not difficult to see
that if f'belongs to H4(T) then its Poisson integral F belongs to A4{D) and
\F,=1]/1,. where || /i, denotes the norm of fin LE(T).

The following example shows us that we cannot expect, in general, that
every function in HZ%(D) is the Poisson integral of a function in H4(T).
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Exampre 1.1 Take B=co(N} and F(z)=(z"),.n. Denote by F{1)=
F(re") and assume that F, =P _x f for some fin LL(T). Clearly Fik)=
Pk} - fik) for all k € Z, which implies that { f{k)} is the canonic basis in ¢,
and this contradicts the Riemann-Lebesgue lemma since || / (k3. =1 does
not go to zero as k — oo,

From this example two natural guestions arise:

{a) To find a larger space containing L3(T) whose elements can be
interpreted as “boundary values” of functions in H4(D), and

{b) To characterize the class of Banach spaces for which the Poisson
integral is an isometry between H(T) and HE(D).

The second question was studied by A. V. Bukhvalov and A. A
Danilevich [6]. They called the analytic Raden-Nikodym property the
condition on B to satisfly (b). Since then several characterizations of this
property have been obtained (see [15, 167). The answer to the first
question will be given in terms of B-valued measures, The reader is referred
to [11, 12] for a general treatment of vector measures, but we shall recall
here several concepts and results we shall use later on. Let G be a B-valued
finitely additive measure on (T, #) with bounded variation and let ¢ be a
continuous function on T, then we consider

| ¢y dG(ey=Tlim 3 é(s,) G(Lt,..y, 1,1, (L53)
i=1

where O=ry<t, < - <1, =2m, ¢, ,<s,<1, and the Hmit is taken as
max [z,—f, ;| goes to zero. Notice that such a measure & defines an
operator T from ©(T) into B by setting T5{(¢) = | #(r) dG{r). Let us
denote by M, the space of B-valued regular measures with bounded
variation. According to (1.5) we can give sense to the Poisson integral and
the Fourier coefficients for measures G in M

~

PUG)(z) =1 P.(1) dGt), (1.6)

where P_(1)= P.(§ — 1) being z = re®,

- "

G(n) = _ e " dG () for nel. (1.7

Given l<p<co and a finitely additive measure & we define the
p-variation of G as

s | |2y e
. JG(E) v w (18)

/mmamﬁﬁmvuly
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where the supremum is taken over all finite partitions = of T, where we use
the convention A/0 equals 0 or oo provided 2=0 or >0,
For p= o, we define
|Gl = nf{ CHIG{E) < Cm{E) for all Ec# ). (L9}

We denote by ¥/ the spaces of measures with bounded p-variation for
< pg oo,

For measures & in V4 we can give sense to | #{7) ¢G{¢) not only for
continuous functions ¢ but for functions in L7 (T}, where 1/p -+ 1/p = 1. To
see that, let us take a simple function s=3%7_, 4,k and define

= [ s(r) dG(1) = M E (1.10)

Notice that

,
!

T GiE)

T L& AGENN
(L iy v

Ni= ]

This simple computation allows us 1o extend I'; as a bounded operator to
L7(T). For a general study of V7 spaces the reader is referred to [19, 12,
13]. Some of the good properties that these spaces have are reflected in the
following:

Remark 1.1, Every measure in V4 for 1 < p< oo is countably additive,
m-continuous, and with bounded variation.

This allows us to ook at |G|, the variation of G, as a positive [inite
m-continuous measure and therefore by the Radon-Nikodym theorem to
represent |G| by a positive function g in L'(T). After this observation it is
easy to conclude the following result (see 17}

Prorosimion 1.1, Ler | < p < ov and let G be a finitely additive measure.
G helongs ro V4, if and only if Hmm__m exists a positiv m\:sm:gm g in LP(T) such
that gl , = amu and it verifies that for all ¢ in L7(T)

‘.

q
«\V G| <} gle) 19(0)] dmiz), (L.11)

Before we state the main result of this section, let us formulate a lemma
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which is proved in either {5] or [2] for p= 1. The proof in {27 can be
extended for all values of p.

Lemva 1L Let O<p< o, and let F he g function in HE(D). Then
F*(t)=supg .,y | Fre"}I| belongs to LAT), and

1, < CIF,. (1.1
Tusorem LI, Ler | < p< oo, Then
HLD)={Ge My Gn)= =0 forn<0}
and
HYD)={Ge V5 Gn)y=0 forn<0},
where both identifications are by means of the Poisson integral.

FProof. We shall do both parts in a parallel way. Let G belong to A,
{resp. V%), and assume that G(n) =0 for n<0. We define a holomorphic
function on the unit disk by

e

Fliz)=% Gn)z" (1.13)

=1
For any z=re” in the disk, we have

7

P.ity= 1Im M ik ikt = 1)
mme oo T

being the convergence in C{T) {resp. L7(T)). Therefore from (i.6) we
casily deduce that P(G)= F. For p =1 we can write

|Fre®)) < [ PO—1) d|GI(1) = P, » {G](6)

and since |Gf is a finite measure we get |F, < |G(T). For p>1, use
Proposition 1.1 to find g in L?(T) such that [F(re™}| <P, + g(¢) and
1G, =gl ,- From this it is clear that |F, < |G|,

Conversely, let us take any p, 1< p< oo, and comsider a function F in
HE(D). For any £ in B* the function (&, F(z)) belongs to H7(D) and
therefore, by the classical result, there exists a function J:in LP(T) with
Fin)=0for n<0 satisfying

"

& Flre)y = | PAO 1) fol1) dm(1), (1.14)
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Now [or each measurable set K we can define the following linear map
from B* into C,

.;

(GLE), &) =

felt) dmiz), {(1.1%)

vE
and since f.(¢) =lm, ., (& Flre"} ) ae. then Fatou's lemma impiies

L) dm(2).

z
'
A-B

B - hm
re LV E

[(G(E} &H] <]

Therefore, using the notation F*{r} as in Lemma 1.1,

IGIE)| pre< | PH(e) dml2). (1.16)

JE

Now from {1.16} it clearly follows that G belongs to A 5... Besides if p> |
it is easy to see that & belongs to ¥4... To see that the range of G is
actually in B, let us prove that for any ¢ in either C{T) or L¥(T) provided
p=10r p>1 we have that | ¢(r} dG(r} belongs to B. By using the fact that
¢+ P, converges to ¢ as rT1 in either C(T) or L7(T) {I1<p'<w),
together with Fubini’s theorem, we can write

40 d6(1) = lim | (2 i) dGi)

Y r

/ N

C PA0—1) %:L #(0) db.

=iim
ril o~

Therefore if we show that efﬁ.mmﬁ 1y dG(r} belongs to B for all 0<r< 1
and # in T we shall have the range of £ contained in B. But on the other
hand we have

~

PO — 1) dG(1) = Flre™)

o

as the following computation shows: From {{.14) and (1.13) we have that
for every & in B,

CE F(re®y> = | P(0— ¢} fult) dm(z)

o

¢ \

nﬁw\ar:%m; V

o
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An analogous argument shows that G{n)=0 for n <0 and this completes
the proof.

From the proof of Theorem 1.1, we can establish the following corcllary

CoroLLary 1.1, Let G be a measure in M. If G{n)y =0 for n <0 then G
is m-continuous.

Let us introduce the following property in a different way from that
given in [6].

Dermvirion 1.1, A complex Banach space B is said to have the analytic
Radon-Nikodym property (ARNP) if every measure G in M g With
G(r)=0forn<0is representable by a function fin LY(T), that is, G(E) =
§e Aty dmit) for all Ein %.

Now Corollary 1.1 shows that the class of spaces with ARNP is larger
than that with the RNP. An example of space with ARNP and without
RNP is ZYT) (see [6, 11]).

From Definition 1.1 and Theorem L.} we can rewrite Bukhvalov and
Danilevich’s result as follows {see [67).

COorROLLARY 1.2.  The following statements are equivalent:

(a) B has ARNP.

(b) For all p (1<p<w) every measure G in Vi with G(n)=0 for
n <0 is representable.

P

{c) For some p (1< p< ) every measure in Ve with Giny=0 for
n <O is representable.

(d)  Every measure in VE with G{n)=0 for n<0 is representable.

Remark 1.2, According to (1.10), the space V¥ can be imterpreted as
the space of bounded operators from LYT) into B, to be denoted by
F(LY, B), and it is just a computation to show that [{GeVE: Gn)=0 for
n<0} corresponds to operators 7' in #(1.}, ) such that T= §-g being
S:L'/Hi - B and q: L' - L'/H} the natural quotient operator {H} stands
for {pe LY(T): ¢(n)=0 for n=0}).

From this remark and Corollary 1.2 we can recover the following result

[151.

COROLLARY 1.3, B hus the ARNP if and only if §-q: L' — B is represen-
table for each bounded linear operator §: L'[H) — B.

Our next goal is to connect Hardy spaces of vector-valued functions with
Hardy spaces on the bi-disk {see [21] for definitions).
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ProrosTion 1.2, Let 1< p< oo and B=H" (D). Then
HE(D)y= H" (D),
where F(zy, z,) in H7(D?) is identified to z, — F_(z3) = F(z,, z;) in H{D).

Proof. Recall that H7{D"} can be interpreted as a space at the boun-
dary T2 that is, the space of functions i in L7(T?) such that (s, m)=0
for {(mym)¢ 2t xZ~.

On the other hand, for 1< p< oo, HP{D) has the RNP since it is a
separable dual space. Therefore we can identfy HE(DY with HE(T ). Now
according to the identification between £7-functions with values in L7{T)
and the space L7(T?)*We only have to check that if f belongs to Li(T)
(here we regard now B as H7(T)) and  is the corresponding function in
L7{T?) then

(F(m)" (m) = i(n, m). (1.17)

Notice thai (1.17) follows easily from Fubini's theorem.

We shall [inish this section by mentioning another interesting space of
B-valued holomorphic functions, H*(D} & B, that is, the tensor product
with the projective norm. It is a simple computation to see that H(D)} & B
is embedded in H4{D). The following result gives a necessary condition for

both spaces to coincide,

ProrosiTION 130 Fer 1 < p < oo If HY(D)Y® B = HED) {with
equivalent norms) then B has the ARNP.

Progf. Provided H?(D) & B=H(D) we have that any {unction in
HZ{D) can be approached by functions in H%(D)® A. Since the functions
in Hi{D}® B are Poisson mtegrals of functions in HF7{T)® B H4T) we
obtain that the Poisson integral is surjective. Therefore B has the ARNP.

Let us give some ecxamples to guarantee that this is not a sufficient
condition.

Provosition 14 Let l<p<2 Then B=/" has the ARNP bu
He(D)y ® [ is strictly contained in Hi(D).

Progf.  Of course it 18 clear that /# has ARNP, since in fact it has RNP.
Now since H4(D)® B is dense in H4(D) then it suffices to show that
(HE(DYY* is strictly contained in (H7{D) & By*. The fact that any function
Fin H5(D) can be regarded as a sequence ¥, of functions in H7{(D} allows
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us to identify #4(D) with /. By using this identification and taking into
account that ({2)* =/f. we can write

(HED)Y* = Hp(D).

On the other hand, (H7(D) ® B)* can be identified with L(HT(D), B*).
Consequently it is sufficient to find an operator from H5(T) into {” which
cannot be represented by a function fin H5{T). Let us take T2 H7(T)— "
defined by T{¢)= fm?%:m 7. A very well known result in Harmonic
Analysis says that T is bounded [177, and the no representability of T can

be again proved by a simple argument involving the Fourier coefficients as
in Example 1.1.

Remark 1.3, The last example does not work for p=1:
(D) & ' = HW(D). (L.18)

The reason for this is that /L =/' & B for any Banach space, and we also
have the identification H} =/%,. A necessary condition for H' & B=H is
obtained by using duality (see [27).

2. Spaces oF HARMONIC FUNCTIONS

One of the most important techniques for studying Hardy spaces from a
“real point of view” was introduced by D. L. Burkholder, R. F. Grundy,
and M. L. Silverstein [87 by considering maximal functions to check
whether or not a harmonic function belongs to Re H7(D). In this section
we shall deal with spaces defined by means of maximal functions in the
vector-valued case.

Through this section (B, | ||} iz allowed io be a real or complex Banach
space. For any function F defined on the disk and with values in 8 we can
define the radial maximal function by

F*(ij= sup [ F(re™|. (2.1

Qar<l

Let us mention here that the following development could be done by
using non-tangential maximal function [8]. Let us denote by HZ,, (D),
0 < p= oo, the space of harmonic functions from £ into B with maximal
function F* in L7(T} We set in this space the norm (p-norm for p<1)

given by

_Nﬂ.m:ﬁ;.ﬁ = wTr* “.q. AMNM
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For I < p< oo we can get functions in H7Z,, (D) just by taking Poisson
integrals of functions in L4{T). The reason for that is simply that the
Poisson integral of a function fin L4(T) is harmonic and verifies

[F(re™)| S P || ().

From this, applying the classical result to || £, we get that F belongs to
Aﬁh&m::fw.ﬁbv. N

In the case p= 1, not any function fin LY(T) leads us to an element in
AL D) by taking its Poisson integral, we have to restrict ourselves to

the space

H ool T = {fE LY(TY: f4() = sup

]

[P« flt)l e LYT)}

Let vs present an example to see that the Poisson integral is not surjective.

Exampre 2.1, Take B=LYT)and F(z)= P_. Clearly F*(z}=1 for all +.
Hence F belongs to 7 (D) for all p. Assume F is the Poisson integral of

some f with values in L'(T). Then we would have that f(n)=¢, being
$.{r}=e™, which contradicts the Riemann-Lebesgue lemma.

From this example we can again ask ourselves the same guestions as in
Section 1: To give a characterization of the space of boundary values of
functions belonging to H7, (D) when B is a general Banach space, and to
find the class of spaces where the Poisson integral maps the function spaces
H o s(TYor LE(TY onto H2 | (D).

The following remark iells us that the second guestion was already
answered in [6] for | < p< oo, Here we shall give a proof which extends to
p=T,

Remark 21, For 1 < p< o the space HZ,, D) coincides with A2(D3,

max, &

the space of B-valued harmonic functions such that

I

| Fire”

07 dt < + o0,

sup
O<pa| ™

Indeed, given F in A%(D) we can consider the subharmonic function
g(z)=||F(z))l. Since g (¢)= | F(re™)j are uniformly bounded in L7(T), then
there exists a positive function # in L7(T) such that [F{re”}|| < P, = A1)
This implies that £* belongs to 27(T ).

The proef in Theorem L1 could be slightly modified to get the following
result, but here we sketch a proof based on the w*-compactness of the balls
in dual spaces.
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ToEoREM 23, Ler 1< p<on. Then

mﬁﬁmx.wm.hgv = w\m

and

H e (D)= WQ e Mg G*¥(f)= sup P8 —0)dG(5) | & h»mjww

G<ral il

where both identifications are by means of the Poisson integral and the norms
are eguivalent.

Proogf.  Let us begin with the case I < p < oo. Let us take a function F in
HE . a(D) and write F,(1)= F(re"). We regard F, as a set of uniformly
bounded functions LZ(T) and we use the inclusions

LET)S L3l T) S Vi,

Since ¥%.. is the dual space of L2, (see [137) then there exist a measure
in ¥4.. and a sequence r, such that F, converges to G in w*-topology.
Mow arguments similar to those used in Theorem 1.1 lead us to conclude
that P(G}= F and the range of G in B. The case p =1 follows in 2 similar
way by using Singer’s duality theorem [22] (€. (T))* =

The converse inclusion is a consequence of either the definition for p=1
or Proposition 1.1 for p> 1.

Leviva 20, If G belongs 10 My and G* belongs 10 LNT) then G is
m-CcoRtinuous.

Proof.  Let us take a measurable set £ in 4. Since G is regular we have
that for every ne N there exist a compact set K, and an open set O, such
that

K. cE<O, and

P

1G(ONK ] < 1/n.

Let us consider a continuous function ¢, such that 0 << ¢, < 1, ¢ (tr=1 for
te K, and ¢,(1)=01or 1¢ 0, since ¢, = P, converges to ¢, in Cil)asrti,
then we can write

~ N -

() dG(t)=Tim | ¢, + P (1) &QAQH:B; PLG)re"y ¢,(8) dmie).

- FTE o rfl

From this we get m; $.(8) dG(1)]| < § @,(2) G*(1) dm(s) for each neN. Now
make # go to infinity to obtain

-

IGE) < ﬁ G*{1) dmiz),

which clearly implies that & is m-contingous.
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According to Remark 2.1, the next result is a different proof of a result of
Bukhvalov and Danilevich [6] as well as an extension of it to the case
p=1

THEOREM 1.2. The following statements are equivalent:

(a) B has the RNP,

(b)  Every function Fin H},,; ;D) is the Poisson integral of a function
fin Hl,, T)

(¢} Forall p, 1 < p<on, every function £ in HE,, ;D) is the Poisson
imtegral of a function LT ).

(d) For some p, 1< p< o, every function F in HI D} is the
Poisson integral of a function [ in LE{(T).

(e} Every B-valued harmonic function which is bounded has limits ar
the boundary almost everywhere.

Proof. The implications {b) = {c) = (d} = (&) are cither obvious or just
using the inclusions between L7-spaces and Fatou's lemma.

(a)=(b) Let F be a function in H], (D) According to
Theorem 2.1 it is the Poisson integral of a measure G in M, with G* in
LYT). Now by Lemma 2.1 this measure is m-continuous and consequently
the Radon-Nikodym property of B imples that there is a function f in
L4(T) verifying that G(E) = { f{1) dm(z). Obviously f belongs to H},, z(T)
singe f* = G*

fe}==(a} Using the characterization of the RNP in terms of
operators (see [Ff, p.63]) we have to prove that any operator
T-LY{T)— B is representable by a function. Assume we take such an
operator and consider F{z)= T(P.). It 15 immediate that F is a bounded
harmonic function on the disk. Therefore there cxists a function f{(s}=
fim, _, F(re™) r-a.c. Finally, it can be easily checked that F is the Poisson
integral of f and that 7 is represented by f.

3. SpacEs OF B-VALUED DistriBUTIONS: Cast 0 < p< |

Throughout this section (£, | i) will denote a real Banach space, p will
be a number 0 < p < 1, and C will be a constant, not necessarily the same
at each occurrence. We shail denote by C*(T) the space of functions in
C™ () with period 2n. Endowing C*(T) with its usual topology we shall
call B-valued distributions to the continuous linear maps from C*(T ) to B
@, will denote the space of such distributions.
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Lemma 3.1, Let B, be a complex Banach space and O<p<1. If F
belongs to HE (D)} then there is a Bovalued distribution @ in 9y, such that
Flzy=&{P)

Proof. Suppose Flz)=3 7 ,u,z" being a, in By Since (& Flz)»
belongs to A7(D) for cach & in BF then we can write (see [14, p. 987)

& ap SC G Fy, vt n#0 (3.1}

From (3.1) we have {a,| < C-|F, 277" Now techniques analogous to

those in the scalar-valued case [ 18] allow us to lind @ in %7, such that

P(p)=a,fornz0and ®{$,)=0"for n< 0 being ¢,(1)=e~"™. From this it

easily follows that #(z)=&(P_).

z

We shall consider three definitions for H4 in the case 0 < p <1 based on
the corresponding ones from the scalar-valued case. Let us begin with a
definition in terms of p-atoms {see [9, 10]). A function a in L% (T is called
(p. B)-atom if it is supported by an interval 7 and it verifies

la(t)| sm{DH~Yr forall ter (3.2)

{

_ t*a(t) dm(1) =0 for all integer &, Ok 1/p] 1. {3.3)
i

DermNiTiON 3.1 We define HY, 5 as the space of B-valued distributions
@ which can be represented as 3.2, 4,4, = @ in the sense of distributions
being a, {p, B)atoms and ¥ |4,|” < +oo. The “norm™ in it 18 given by

tip
hv : %”M\N.\nﬁmkw. MM&.,@

(@], =inf ﬁ 5 1A m

N

Depmnrrion 3.2, We define the maximal function of & F-valued dis-
tribution @ in P4 as

P*Ht)= sup [PLL {3.5)

Oamr=l

and denote by HZ the space of distributions @ in %% whose @* belongs

max,

to £7(T). The norm m it 1s given by
P max,, = 1P, {(3.6)

Dermrrion 3.3, For z=re”, let us write Q.{r} =0 (s~ 1), where {,
stands for the conjugate Poisson kernel. Given a distribution @ in @' we
can consider two different harmonic functions P{®) and Q(&) defined by
P{DYz)=D(P.)and Q(®)(z)=D(Q.). We shall denote by % the space of
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distributions @ in &, such that P(¢) and ${(®) belong to A4(0). We set in
it the “norm”

§
m%_m\mcm :A_GEE:_M% @63;_5&&?& . aw:
[ TN
The first result we wani to mention is thai the proof in [9] can be
adapted for the Poisson kernel and in a Banach-valued setting to get

HI < Es&.m {with continuity}. {3.8)

J. Garcia-Cuerva and the author have recently proved the following:

TueoreM 3.1 [3].  The following staiements are eguivalent:

(a)y B has ENP.

(b) Lo HT L, {with equivalent norms).

Next we shall try to understand the relationship between #4 and H2

max, &

Proposition 3.1 HE < HE {with continuity).

max. 4

Proof. Let us take @ in H% and consider F(zj= D(F.)+iD((,). We
can look at F as a holomorphic function on the disk with values in the
complex space By= B+ IB, being |a+ibjg =lal + 6] From (3.7)
follows that F belongs to Hf (D). Moreover, from Lemma 1.1 we see that F
belongs to HY, , (D). Finally, since @*(1) <supy.., ., 1F{re"}| g, then @*
belongs to L7(T) or, in other words, & belongs to HE ;- and @], , =

Prorosimion 3.2, I there  exists  a  comstant  C such  that
SUPy o, o 10, *all, < C for all {p, Byatom then HJ, ,< Hj (with con-
tinuity).

Proof. Suppose @ belongs to HZ, , and write @ as 3, A,a,. We see the
action on 2. and . as

M\:-.w H NNPAMV

and

i

From this clearly we have that for z =re

[DPIN7+ DRI < Al PP, # ad )P+ Q)+ a2} 7).
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Integrating and taking supremums we get

el7 sup (1P, x a i+ 10, * afl]

Qor=i

From (3.8} we have that supg.,. 1P, *a.),<Clafl,<C Now the
assumptions aflow us to say that |@],< C(3 14,]7)"* for any decom-
position, which implies the result.

To find the property on B to make the spaces H§ and H]_, , coincide
will be our next goal This property turns out to be the UMD property (see

[7,41%) We shall define it in a useful way for our purposes.

DeFTion 3.4 A Banach space 8 is said to be 3 UMD space if there
exists a constant C such that

i 7l<C sl forall fin Li(T), (39)

where 7 stands for the conjugate function f{¢)=1lm @, » f(1} ae.

To see the connection with martingales and the characterization in terms
of the conjugate function the reader is referred to [4, 71. Here we will write
an equivalent and useful formulation {see [20, 23 ]}

For every ¢, | < ¢ < oo, there exists a function C (1) converging to zero
as A -+ oo such that for mm fin LYT) with | £, <1 it verifies

m({te T | Fll = A < C(A) (3.10)

Now we are ready to formulate the main result of this section. The author
proved an analogous result for p=11in [2].
TueEoREM 3.2.  The following statements are equivalent:
{a) Bisa UMD space.

{b) Hi=HL,, , {with equivalent norms).

Proof. Let us assume B is a UMD space. Therefore & has the RNP and
according to Propositions 2.1 and 3.2 and Theorem 1.1 we only have to
prove the existence of a constant .C such that

sup 1@, #all,<C for all (p, Bj-atom a. {(3.14)

Oar=i

Identify now T with (—~=, n] and let us take a (p, E,mwoa a supported by
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(—a, 8) for some 5> 0. By using Holder’s inequality twice and the UMD
property we can write

r

| 1O, = alt)] QML WP, d()i? dr
5

=25

/AN
8]
C}:
i
ST
TR
T
oL,
[
N
A
&

Y]

Next we shall prove

23
sup 1Q, = a(t)”di < C. {3.12)

Goraoi Yid

The standard argument involving the cancellation properties of atoms
lead us to the integral expression

mﬁ

0. ato)=[" Qe Gt dr (3.13)

where & denotes {1/p] and we are taking se (20, 1 —24d), te(—4, é}, and

¢,, Is an intermediate value between s—1t and s and consequently £, e
{s—0d,s+3)
Writing Q{71 = Im{(1 + re”}/(1 —re” 1), it easily follows that

QEI(E) < C - (1 — 7 cos 1)+ (rsin 1)2) == 1

for all e N,
On the other hand, we ¢an estimate the N-derivative as follows: For all
re(—5,0) we have

sup QYOI < sup Cu(l—reose) W0y (3.14)
Q<= 12 Dar=1/2
. | TS " H . sy AN+ 1)y s
sup  {QINE I < Chfsin(s —a) Y Aoz 20y T X2 - 28,m/2 + 28}
12aral
i . — (N + 1} (s iy
+w:.wﬁrw,+..%v \AMWW‘N. Nm.#|mnmvv. MM.MUV
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From (3.14) we have
¢, = als)

which implies (3.12) for these values of r. To study the case <r<1, we
split the integral in (3.12) into three parts, {57~ [#373%, and [7,2%;. Let
us compute only the first one, the others being similar or easier.

z&é :w m;.ﬁ:v_
=_§ Y5 2

f=C for O<rg

wl«

117 [a(e)] & ds

Lrme—-2a N ' R
<C[7 et sup |QIME P ds

23 re{—d,8}

pRiZ =20

L OFW D ; mmmm?é..%wwiz.v:m ds. {5%)
8

Now changing the variable tag{s— &)= y and using the facts that
1—{(N+ D p<Oand 2~{N+1) p>0 we can write

ctag{n/2 - 34)

1) 23N+ 1y2ip - |
| ¥y "(L+ p?) P ldy
Ytag &
mtag{n/2 - 34} .
.Mn.ﬁw.w .ww\ﬂ.z;.:.aﬁ..%
tag d

7 Ny L= (N
<C ?mm gy @ ne ?mm hag 35 : v

N

When J — 0 we only need to use the fact that é/tag 6 < C to show {#=)
< (, and this finishes the preof of (3.12). Similar arguments would
compute the integral over (—n, —x + 20), finishing the direct implication.

To see the converse let us consider the operators 7, from H7 | . to L}
defined by

max, 8

T(®)(1) = D(Q,..) (3.16)

The assumption now means that 7, are uniformly bounded, that is,
1T <€ for all O<r< 1. We shalli prove that B is UMD by showing
{3.10). To do that let us take any ¢, 1 <g< oo, and consider L%4(T)
included inte HY7,, , in the natural way, that is, every function f in 1%
defines the distribution @ (¢) Huﬁ F(#) 61} dt. This allows us to consider 7
acting on L% and according to Kelmogorov's ineguality we can write

mi{re THT(PH > AN <ATNT(PHE S CATP | P L, S CA7 LSS
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Let us assume now that f is a trigonometric polynomial. Then 7 exists
and T,(®,) ~ f'as 7 — 1. Therefore the last inequality can be written as

m({1eT: | J()| > i) < C- 277 | fiz

for any trigenometric polynomial. This fact is extended to any function in
LE(T) by the density of trigonometric polynomials in L%(T} and (3.10} is
proved.
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