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1. Convolution of Functions and Operators

The objective of this paper is to apply the notion of convolution betwesn func-
tions and a special kind of operators, the cone absolutely summing operators,
to characterize the Radon-Nikodym property and the analytic Radon-Nikodym
property.

Throughout this paper I# will denote I (7} where & is the circle {z: |z]=1}
and m denotes normalized Lebesgue measure, B wiil be 2 Banach space and
(17, B) will stand for the bounded linear operators from [ into B.

Deefinition 1.1, Let 1 <p< oo, Given an operator T in Z(IF, B) and a function
gin I} we shall define the operator g = T by
gx T =Tg=y forallyinlf (1.1)

Obviously the classical result about convolutions implics that Hgs T
Slhel 1Tl

We shall deal with special classes of eperators which will be invariant under
the action of convolution with functions:
a} Representable Operators. An operator T in & (LF, B} is called representable
if there exists a function [ in I (B), 1/p+1/p'=1, such that

Tle)={/11) o) dr. (1.2)

In this case we shall write T=T, and clearly from Holders inequality we
have | T < | £l

B) r-absolutely Susuning Operators 1(IF, B). Let 1 Sr<C . An operator T in
(1P, B) is called r-absolutely summing operator if there is a constant C such
that for every finite family ¥, ¥r,, ..., ¥, of fonctions in I?P ii verifies

QAT < Coup{Q 1§ ¢ de) 7 gl =1} (1.3)
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¢) Positive r-Summing Operators A(IF, BY. Let 1<r<oo. An operator T in
L7, B) is called positive r-suraming operator if there is a constant € such
that for every finite family ¢ Wh,. ..., ¥, of positive functions in I7 it verifies

CHTWIINT = Csup {150y p@) eV gl =10 (1.4)

The norm in both last spaces is given by the infimum of the constants verifying
{1.3} and (1.4) respectively. The reader is referred to {67 and [1, 2] to see some
properties of these classes of operators respectively. A remarkable fact is the
coincidence of the spaces A,(I7, B) and A, (I, BY when 1 <r < ¢, This last space
A (L, B) was considered by Schaefer [9] who denoted it by space of cone
absolutely summing operators. Let us denote by

[ T{iip.r = nf { C: verifying (1.3)}
and
|r

s =1f{C verifying (1.4)),
Let us recall the following fact (see [9], page 275):

If f belongs to [7(B) then |

Tellp =101, {1.3)

A very easy computation shows that g+ T,=1, , where g=/ stands for
g#f(}=1f(s) glt—s)ds, and therefore, using {1.5), we can rewrite the result
lg =/l =lgl U1, as follows: fig= Tyll, S llgl; 1T}, .. This inequality also
hoids for general operators in the following sense.

Theorem L1 Let 1 Sr<oo, I<p<oo, and gz in L1

a) If T belongs to I(IF, B) then g=T belongs to I1 {1, Bl. Moreover
= Tln < gl Tl

b) If T belongs to A(IF, B), and g is positive then g+ T belongs to A,(I¥, B).
Moreover flg+ T, < lgl, [ T,

cy If T belongs 1o L{IF, B) and g belongs to I¥ then there is a continious
Sunction b such that ¢+ =T, If, in addition, Te A (1P, B) then M, =gl 1T,

Progf. Since g» T is nothing but the composition of two operators T and 4,
being 4(¢}=g= ¢, then a) and b) follow from general properties of r-absolutety
summing operators (see [6]) and positive r-summing ones (see [1]). To show
cf let us take h{t)= T(g,) where g,(s}=g{t—s). Notice that 4 is well defined since
g, belongs to IF for all values of t in Z'In addition we have

1 (t) - h(s)i =

T

; Figr"—'gsﬁp

what clearly implies the continuity of . Moreover we can write

Al =sup [T ST sup ligd,= | TV gl

[
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- Leétoug assume that T belongs to A,(If, B) and look at i as element in
: B}..E thm from (1.5} it suffices to show that g T=T,.
o 16508 r}uq we just have to apply Hille's theorem (see [4], page 47}

g*T(qé)g;[{gs(b):T(jg,-qb(z)dr =[T(g) o) di={h() () dt =T (¢} O

.. Let ug-now use the convelution to give some gpproximation results. To

" do that let us recall the concept of approximate identity.

- Deflmnon 1.2. A segquence of integrable functions g, in L' s called an approxi-

mate identity (a.i.) if it verifies
a) Jg,(tydr=1Tforalln
b) flg.(nidtsCloralln
¢) Foreach d=>0 f g, () d converges to zero as 1 goes to oo
e

The next objective 15 to extend to operators the following well known result:
If g, is a.i. and f belongs to IF{B) for some [ Zp < oo, then

g, = f converges to f in IP{B}. (1.6)

Theorem 1.2, Ler l<p<<on, T helong to ¥ (I¥, BYand g, be an ai. in I7.
a) g, = T converges to T in the strong topology.
by g, T converges to T in norm if and only if T is compact.

FProof. a) easily follows from (1.6).

To prove b} let us observe that from Theorem i.l.c. we have that g, =T
is represented by a function in IF(B) which implies that it is compact operator.
Therefore if we have norm convergence then T must be compact, On the other
band since I does have the approximation property (see [4], page 242) we
can approach any compact operator with finile rank operators which are repre-
senfed by simple functions. Hence given ¢>0 let us take T, the operator of
finite rank represented by s, such that | 7— 7.l <& Therefore

lges T=T] =g, s T g = L] +lge* L-TI+I7,-T]
Z(supilg,l + DIT—T0 +lge#s,— S,

And now the resuit follows from (1.6). [

2. Application to Geometry of Banach Spaces

We shall apply the convolution to deal with the Radon-Nikodym and the analyt-
ic Radon-Nikodym properties. The reader is referred to [4] for the first one,
the formulation we are going to use being as follows:
(=) B has the RNP if any operator Tin #(L!, B} is representable by a function
Jin IHB).
The other property we are concerned with was introduced in | 3] by Bukhva-
lov and Danilevich,
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(%) B has analytic Radon-Nikodym property (ARNP) if every B-valued
bounded holomorphic function on the disc has limits at the boundary
almost everywihcre.

An eguivalent formulation of (#+) is the following (see [3])

(++) Let 1<p<on, B has ARNP if for every F in HE(D) it verifies that F{0)
=F(re"j converges in I’(B)as rT1.

(HE(DY stands for the classical Hardy space but for: B-valued functions and

B will be a complex Banach space in this case). )

Theorem 2.1. Let 1 <p< oo, and let g, be an al. of positive functions in If. The
following statements are equivalent: .

a} B has the Radon-Nikodym property

b) For every operator T in Ay(IF, B} the convolution g, = T converges to T
in A (IF, B).

Proof. Let us assume that B has RNP and take T in A (I, B). Define now
the following vector valued measure

G{E)=T{yz forall measurable set E. (2.1)

We shall prove that G is absolutely continuous with respect to the Lebesgue
measure and that it has bounded variation. Let us take a measurable set 4
and a partition E,, E,, ..., E, of A with m(E)> 0 {m stands for the normalized
Lebesgue measure).

SIGEN ST I
STl sup (%] { $@del: 1], =1}

Ey

ST, supd § 1@ de:ligl, =1
A

= || T}, m{AVE,

%p,i
From here the RNP implies the existence of a function [ in L'(8) such that
G(E)= ff (r)dt. A standard argument shows now that f belongs to I7(B) and

E
that T is represented by f Therefore g, =T is represenied by g, =/ and this
sequence converges to f in IF (B} which means that g, « T converges to T in
A (IF, B,
Conversely, let us take an operator T in # (I}, B}, First we shail show that
T belengs to A,{IF, B). Consider ¢, ¢,, ..., ¥, positive functions in I and
observe the following

ST SIS Ny =178 el T Y bl
=1 T sup{If S p0y del: [, =1}
<71 sup (Y1 @40 vl ditl: 1, = 11,
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Now according t¢o Theorem i.l.c. and the assumption we have that g, = T are
represented by functions f,, in I7'(B) and they form a Cauchy sequence in 1F(B).
The proof is finished by showing that the limit function f represents the operator
T, which is simply & computation. [

Let r(n) be a sequence in (0, 1) converging to 1. Let us write B, for I,
where B stands for the Poisson Kernel on the disc

B(tp={1—r*/(1 ++*—-2rcos r}

P is then an approximate identity {a.i.) of positive and continuous functions.

Theorem 2.2, Let 1 <p<oo, e,(ty=e™"™ for any integer n. The following state-
menls are eguivalent

a) # has the ARNP

b) For every T in A (1f, B) with T{e,)=0 for n<0, the convolution B+ T
converges to Tin A (IF, B).

Proof. Suppose B has ARNP and take Tin A4{I7, B) with T{e,)=0 for n <0.
Let us define

Flz}=T(8) where z=re' and EB()=P(—1). {(2.2)

It is easy to verify that F is a holomorphic funclion on the disc with valaes
i B. Observe that £+ 7' is represented by the function £, Therefore F is
a function in HE (D) since || Ryl < IBH, 171, =T, Consequently we get
the result from (x2,

To prove the converse let us take a bounded holomorphic function on the
disc, and write it as F(z)= } 2% Then for any trigonometrical polynomial

N k20
g= 3y A e, we can define

— M

B
Tlay= Y Ay (2.3}
k=0

Since a;=lim § F(t} ¢,() d¢ then we can write T{g)=lim [ £,(t) g(r) dz. This clearly
imphes that

IT{g)] =sup [F ()] ligh, .

Hence, extending by density, we have got an operator in % (L}, B} which obvious-
ly satisfies T'(e,)=0 for #<0. As in Theorem 2.1, we have that T, in fact, belongs
to A (IF, B} and therefore P =T, which is represented by F,,, converges (o
Tin A4,{I?, B). From here we have that F,, is a convergent sequence in I7(B)
to some f in IF{B) which is the end of the proof since then Foy=E=f and
thus F has boundary limits almost everywhere. [
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